1
|
Wiśniewski K, Reorowicz P, Tyfa Z, Price B, Jian A, Fahlström A, Obidowski D, Jaskólski DJ, Jóźwik K, Drummond K, Wessels L, Vajkoczy P, Adamides AA. Computational fluid dynamics; a new diagnostic tool in giant intracerebral aneurysm treatment. Comput Biol Med 2024; 181:109053. [PMID: 39217964 DOI: 10.1016/j.compbiomed.2024.109053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Giant intracerebral aneurysms (GIA) comprise up to 5 % of all intracranial aneurysms. The indirect surgical strategy, which leaves the GIA untouched but reverses the blood flow by performing a bypass in combination with proximal parent artery occlusion is a useful method to achieve spontaneous aneurysm occlusion. The goal of this study was to assess the utility of computational fluid dynamics (CFD) in preoperative GIA treatment planning. We hypothesise that CFD simulations will predict treatment results. A fluid-structure interaction (FSI) CFD investigation was performed for the entire arterial brain circulation. The analyses were performed in three patient-specific CT angiogram models. The first served as the reference geometry with a C6 internal carotid artery (ICA) GIA, the second a proximal parent artery occlusion (PAO) and virtual bypass to the frontal M2 branch of the middle cerebral artery (MCA), and the third a proximal PAO in combination with a temporal M2 branch bypass. The volume of "old blood", flow residence time (FRT), dynamic viscosity and haemodynamic changes were also analysed. The "old blood" within the aneurysm in the bypass models reached 41 % after 20 cardiac cycles while in the reference model it was fully washed out. In Bypass 2 "old blood" was also observed in the main trunk of the MCA after 20 cardiac cycles. Extrapolation of the results yielded a duration of 4 years required to replace the "old blood" inside the aneurysm after bypass revascularization. In both bypass models a 7-fold increase in mean blood viscosity in the aneurysm region was noted. Bypass revascularization combined with proximal PAO favours thrombosis. Areas prone to thrombus formation, and subsequently the treatment outcomes, were accurately identified in the preoperative model. Virtual surgical operations can give a remarkable insight into haemodynamics that could support operative decision-making.
Collapse
Affiliation(s)
- Karol Wiśniewski
- Department of Neurosurgery, Royal Melbourne Hospital, 300 Grattan St, Parkville, 3050, Australia; Department of Neurosurgery and Neurooncology, Medical University of Łódź, Kopcińskiego 22, 90-153, Łódź, Poland; Lodz University of Technology, Institute of Turbomachinery, 219/223 Wolczanska Str., 90-924, Lodz, Poland.
| | - Piotr Reorowicz
- Lodz University of Technology, Institute of Turbomachinery, 219/223 Wolczanska Str., 90-924, Lodz, Poland.
| | - Zbigniew Tyfa
- Lodz University of Technology, Institute of Turbomachinery, 219/223 Wolczanska Str., 90-924, Lodz, Poland.
| | - Benjamin Price
- Department of Neurosurgery, Royal Melbourne Hospital, 300 Grattan St, Parkville, 3050, Australia.
| | - Anne Jian
- Department of Neurosurgery, Royal Melbourne Hospital, 300 Grattan St, Parkville, 3050, Australia.
| | - Andreas Fahlström
- Department of Neurosurgery, Royal Melbourne Hospital, 300 Grattan St, Parkville, 3050, Australia; Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, 75185, Sweden.
| | - Damian Obidowski
- Lodz University of Technology, Institute of Turbomachinery, 219/223 Wolczanska Str., 90-924, Lodz, Poland.
| | - Dariusz J Jaskólski
- Department of Neurosurgery and Neurooncology, Medical University of Łódź, Kopcińskiego 22, 90-153, Łódź, Poland.
| | - Krzysztof Jóźwik
- Lodz University of Technology, Institute of Turbomachinery, 219/223 Wolczanska Str., 90-924, Lodz, Poland.
| | - Katharine Drummond
- Department of Neurosurgery, Royal Melbourne Hospital, 300 Grattan St, Parkville, 3050, Australia; Department of Surgery, University of Melbourne, 300 Grattan St, Parkville, 3050, Australia.
| | - Lars Wessels
- Department of Neurosurgery and Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Peter Vajkoczy
- Department of Neurosurgery and Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Alexios A Adamides
- Department of Neurosurgery, Royal Melbourne Hospital, 300 Grattan St, Parkville, 3050, Australia; Department of Surgery, University of Melbourne, 300 Grattan St, Parkville, 3050, Australia.
| |
Collapse
|
2
|
Benvidi A, Firoozabadi B. Simulation of plaque formation in a realistic geometry of a human aorta: effects of endothelial layer properties, heart rate, and hypertension. Biomech Model Mechanobiol 2024; 23:1723-1740. [PMID: 38847969 DOI: 10.1007/s10237-024-01864-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/26/2024] [Indexed: 09/28/2024]
Abstract
Nowadays, cardiovascular diseases are the most common cause of death worldwide. Besides, atherosclerosis is a cardiovascular disease that occurs with persistent narrowing of arteries, especially medium and large-sized arteries. Atherosclerosis begins with a local elevation in the permeability of the arterial wall as a result of endothelial inflammation. Subsequently, excess LDL permeates into the arterial wall. Then, through several chemical responses and reactions, foam cells are produced. These foam cells serve as a crucial indicator for assessing the development of atherosclerosis within the arteries. In this study, the effect of endothelial layer modeling, heart rate (HR) and hypertension on the foam cell accumulation is numerically investigated in a patient-specific geometry of the human thoracic aorta. Navier-Stokes, Darcy, and mass transfer equations are used to obtain the velocity and concentration field within the domain. Regarding the dependence of endothelial cell properties on time-averaged wall shear stress, it is observed that foam cells are mainly concentrated in the outer curvature of the aortic arch, downstream of the left subclavian artery. However, considering oscillatory-shear-rate as the determinant of endothelial cell properties leads to the accumulation of foam cells in the inner curvature of the descending aorta. Regarding the HR, with the increase of HR, the volume average concentration of the foam cell decreases. However, there is no substantial difference between the cases of different HRs. Moreover, foam cell concentration significantly increases in the hypertension case. This result implies that a slight increase in the blood pressure may induce irreparable problems in the circulatory system.
Collapse
Affiliation(s)
- Amirabbas Benvidi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Bahar Firoozabadi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
3
|
Mansouri H, Kemerli M, MacIver R, Amili O. Development of idealized human aortic models for in vitro and in silico hemodynamic studies. Front Cardiovasc Med 2024; 11:1358601. [PMID: 39161662 PMCID: PMC11330894 DOI: 10.3389/fcvm.2024.1358601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/25/2024] [Indexed: 08/21/2024] Open
Abstract
Background The aorta, a central component of the cardiovascular system, plays a pivotal role in ensuring blood circulation. Despite its importance, there is a notable lack of idealized models for experimental and computational studies. Objective This study aims to develop computer-aided design (CAD) models for the idealized human aorta, intended for studying hemodynamics or solid mechanics in both in vitro and in silico settings. Methods Various parameters were extracted from comprehensive literature sources to evaluate major anatomical characteristics of the aorta in healthy adults, including variations in aortic arch branches and corresponding dimensions. The idealized models were generated based on averages weighted by the cohort size of each study for several morphological parameters collected and compiled from image-based or cadaveric studies, as well as data from four recruited subjects. The models were used for hemodynamics assessment using particle image velocimetry (PIV) measurements and computational fluid dynamics (CFD) simulations. Results Two CAD models for the idealized human aorta were developed, focusing on the healthy population. The CFD simulations, which align closely with the PIV measurements, capture the main global flow features and wall shear stress patterns observed in patient-specific cases, demonstrating the capabilities of the designed models. Conclusions The collected statistical data on the aorta and the two idealized aorta models, covering prevalent arch variants known as Normal and Bovine types, are shown to be useful for examining the hemodynamics of the aorta. They also hold promise for applications in designing medical devices where anatomical statistics are needed.
Collapse
Affiliation(s)
- Hamid Mansouri
- Department of Mechanical, Industrial, and Manufacturing Engineering, University of Toledo, Toledo, OH, United States
| | - Muaz Kemerli
- Department of Mechanical, Industrial, and Manufacturing Engineering, University of Toledo, Toledo, OH, United States
- Department of Mechanical Engineering, Sakarya University, Sakarya, Turkey
| | - Robroy MacIver
- Children’s Heart Clinic, Children’s Hospitals and Clinics of Minnesota, Minneapolis, MN, United States
| | - Omid Amili
- Department of Mechanical, Industrial, and Manufacturing Engineering, University of Toledo, Toledo, OH, United States
| |
Collapse
|
4
|
Perinajová R, van de Ven T, Roelse E, Xu F, Juffermans J, Westenberg J, Lamb H, Kenjereš S. A comprehensive MRI-based computational model of blood flow in compliant aorta using radial basis function interpolation. Biomed Eng Online 2024; 23:69. [PMID: 39039565 PMCID: PMC11265469 DOI: 10.1186/s12938-024-01251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/03/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Properly understanding the origin and progression of the thoracic aortic aneurysm (TAA) can help prevent its growth and rupture. For a better understanding of this pathogenesis, the aortic blood flow has to be studied and interpreted in great detail. We can obtain detailed aortic blood flow information using magnetic resonance imaging (MRI) based computational fluid dynamics (CFD) with a prescribed motion of the aortic wall. METHODS We performed two different types of simulations-static (rigid wall) and dynamic (moving wall) for healthy control and a patient with a TAA. For the latter, we have developed a novel morphing approach based on the radial basis function (RBF) interpolation of the segmented 4D-flow MRI geometries at different time instants. Additionally, we have applied reconstructed 4D-flow MRI velocity profiles at the inlet with an automatic registration protocol. RESULTS The simulated RBF-based movement of the aorta matched well with the original 4D-flow MRI geometries. The wall movement was most dominant in the ascending aorta, accompanied by the highest variation of the blood flow patterns. The resulting data indicated significant differences between the dynamic and static simulations, with a relative difference for the patient of 7.47±14.18% in time-averaged wall shear stress and 15.97±43.32% in the oscillatory shear index (for the whole domain). CONCLUSIONS In conclusion, the RBF-based morphing approach proved to be numerically accurate and computationally efficient in capturing complex kinematics of the aorta, as validated by 4D-flow MRI. We recommend this approach for future use in MRI-based CFD simulations in broad population studies. Performing these would bring a better understanding of the onset and growth of TAA.
Collapse
Affiliation(s)
- Romana Perinajová
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands.
- J.M. Burgerscentrum Research School for Fluid Mechanics, Delft, The Netherlands.
| | - Thijn van de Ven
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Elise Roelse
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Fei Xu
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
- J.M. Burgerscentrum Research School for Fluid Mechanics, Delft, The Netherlands
| | - Joe Juffermans
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jos Westenberg
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hildo Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Saša Kenjereš
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands.
- J.M. Burgerscentrum Research School for Fluid Mechanics, Delft, The Netherlands.
| |
Collapse
|
5
|
Balasubramanya A, Maes L, Rega F, Mazzi V, Morbiducci U, Famaey N, Degroote J, Segers P. Hemodynamics and wall shear metrics in a pulmonary autograft: Comparing a fluid-structure interaction and computational fluid dynamics approach. Comput Biol Med 2024; 176:108604. [PMID: 38761502 DOI: 10.1016/j.compbiomed.2024.108604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/02/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
OBJECTIVE In young patients, aortic valve disease is often treated by placement of a pulmonary autograft (PA) which adapts to its new environment through growth and remodeling. To better understand the hemodynamic forces acting on the highly distensible PA in the acute phase after surgery, we developed a fluid-structure interaction (FSI) framework and comprehensively compared hemodynamics and wall shear-stress (WSS) metrics with a computational fluid dynamic (CFD) simulation. METHODS The FSI framework couples a prestressed non-linear hyperelastic arterial tissue model with a fluid model using the in-house coupling code CoCoNuT. Geometry, material parameters and boundary conditions are based on in-vivo measurements. Hemodynamics, time-averaged WSS (TAWSS), oscillatory shear index (OSI) and topological shear variation index (TSVI) are evaluated qualitatively and quantitatively for 3 different sheeps. RESULTS Despite systolic-to-diastolic volumetric changes of the PA in the order of 20 %, the point-by-point correlation of TAWSS and OSI obtained through CFD and FSI remains high (r > 0.9, p < 0.01) for TAWSS and (r > 0.8, p < 0.01) for OSI). Instantaneous WSS divergence patterns qualitatively preserve similarities, but large deformations of the PA leads to a decrease of the correlation between FSI and CFD resolved TSVI (r < 0.7, p < 0.01). Moderate co-localization between FSI and CFD is observed for low thresholds of TAWSS and high thresholds of OSI and TSVI. CONCLUSION FSI might be warranted if we were to use the TSVI as a mechano-biological driver for growth and remodeling of PA due to varying intra-vascular flow structures and near wall hemodynamics because of the large expansion of the PA.
Collapse
Affiliation(s)
| | - Lauranne Maes
- Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Filip Rega
- Cardiac Surgery, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Valentina Mazzi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Umberto Morbiducci
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Nele Famaey
- Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Joris Degroote
- Department of Electromechanical Systems and Metal Engineering, Ghent University, Ghent, Belgium
| | | |
Collapse
|
6
|
Fandaros M, Kwok C, Wolf Z, Labropoulos N, Yin W. Patient-Specific Numerical Simulations of Coronary Artery Hemodynamics and Biomechanics: A Pathway to Clinical Use. Cardiovasc Eng Technol 2024:10.1007/s13239-024-00731-4. [PMID: 38710896 DOI: 10.1007/s13239-024-00731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
PURPOSE Numerical models that simulate the behaviors of the coronary arteries have been greatly improved by the addition of fluid-structure interaction (FSI) methods. Although computationally demanding, FSI models account for the movement of the arterial wall and more adequately describe the biomechanical conditions at and within the arterial wall. This offers greater physiological relevance over Computational Fluid Dynamics (CFD) models, which assume the walls do not move or deform. Numerical simulations of patient-specific cases have been greatly bolstered by the use of imaging modalities such as Computed Tomography Angiography (CTA), Magnetic Resonance Imaging (MRI), Optical Coherence Tomography (OCT), and Intravascular Ultrasound (IVUS) to reconstruct accurate 2D and 3D representations of artery geometries. The goal of this study was to conduct a comprehensive review on CFD and FSI models on coronary arteries, and evaluate their translational potential. METHODS This paper reviewed recent work on patient-specific numerical simulations of coronary arteries that describe the biomechanical conditions associated with atherosclerosis using CFD and FSI models. Imaging modality for geometry collection and clinical applications were also discussed. RESULTS Numerical models using CFD and FSI approaches are commonly used to study biomechanics within the vasculature. At high temporal and spatial resolution (compared to most cardiac imaging modalities), these numerical models can generate large amount of biomechanics data. CONCLUSIONS Physiologically relevant FSI models can more accurately describe atherosclerosis pathogenesis, and help to translate biomechanical assessment to clinical evaluation.
Collapse
Affiliation(s)
- Marina Fandaros
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Room 109, 11794, Stony Brook, NY, USA
| | - Chloe Kwok
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Room 109, 11794, Stony Brook, NY, USA
| | - Zachary Wolf
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Room 109, 11794, Stony Brook, NY, USA
| | - Nicos Labropoulos
- Department of Surgery, Stony Brook Medicine, 11794, Stony Brook, NY, USA
| | - Wei Yin
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Room 109, 11794, Stony Brook, NY, USA.
| |
Collapse
|
7
|
Caddy HT, Kelsey LJ, Parker LP, Green DJ, Doyle BJ. Modelling large scale artery haemodynamics from the heart to the eye in response to simulated microgravity. NPJ Microgravity 2024; 10:7. [PMID: 38218868 PMCID: PMC10787773 DOI: 10.1038/s41526-024-00348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
We investigated variations in haemodynamics in response to simulated microgravity across a semi-subject-specific three-dimensional (3D) continuous arterial network connecting the heart to the eye using computational fluid dynamics (CFD) simulations. Using this model we simulated pulsatile blood flow in an upright Earth gravity case and a simulated microgravity case. Under simulated microgravity, regional time-averaged wall shear stress (TAWSS) increased and oscillatory shear index (OSI) decreased in upper body arteries, whilst the opposite was observed in the lower body. Between cases, uniform changes in TAWSS and OSI were found in the retina across diameters. This work demonstrates that 3D CFD simulations can be performed across continuously connected networks of small and large arteries. Simulated results exhibited similarities to low dimensional spaceflight simulations and measured data-specifically that blood flow and shear stress decrease towards the lower limbs and increase towards the cerebrovasculature and eyes in response to simulated microgravity, relative to an upright position in Earth gravity.
Collapse
Affiliation(s)
- Harrison T Caddy
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, WA, Australia
| | - Lachlan J Kelsey
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- School of Engineering, The University of Western Australia, Perth, WA, Australia
| | - Louis P Parker
- FLOW, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Daniel J Green
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, WA, Australia
| | - Barry J Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.
- School of Engineering, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
8
|
Pegolotti L, Pfaller MR, Rubio NL, Ding K, Brugarolas Brufau R, Darve E, Marsden AL. Learning reduced-order models for cardiovascular simulations with graph neural networks. Comput Biol Med 2024; 168:107676. [PMID: 38039892 PMCID: PMC10886437 DOI: 10.1016/j.compbiomed.2023.107676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
Abstract
Reduced-order models based on physics are a popular choice in cardiovascular modeling due to their efficiency, but they may experience loss in accuracy when working with anatomies that contain numerous junctions or pathological conditions. We develop one-dimensional reduced-order models that simulate blood flow dynamics using a graph neural network trained on three-dimensional hemodynamic simulation data. Given the initial condition of the system, the network iteratively predicts the pressure and flow rate at the vessel centerline nodes. Our numerical results demonstrate the accuracy and generalizability of our method in physiological geometries comprising a variety of anatomies and boundary conditions. Our findings demonstrate that our approach can achieve errors below 3% for pressure and flow rate, provided there is adequate training data. As a result, our method exhibits superior performance compared to physics-based one-dimensional models while maintaining high efficiency at inference time.
Collapse
Affiliation(s)
- Luca Pegolotti
- Department of Pediatrics, Stanford University, United States of America; Institute for Computational and Mathematical Engineering, Stanford University, United States of America.
| | - Martin R Pfaller
- Department of Pediatrics, Stanford University, United States of America; Institute for Computational and Mathematical Engineering, Stanford University, United States of America
| | - Natalia L Rubio
- Department of Mechanical Engineering, Stanford University, United States of America
| | - Ke Ding
- Intel Corporation, United States of America
| | | | - Eric Darve
- Institute for Computational and Mathematical Engineering, Stanford University, United States of America; Department of Mechanical Engineering, Stanford University, United States of America
| | - Alison L Marsden
- Department of Pediatrics, Stanford University, United States of America; Institute for Computational and Mathematical Engineering, Stanford University, United States of America; Department of Mechanical Engineering, Stanford University, United States of America; Department of Bioengineering, Stanford University, United States of America
| |
Collapse
|
9
|
Özcan C, Kocatürk Ö, Işlak C, Öztürk C. Integrated particle image velocimetry and fluid-structure interaction analysis for patient-specific abdominal aortic aneurysm studies. Biomed Eng Online 2023; 22:113. [PMID: 38044423 PMCID: PMC10693692 DOI: 10.1186/s12938-023-01179-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Understanding the hemodynamics of an abdominal aortic aneurysm (AAA) is crucial for risk assessment and treatment planning. This study introduces a low-cost, patient-specific in vitro AAA model to investigate hemodynamics using particle image velocimetry (PIV) and flow-simulating circuit, validated through fluid-structure interaction (FSI) simulations. METHODS In this study, 3D printing was employed to manufacture a flexible patient-specific AAA phantom using a lost-core casting technique. A pulsatile flow circuit was constructed using off-the-shelf components. A particle image velocimetry (PIV) setup was built using an affordable laser source and global shutter camera, and finally, the flow field inside the AAA was analyzed using open-source software. Fluid-structure interaction (FSI) simulations were performed to enhance our understanding of the flow field, and the results were validated by PIV analysis. Both steady-state and transient flow conditions were investigated. RESULTS Our experimental setup replicated physiological conditions, analyzing arterial wall deformations and flow characteristics within the aneurysm. Under constant flow, peak wall deformations and flow velocities showed deviations within - 12% to + 27% and - 7% to + 5%, respectively, compared to FSI simulations. Pulsatile flow conditions further demonstrated a strong correlation (Pearson coefficient 0.85) in flow velocities and vectors throughout the cardiac cycle. Transient phenomena, particularly the formation and progression of vortex structures during systole, were consistently depicted between experimental and numerical models. CONCLUSIONS By bridging high-fidelity experimental observations with comprehensive computational analyses, this study underscores the potential of integrated methodologies in enhancing our understanding of AAA pathophysiology. The convergence of realistic AAA phantoms, precise PIV measurements at affordable cost point, and validated FSI models heralds a new paradigm in vascular research, with significant implications for personalized medicine and bioengineering innovations.
Collapse
Affiliation(s)
- Can Özcan
- Institute of Biomedical Engineering, Boğaziçi University, Kandilli Campus, Feza Gürsey Bld., Çengelköy, 34685, Istanbul, Turkey.
| | - Özgür Kocatürk
- Institute of Biomedical Engineering, Boğaziçi University, Kandilli Campus, Feza Gürsey Bld., Çengelköy, 34685, Istanbul, Turkey
| | - Civan Işlak
- Department of Radiology, Division of Neuroradiology, Cerrahpaşa Medical Faculty, Istanbul University Cerrahpaşa, Istanbul, Turkey
| | - Cengizhan Öztürk
- Institute of Biomedical Engineering, Boğaziçi University, Kandilli Campus, Feza Gürsey Bld., Çengelköy, 34685, Istanbul, Turkey
| |
Collapse
|
10
|
Geronzi L, Bel-Brunon A, Martinez A, Rochette M, Sensale M, Bouchot O, Lalande A, Lin S, Valentini PP, Biancolini ME. Calibration of the Mechanical Boundary Conditions for a Patient-Specific Thoracic Aorta Model Including the Heart Motion Effect. IEEE Trans Biomed Eng 2023; 70:3248-3259. [PMID: 37390004 DOI: 10.1109/tbme.2023.3287680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
OBJECTIVE We propose a procedure for calibrating 4 parameters governing the mechanical boundary conditions (BCs) of a thoracic aorta (TA) model derived from one patient with ascending aortic aneurysm. The BCs reproduce the visco-elastic structural support provided by the soft tissue and the spine and allow for the inclusion of the heart motion effect. METHODS We first segment the TA from magnetic resonance imaging (MRI) angiography and derive the heart motion by tracking the aortic annulus from cine-MRI. A rigid-wall fluid-dynamic simulation is performed to derive the time-varying wall pressure field. We build the finite element model considering patient-specific material properties and imposing the derived pressure field and the motion at the annulus boundary. The calibration, which involves the zero-pressure state computation, is based on purely structural simulations. After obtaining the vessel boundaries from the cine-MRI sequences, an iterative procedure is performed to minimize the distance between them and the corresponding boundaries derived from the deformed structural model. A strongly-coupled fluid-structure interaction (FSI) analysis is finally performed with the tuned parameters and compared to the purely structural simulation. RESULTS AND CONCLUSION The calibration with structural simulations allows to reduce maximum and mean distances between image-derived and simulation-derived boundaries from 8.64 mm to 6.37 mm and from 2.24 mm to 1.83 mm, respectively. The maximum root mean square error between the deformed structural and FSI surface meshes is 0.19 mm. This procedure may prove crucial for increasing the model fidelity in replicating the real aortic root kinematics.
Collapse
|
11
|
Marin-Castrillon DM, Geronzi L, Boucher A, Lin S, Morgant MC, Cochet A, Rochette M, Leclerc S, Ambarki K, Jin N, Aho LS, Lalande A, Bouchot O, Presles B. Segmentation of the aorta in systolic phase from 4D flow MRI: multi-atlas vs. deep learning. MAGMA (NEW YORK, N.Y.) 2023; 36:687-700. [PMID: 36800143 DOI: 10.1007/s10334-023-01066-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/26/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023]
Abstract
OBJECTIVE In the management of the aortic aneurysm, 4D flow magnetic resonance Imaging provides valuable information for the computation of new biomarkers using computational fluid dynamics (CFD). However, accurate segmentation of the aorta is required. Thus, our objective is to evaluate the performance of two automatic segmentation methods on the calculation of aortic wall pressure. METHODS Automatic segmentation of the aorta was performed with methods based on deep learning and multi-atlas using the systolic phase in the 4D flow MRI magnitude image of 36 patients. Using mesh morphing, isotopological meshes were generated, and CFD was performed to calculate the aortic wall pressure. Node-to-node comparisons of the pressure results were made to identify the most robust automatic method respect to the pressures obtained with a manually segmented model. RESULTS Deep learning approach presented the best segmentation performance with a mean Dice similarity coefficient and a mean Hausdorff distance (HD) equal to 0.92+/- 0.02 and 21.02+/- 24.20 mm, respectively. At the global level HD is affected by the performance in the abdominal aorta. Locally, this distance decreases to 9.41+/- 3.45 and 5.82+/- 6.23 for the ascending and descending thoracic aorta, respectively. Moreover, with respect to the pressures from the manual segmentations, the differences in the pressures computed from deep learning were lower than those computed from multi-atlas method. CONCLUSION To reduce biases in the calculation of aortic wall pressure, accurate segmentation is needed, particularly in regions with high blood flow velocities. Thus, the deep learning segmen-tation method should be preferred.
Collapse
Affiliation(s)
| | | | - Arnaud Boucher
- Imaging and Artificial Vision Research Laboratory, University of Burgundy, Dijon, France
| | - Siyu Lin
- Imaging and Artificial Vision Research Laboratory, University of Burgundy, Dijon, France
| | - Marie-Catherine Morgant
- Imaging and Artificial Vision Research Laboratory, University of Burgundy, Dijon, France
- Department of cardiovascular and thoracic surgery, University Hospital of Dijon, Dijon, France
| | - Alexandre Cochet
- Imaging and Artificial Vision Research Laboratory, University of Burgundy, Dijon, France
- Medical Imaging Department, University Hospital of Dijon, Dijon, France
| | | | - Sarah Leclerc
- Imaging and Artificial Vision Research Laboratory, University of Burgundy, Dijon, France
| | | | - Ning Jin
- Siemens Medical Solutions, Nancy, France
| | - Ludwig Serge Aho
- Department of Epidemiology and Hygiene, University Hospital of Dijon, Dijon, France
| | - Alain Lalande
- Imaging and Artificial Vision Research Laboratory, University of Burgundy, Dijon, France
- Medical Imaging Department, University Hospital of Dijon, Dijon, France
| | - Olivier Bouchot
- Imaging and Artificial Vision Research Laboratory, University of Burgundy, Dijon, France
- Department of cardiovascular and thoracic surgery, University Hospital of Dijon, Dijon, France
| | - Benoit Presles
- Imaging and Artificial Vision Research Laboratory, University of Burgundy, Dijon, France.
| |
Collapse
|
12
|
Zolfaghari H, Andiapen M, Baumbach A, Mathur A, Kerswell RR. Wall shear stress and pressure patterns in aortic stenosis patients with and without aortic dilation captured by high-performance image-based computational fluid dynamics. PLoS Comput Biol 2023; 19:e1011479. [PMID: 37851683 PMCID: PMC10635572 DOI: 10.1371/journal.pcbi.1011479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 11/09/2023] [Accepted: 08/24/2023] [Indexed: 10/20/2023] Open
Abstract
Spatial patterns of elevated wall shear stress and pressure due to blood flow past aortic stenosis (AS) are studied using GPU-accelerated patient-specific computational fluid dynamics. Three cases of moderate to severe AS, one with a dilated ascending aorta and two within the normal range (root diameter less than 4cm) are simulated for physiological waveforms obtained from echocardiography. The computational framework is built based on sharp-interface Immersed Boundary Method, where aortic geometries segmented from CT angiograms are integrated into a high-order incompressible Navier-Stokes solver. The key question addressed here is, given the presence of turbulence due to AS which increases wall shear stress (WSS) levels, why some AS patients undergo much less aortic dilation. Recent case studies of AS have linked the existence of an elevated WSS hotspot (due to impingement of AS on the aortic wall) to the dilation process. Herein we further investigate the WSS distribution for cases with and without dilation to understand the possible hemodynamics which may impact the dilation process. We show that the spatial distribution of elevated WSS is significantly more focused for the case with dilation than those without dilation. We further show that this focal area accommodates a persistent pocket of high pressure, which may have contributed to the dilation process through an increased wall-normal forcing. The cases without dilation, on the contrary, showed a rather oscillatory pressure behaviour, with no persistent pressure "buildup" effect. We further argue that a more proximal branching of the aortic arch could explain the lack of a focal area of elevated WSS and pressure, because it interferes with the impingement process due to fluid suction effects. These phenomena are further illustrated using an idealized aortic geometry. We finally show that a restored inflow eliminates the focal area of elevated WSS and pressure zone from the ascending aorta.
Collapse
Affiliation(s)
- Hadi Zolfaghari
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Mervyn Andiapen
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
| | - Andreas Baumbach
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Anthony Mathur
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom
| | - Rich R. Kerswell
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Jagos J, Schwarz D, Polzer S, Bursa J. Effect of aortic bifurcation geometry on pressure and peak wall stress in abdominal aorta: Fluid-structure interaction study. Med Eng Phys 2023; 118:104014. [PMID: 37536835 DOI: 10.1016/j.medengphy.2023.104014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/03/2023] [Accepted: 06/24/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Geometry of aorto-iliac bifurcation may affect pressure and wall stress in aorta and thus potentially serve as a predictor of abdominal aortic aneurysm (AAA), similarly to hypertension. METHODS Effect of aorto-iliac bifurcation geometry was investigated via parametric analysis based on two-way weakly coupled fluid-structure interaction simulations. The arterial wall was modelled as isotropic hyperelastic monolayer, and non-Newtonian behaviour was introduced for the fluid. Realistic boundary conditions of the pulsatile blood flow were used on the basis of experiments in literature and their time shift was tailored to the pulse wave velocity in the model to obtain physiological wave shapes. Eighteen idealized and one patient-specific geometries of human aortic tree with common iliac and renal arteries were considered with different angles between abdominal aorta (AA) and both iliac arteries and different area ratios (AR) of iliac and aortic luminal cross sections. RESULTS Peak wall stress (PWS) and systolic blood pressure (SBP) were insensitive to the aorto-iliac angles but sensitive to the AR: when AR decreased by 50%, the PWS and SBP increased by up to 18.4% and 18.8%, respectively. CONCLUSIONS Lower AR (as a result of the iliac stenosis or aging), rather than the aorto-iliac angles increases the BP in the AA and may be thus a risk factor for the AAA development.
Collapse
Affiliation(s)
- Jiri Jagos
- Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic.
| | - David Schwarz
- Department of Applied Mechanics, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Stanislav Polzer
- Department of Applied Mechanics, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Jiri Bursa
- Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
| |
Collapse
|
14
|
Wang X, Carpenter HJ, Ghayesh MH, Kotousov A, Zander AC, Amabili M, Psaltis PJ. A review on the biomechanical behaviour of the aorta. J Mech Behav Biomed Mater 2023; 144:105922. [PMID: 37320894 DOI: 10.1016/j.jmbbm.2023.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/14/2023] [Accepted: 05/20/2023] [Indexed: 06/17/2023]
Abstract
Large aortic aneurysm and acute and chronic aortic dissection are pathologies of the aorta requiring surgery. Recent advances in medical intervention have improved patient outcomes; however, a clear understanding of the mechanisms leading to aortic failure and, hence, a better understanding of failure risk, is still missing. Biomechanical analysis of the aorta could provide insights into the development and progression of aortic abnormalities, giving clinicians a powerful tool in risk stratification. The complexity of the aortic system presents significant challenges for a biomechanical study and requires various approaches to analyse the aorta. To address this, here we present a holistic review of the biomechanical studies of the aorta by categorising articles into four broad approaches, namely theoretical, in vivo, experimental and combined investigations. Experimental studies that focus on identifying mechanical properties of the aortic tissue are also included. By reviewing the literature and discussing drawbacks, limitations and future challenges in each area, we hope to present a more complete picture of the state-of-the-art of aortic biomechanics to stimulate research on critical topics. Combining experimental modalities and computational approaches could lead to more comprehensive results in risk prediction for the aortic system.
Collapse
Affiliation(s)
- Xiaochen Wang
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Harry J Carpenter
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Mergen H Ghayesh
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Andrei Kotousov
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Anthony C Zander
- School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Marco Amabili
- Department of Mechanical Engineering, McGill University, Montreal H3A 0C3, Canada
| | - Peter J Psaltis
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5005, Australia; Department of Cardiology, Central Adelaide Local Health Network, Adelaide, South Australia 5000, Australia; Vascular Research Centre, Heart Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| |
Collapse
|
15
|
Wang X, Ghayesh MH, Kotousov A, Zander AC, Dawson JA, Psaltis PJ. Fluid-structure interaction study for biomechanics and risk factors in Stanford type A aortic dissection. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023:e3736. [PMID: 37258411 DOI: 10.1002/cnm.3736] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
Aortic dissection is a life-threatening condition with a rising prevalence in the elderly population, possibly as a consequence of the increasing population life expectancy. Untreated aortic dissection can lead to myocardial infarction, aortic branch malperfusion or occlusion, rupture, aneurysm formation and death. This study aims to assess the potential of a biomechanical model in predicting the risks of a non-dilated thoracic aorta with Stanford type A dissection. To achieve this, a fully coupled fluid-structure interaction model was developed under realistic blood flow conditions. This model of the aorta was developed by considering three-dimensional artery geometry, multiple artery layers, hyperelastic artery wall, in vivo-based physiological time-varying blood velocity profiles, and non-Newtonian blood behaviours. The results demonstrate that in a thoracic aorta with Stanford type A dissection, the wall shear stress (WSS) is significantly low in the ascending aorta and false lumen, leading to potential aortic dilation and thrombus formation. The results also reveal that the WSS is highly related to blood flow patterns. The aortic arch region near the brachiocephalic and left common carotid artery is prone to rupture, showing a good agreement with the clinical reports. The results have been translated into their potential clinical relevance by revealing the role of the stress state, WSS and flow characteristics as the main parameters affecting lesion progression, including rupture and aneurysm. The developed model can be tailored for patient-specific studies and utilised as a predictive tool to estimate aneurysm growth and initiation of wall rupture inside the human thoracic aorta.
Collapse
Affiliation(s)
- Xiaochen Wang
- School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
| | - Mergen H Ghayesh
- School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
| | - Andrei Kotousov
- School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
| | - Anthony C Zander
- School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
| | - Joseph A Dawson
- Department of Vascular & Endovascular Surgery, Royal Adelaide Hospital, Adelaide, Australia
- Trauma Surgery Unit, Royal Adelaide Hospital, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Peter J Psaltis
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Vascular Research Centre, Lifelong Health Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, Australia
| |
Collapse
|
16
|
Zhang D, Lindsey SE. Recasting Current Knowledge of Human Fetal Circulation: The Importance of Computational Models. J Cardiovasc Dev Dis 2023; 10:240. [PMID: 37367405 PMCID: PMC10299027 DOI: 10.3390/jcdd10060240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Computational hemodynamic simulations are becoming increasingly important for cardiovascular research and clinical practice, yet incorporating numerical simulations of human fetal circulation is relatively underutilized and underdeveloped. The fetus possesses unique vascular shunts to appropriately distribute oxygen and nutrients acquired from the placenta, adding complexity and adaptability to blood flow patterns within the fetal vascular network. Perturbations to fetal circulation compromise fetal growth and trigger the abnormal cardiovascular remodeling that underlies congenital heart defects. Computational modeling can be used to elucidate complex blood flow patterns in the fetal circulatory system for normal versus abnormal development. We present an overview of fetal cardiovascular physiology and its evolution from being investigated with invasive experiments and primitive imaging techniques to advanced imaging (4D MRI and ultrasound) and computational modeling. We introduce the theoretical backgrounds of both lumped-parameter networks and three-dimensional computational fluid dynamic simulations of the cardiovascular system. We subsequently summarize existing modeling studies of human fetal circulation along with their limitations and challenges. Finally, we highlight opportunities for improved fetal circulation models.
Collapse
Affiliation(s)
| | - Stephanie E. Lindsey
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
17
|
Calò K, Capellini K, De Nisco G, Mazzi V, Gasparotti E, Gallo D, Celi S, Morbiducci U. Impact of wall displacements on the large-scale flow coherence in ascending aorta. J Biomech 2023; 154:111620. [PMID: 37178494 DOI: 10.1016/j.jbiomech.2023.111620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
In the context of aortic hemodynamics, uncertainties affecting blood flow simulations hamper their translational potential as supportive technology in clinics. Computational fluid dynamics (CFD) simulations under rigid-walls assumption are largely adopted, even though the aorta contributes markedly to the systemic compliance and is characterized by a complex motion. To account for personalized wall displacements in aortic hemodynamics simulations, the moving-boundary method (MBM) has been recently proposed as a computationally convenient strategy, although its implementation requires dynamic imaging acquisitions not always available in clinics. In this study we aim to clarify the real need for introducing aortic wall displacements in CFD simulations to accurately capture the large-scale flow structures in the healthy human ascending aorta (AAo). To do that, the impact of wall displacements is analyzed using subject-specific models where two CFD simulations are performed imposing (1) rigid walls, and (2) personalized wall displacements adopting a MBM, integrating dynamic CT imaging and a mesh morphing technique based on radial basis functions. The impact of wall displacements on AAo hemodynamics is analyzed in terms of large-scale flow patterns of physiological significance, namely axial blood flow coherence (quantified applying the Complex Networks theory), secondary flows, helical flow and wall shear stress (WSS). From the comparison with rigid-wall simulations, it emerges that wall displacements have a minor impact on the AAo large-scale axial flow, but they can affect secondary flows and WSS directional changes. Overall, helical flow topology is moderately affected by aortic wall displacements, whereas helicity intensity remains almost unchanged. We conclude that CFD simulations with rigid-wall assumption can be a valid approach to study large-scale aortic flows of physiological significance.
Collapse
Affiliation(s)
- Karol Calò
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy; PoliTo(BIO)Med Lab, Politecnico di Torino, Turin, Italy
| | - Katia Capellini
- BioCardioLab, Bioengineering Unit - Heart Hospital, Fondazione Toscana "G. Monasterio", Massa, Italy
| | - Giuseppe De Nisco
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy; PoliTo(BIO)Med Lab, Politecnico di Torino, Turin, Italy
| | - Valentina Mazzi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy; PoliTo(BIO)Med Lab, Politecnico di Torino, Turin, Italy
| | - Emanuele Gasparotti
- BioCardioLab, Bioengineering Unit - Heart Hospital, Fondazione Toscana "G. Monasterio", Massa, Italy
| | - Diego Gallo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy; PoliTo(BIO)Med Lab, Politecnico di Torino, Turin, Italy
| | - Simona Celi
- BioCardioLab, Bioengineering Unit - Heart Hospital, Fondazione Toscana "G. Monasterio", Massa, Italy
| | - Umberto Morbiducci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy; PoliTo(BIO)Med Lab, Politecnico di Torino, Turin, Italy.
| |
Collapse
|
18
|
Schwarz EL, Pegolotti L, Pfaller MR, Marsden AL. Beyond CFD: Emerging methodologies for predictive simulation in cardiovascular health and disease. BIOPHYSICS REVIEWS 2023; 4:011301. [PMID: 36686891 PMCID: PMC9846834 DOI: 10.1063/5.0109400] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/12/2022] [Indexed: 01/15/2023]
Abstract
Physics-based computational models of the cardiovascular system are increasingly used to simulate hemodynamics, tissue mechanics, and physiology in evolving healthy and diseased states. While predictive models using computational fluid dynamics (CFD) originated primarily for use in surgical planning, their application now extends well beyond this purpose. In this review, we describe an increasingly wide range of modeling applications aimed at uncovering fundamental mechanisms of disease progression and development, performing model-guided design, and generating testable hypotheses to drive targeted experiments. Increasingly, models are incorporating multiple physical processes spanning a wide range of time and length scales in the heart and vasculature. With these expanded capabilities, clinical adoption of patient-specific modeling in congenital and acquired cardiovascular disease is also increasing, impacting clinical care and treatment decisions in complex congenital heart disease, coronary artery disease, vascular surgery, pulmonary artery disease, and medical device design. In support of these efforts, we discuss recent advances in modeling methodology, which are most impactful when driven by clinical needs. We describe pivotal recent developments in image processing, fluid-structure interaction, modeling under uncertainty, and reduced order modeling to enable simulations in clinically relevant timeframes. In all these areas, we argue that traditional CFD alone is insufficient to tackle increasingly complex clinical and biological problems across scales and systems. Rather, CFD should be coupled with appropriate multiscale biological, physical, and physiological models needed to produce comprehensive, impactful models of mechanobiological systems and complex clinical scenarios. With this perspective, we finally outline open problems and future challenges in the field.
Collapse
Affiliation(s)
- Erica L. Schwarz
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Luca Pegolotti
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Martin R. Pfaller
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Alison L. Marsden
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
19
|
D'Alessandro N, Falanga M, Masci A, Severi S, Corsi C. Preliminary findings on left atrial appendage occlusion simulations applying different endocardial devices. Front Cardiovasc Med 2023; 10:1067964. [PMID: 36891242 PMCID: PMC9986333 DOI: 10.3389/fcvm.2023.1067964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Atrial fibrillation (AF) is one of the most investigated arrhythmias since it is associated with a five-fold increase in the risk of strokes. Left atrium dilation and unbalanced and irregular contraction caused by AF favour blood stasis and, consequently, stroke risk. The left atrial appendage (LAA) is the site of the highest clots formation, increasing the incidence of stroke in AF population. For many years oral anticoagulation therapy has been the most used AF treatment option available to decrease stroke risk. Unfortunately, several contraindications including bleeding risk increase, interference with other drugs and with multiorgan functioning, might outweigh its remarkable benefits on thromboembolic events. For these reasons, in recent years, other approaches have been designed, including LAA percutaneous closure. Unfortunately, nowadays, LAA occlusion (LAAO) is restricted to small subgroups of patients and require a certain level of expertise and training to successfully complete the procedure without complications. The most critical clinical problems associated with LAAO are represented by peri-device leaks and device related thrombus (DRT). The anatomical variability of the LAA plays a key role in the choice of the correct LAA occlusion device and in its correct positioning with respect to the LAA ostium during the implant. In this scenario, computational fluid dynamics (CFD) simulations could have a crucial role in improving LAAO intervention. The aim of this study was to simulate the fluid dynamics effects of LAAO in AF patients to predict hemodynamic changes due to the occlusion. LAAO was simulated by applying two different types of closure devices based on the plug and the pacifier principles on 3D LA anatomical models derived from real clinical data in five AF patients. CFD simulations were performed on the left atrium model before and after the LAAO intervention with each device. Blood velocity, particle washout and endothelial damage were computed to quantify flow pattern changes after the occlusion in relation to the thrombogenic risk. Our preliminary results confirmed an improved blood washout after the simulated implants and the capability of foreseeing thrombogenic risk based on endothelial damage and maximum blood velocities in different scenarios. This tool may help to identify effective device configurations in limiting stroke risk for patient-specific LA morphologies.
Collapse
Affiliation(s)
- Nadia D'Alessandro
- Department of Electrical, Electronic and Information Engineering, University of Bologna, Bologna, Italy
| | - Matteo Falanga
- Department of Electrical, Electronic and Information Engineering, University of Bologna, Bologna, Italy
| | - Alessandro Masci
- Department of Electrical, Electronic and Information Engineering, University of Bologna, Bologna, Italy
| | - Stefano Severi
- Department of Electrical, Electronic and Information Engineering, University of Bologna, Bologna, Italy
| | - Cristiana Corsi
- Department of Electrical, Electronic and Information Engineering, University of Bologna, Bologna, Italy
| |
Collapse
|
20
|
Pfaller MR, Pham J, Verma A, Pegolotti L, Wilson NM, Parker DW, Yang W, Marsden AL. Automated generation of 0D and 1D reduced-order models of patient-specific blood flow. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3639. [PMID: 35875875 PMCID: PMC9561079 DOI: 10.1002/cnm.3639] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/24/2022] [Accepted: 07/19/2022] [Indexed: 06/13/2023]
Abstract
Three-dimensional (3D) cardiovascular fluid dynamics simulations typically require hours to days of computing time on a high-performance computing cluster. One-dimensional (1D) and lumped-parameter zero-dimensional (0D) models show great promise for accurately predicting blood bulk flow and pressure waveforms with only a fraction of the cost. They can also accelerate uncertainty quantification, optimization, and design parameterization studies. Despite several prior studies generating 1D and 0D models and comparing them to 3D solutions, these were typically limited to either 1D or 0D and a singular category of vascular anatomies. This work proposes a fully automated and openly available framework to generate and simulate 1D and 0D models from 3D patient-specific geometries, automatically detecting vessel junctions and stenosis segments. Our only input is the 3D geometry; we do not use any prior knowledge from 3D simulations. All computational tools presented in this work are implemented in the open-source software platform SimVascular. We demonstrate the reduced-order approximation quality against rigid-wall 3D solutions in a comprehensive comparison with N = 72 publicly available models from various anatomies, vessel types, and disease conditions. Relative average approximation errors of flows and pressures typically ranged from 1% to 10% for both 1D and 0D models, measured at the outlets of terminal vessel branches. In general, 0D model errors were only slightly higher than 1D model errors despite requiring only a third of the 1D runtime. Automatically generated ROMs can significantly speed up model development and shift the computational load from high-performance machines to personal computers.
Collapse
Affiliation(s)
- Martin R. Pfaller
- Pediatric Cardiology, Stanford University, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, CA, USA
- Cardiovascular Institute, Stanford University, CA, USA
| | - Jonathan Pham
- Mechanical Engineering, Stanford University, CA, USA
| | | | - Luca Pegolotti
- Pediatric Cardiology, Stanford University, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, CA, USA
| | | | | | | | - Alison L. Marsden
- Pediatric Cardiology, Stanford University, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, CA, USA
- Cardiovascular Institute, Stanford University, CA, USA
- Bioengineering, Stanford University, CA, USA
| |
Collapse
|
21
|
Chaudhuri K, Pletzer A, Smith NP. A predictive patient-specific computational model of coronary artery bypass grafts for potential use by cardiac surgeons to guide selection of graft configurations. Front Cardiovasc Med 2022; 9:953109. [PMID: 36237904 PMCID: PMC9552835 DOI: 10.3389/fcvm.2022.953109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/01/2022] [Indexed: 01/09/2023] Open
Abstract
Cardiac surgeons face a significant degree of uncertainty when deciding upon coronary artery bypass graft configurations for patients with coronary artery disease. This leads to significant variation in preferred configuration between different surgeons for a particular patient. Additionally, for the majority of cases, there is no consensus regarding the optimal grafting strategy. This situation results in the tendency for individual surgeons to opt for a “one size fits all” approach and use the same grafting configuration for the majority of their patients neglecting the patient-specific nature of the diseased coronary circulation. Quantitative metrics to assess the adequacy of coronary bypass graft flows have recently been advocated for routine intraoperative use by cardiac surgeons. In this work, a novel patient-specific 1D-0D computational model called “COMCAB” is developed to provide the predictive haemodynamic parameters of functional graft performance that can aid surgeons to avoid configurations with grafts that have poor flow and thus poor patency. This model has significant potential for future expanded applications.
Collapse
Affiliation(s)
- Krish Chaudhuri
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Green Lane Cardiothoracic Surgical Unit, Auckland City Hospital, Auckland, New Zealand
- *Correspondence: Krish Chaudhuri,
| | | | - Nicolas P. Smith
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
22
|
Li D, Zeng X, Wang J, Yuan D, Zheng T. Effects of different bypass surgeries on LSA revascularization in patients with left subclavian occlusion. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3636. [PMID: 35778375 DOI: 10.1002/cnm.3636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/26/2022] [Indexed: 02/05/2023]
Abstract
INTRO Left subclavian artery bypass surgery is mainly carried out for patients with severe left subclavian occlusion. This paper aimed to evaluate the hemodynamic effects of different surgical bypass modes on left subclavian artery revascularization. METHODS Three-dimensional models of the aorta were reconstructed from CTA images of a patient with left subclavian artery occlusion, a patient with type B aortic dissection with left subclavian artery coverage during thoracic endovascular aortic repair, and a healthy 74 year-old man, resulting in six modes for each person: healthy left subclavian artery mode, left subclavian artery occlusion mode and four bypass modes. Hemodynamic parameters, including flow field, flow distribution, pressure gradient, and wall shear stress, were calculated using computational fluid dynamics. RESULTS After left subclavian artery bypass surgery, distal left subclavian artery blood flow resulting from left common carotid artery to distal left subclavian artery bypass was 100% of that in the healthy mode, while the other modes yielded flows at least 91%. Moreover, reversed flow only completely disappeared with left common carotid artery to distal left subclavian artery bypass, whereas reverse flow was observed in the other three modes in early systole. CONCLUSION Left common carotid artery to distal left subclavian artery bypass can effectively reduce reverse blood flow in the left vertebral artery, and it is a feasible, effective, and safe option for left subclavian artery revascularization in patients with left subclavian occlusion.
Collapse
Affiliation(s)
- Da Li
- Department of Applied Mechanics, Sichuan University, Chengdu, China.,Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, China
| | - Xiangguo Zeng
- Department of Applied Mechanics, Sichuan University, Chengdu, China
| | - Jiarong Wang
- Department vascular surgery of West China Hospital, Sichuan University, Chengdu, China
| | - Ding Yuan
- Department vascular surgery of West China Hospital, Sichuan University, Chengdu, China
| | - Tinghui Zheng
- Department of Applied Mechanics, Sichuan University, Chengdu, China.,Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, China
| |
Collapse
|
23
|
Peng C, Zou L, Hou K, Liu Y, Jiang X, Fu W, Yang Y, Bou-Said B, Wang S, Dong Z. Material parameter identification of the proximal and distal segments of the porcine thoracic aorta based on ECG-gated CT angiography. J Biomech 2022; 138:111106. [DOI: 10.1016/j.jbiomech.2022.111106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/28/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022]
|
24
|
Conijn M, Krings GJ. Understanding stenotic pulmonary arteries: Can computational fluid dynamics help us out? PROGRESS IN PEDIATRIC CARDIOLOGY 2022. [DOI: 10.1016/j.ppedcard.2021.101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Atlas-Based Evaluation of Hemodynamic in Ascending Thoracic Aortic Aneurysms. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Atlas-based analyses of patients with cardiovascular diseases have recently been explored to understand the mechanistic link between shape and pathophysiology. The construction of probabilistic atlases is based on statistical shape modeling (SSM) to assess key anatomic features for a given patient population. Such an approach is relevant to study the complex nature of the ascending thoracic aortic aneurysm (ATAA) as characterized by different patterns of aortic shapes and valve phenotypes. This study was carried out to develop an SSM of the dilated aorta with both bicuspid aortic valve (BAV) and tricuspid aortic valve (TAV), and then assess the computational hemodynamic of virtual models obtained by the deformation of the mean template for specific shape boundaries (i.e., ±1.5 standard deviation, σ). Simulations demonstrated remarkable changes in the velocity streamlines, blood pressure, and fluid shear stress with the principal shape modes such as the aortic size (Mode 1), vessel tortuosity (Mode 2), and aortic valve morphologies (Mode 3). The atlas-based disease assessment can represent a powerful tool to reveal important insights on ATAA-derived hemodynamic, especially for aneurysms which are considered to have borderline anatomies, and thus challenging decision-making. The utilization of SSMs for creating probabilistic patient cohorts can facilitate the understanding of the heterogenous nature of the dilated ascending aorta.
Collapse
|
26
|
An efficient, localised approach for the simulation of elastic blood vessels using the lattice Boltzmann method. Sci Rep 2021; 11:24260. [PMID: 34930939 PMCID: PMC8688478 DOI: 10.1038/s41598-021-03584-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/01/2021] [Indexed: 11/08/2022] Open
Abstract
Many numerical studies of blood flow impose a rigid wall assumption due to the simplicity of its implementation compared to a full coupling with a solid mechanics model. In this paper, we present a localised method for incorporating the effects of elastic walls into blood flow simulations using the lattice Boltzmann method implemented by the open-source code HemeLB. We demonstrate that our approach is able to more accurately capture the flow behaviour expected in elastic walled vessels than ones with rigid walls. Furthermore, we show that this can be achieved with no loss of computational performance and remains strongly scalable on high performance computers. We finally illustrate that our approach captures the same trends in wall shear stress distribution as those observed in studies using a rigorous coupling between fluid dynamics and solid mechanics models to solve flow in personalised vascular geometries. These results demonstrate that our model can be used to efficiently and effectively represent flows in elastic blood vessels.
Collapse
|
27
|
Yazdi SG, Docherty PD, Williamson PN, Jermy M, Kabaliuk N, Khanafer A, Geoghegan PH. In vitro pulsatile flow study in compliant and rigid ascending aorta phantoms by stereo particle image velocimetry. Med Eng Phys 2021; 96:81-90. [PMID: 34565556 DOI: 10.1016/j.medengphy.2021.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/05/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
The aorta is a high risk region for cardiovascular disease (CVD). Haemodynamic patterns leading to CVD are not well established despite numerous experimental and numerical studies. Most overlook effects of arterial compliance and pulsatile flow. However, rigid wall assumptions can lead to overestimation of wall shear stress; a key CVD determinant. This work investigates the effect of compliance on aortic arch haemodynamics experiencing pulsatility. Rigid and compliant phantoms of the arch and brachiocephalic branch (BCA) were manufactured. Stereoscopic particle image velocimetry was used to observe velocity fields. Higher velocity magnitude was observed in the rigid BCA during acceleration. However, during deceleration, the compliant phantom experienced higher velocity. During deceleration, a low velocity region initiated and increased in size in the BCA of both phantoms with irregular shape in the compliant. At mid-deceleration, considerably larger recirculation was observed under compliance compared to rigid. Another recirculation region formed and increased in size on the inner wall of the arch in the compliant during late deceleration, but not rigid. The recirculation regions witnessed identify as high risk areas for atherosclerosis formation by a previous ex-vivo study. The results demonstrate necessity of compliance and pulsatility in haemodynamic studies to obtain highly relevant clinical outcomes.
Collapse
Affiliation(s)
- Sina G Yazdi
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Paul D Docherty
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Petra N Williamson
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Mark Jermy
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Natalia Kabaliuk
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Adib Khanafer
- Vascular, Endovascular, & Renal Transplant Unit Christchurch Hospital, Canterbury District Health Board, Riccarton Avenue, Christchurch 8053, New Zealand; Christchurch School of Medicine, University of Otago, New Zealand
| | - Patrick H Geoghegan
- Department of Mechanical, Biomedical and Design, College of Engineering and Physical Sciences Aston University, Birmingham, B4 7ET, England; Department of Mechanical and Industrial Engineering, University of South Africa, Johannesburg, South Africa.
| |
Collapse
|
28
|
Nannini G, Caimi A, Palumbo MC, Saitta S, Girardi LN, Gaudino M, Roman MJ, Weinsaft JW, Redaelli A. Aortic hemodynamics assessment prior and after valve sparing reconstruction: A patient-specific 4D flow-based FSI model. Comput Biol Med 2021; 135:104581. [PMID: 34174756 DOI: 10.1016/j.compbiomed.2021.104581] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Valve-sparing root replacement (VSRR) of the ascending aorta is a life-saving procedure for the treatment of aortic aneurysms, but patients remain at risk for post-operative events involving the downstream native aorta, the mechanism for which is uncertain. It is possible that proximal graft replacement of the ascending aorta induces hemodynamics alterations in the descending aorta, which could trigger adverse events. Herein, we present a fluid-structure interaction (FSI) protocol, based on patient-specific geometry and boundary conditions, to assess impact of proximal aortic grafts on downstream aortic hemodynamics and distensibility. METHODS Cardiac magnetic resonance (CMR), including MRA, cine-CMR and 4D flow sequences, was performed prior and after VSRR on one subject. Central blood pressure was non-invasively acquired at the time of the CMR: data were used to reconstruct the pre- and post-VSRR model and derive patient-specific boundary conditions for the FSI and a computational fluid dynamic (CFD) analysis with the same settings. Results were validated comparing the predicted velocity field against 4D flow dataset, over four landmarks along the aorta, and the predicted distensibility against the cine-CMR derived value. RESULTS Instantaneous velocity magnitudes extracted from 4D flow and FSI were similar (p > 0.05), while CFD-predicted velocity was significantly higher (p < 0.001), especially in the descending aorta of the pre-VSRR model (vmax was 73 cm/s, 76 cm/s and 99 cm/s, respectively). As measured in cine-CMR, FSI predicted an increase in descending aorta distensibility after grafting (i.e., 4.02 to 5.79 10-3 mmHg-1). In the descending aorta, the post-VSRR model showed increased velocity, aortic distensibility, stress and strain and wall shear stress. CONCLUSIONS Our Results indicate that i) the distensibility of the wall cannot be neglected, and hence the FSI method is necessary to obtain reliable results; ii) graft implantation induces alterations in the hemodynamics and biomechanics along the thoracic aorta, that may trigger adverse vessel remodeling.
Collapse
Affiliation(s)
- Guido Nannini
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milan, Italy.
| | - Alessandro Caimi
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Maria Chiara Palumbo
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Simone Saitta
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Leonard N Girardi
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Mario Gaudino
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Mary J Roman
- Department of Medicine (Cardiology), Weill Cornell College, New York, NY, USA
| | - Jonathan W Weinsaft
- Department of Medicine (Cardiology), Weill Cornell College, New York, NY, USA
| | - Alberto Redaelli
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
29
|
Han L, Ren Q, Lian J, Luo L, Liu H, Ma T, Li X, Deng X, Liu X. Numerical analysis of the hemodynamics of rat aorta based on magnetic resonance imaging and fluid-structure interaction. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3457. [PMID: 33750033 DOI: 10.1002/cnm.3457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Murine models have been widely used to investigate the mechanobiology of aortic atherosclerosis and dissections, which develop preferably at different anatomic locations of aorta. Based MRI and finite element analysis with fluid-structure interaction, we numerically investigated factors that may affect the blood flow and structural mechanics of rat aorta. The results indicated that aortic root motion greatly increases time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), relative residence time (RRT), displacement of the aorta, and enhances helical flow pattern but has limited influence on effective stress, which is highly modulated by blood pressure. Moreover, the influence of the motion component on these indicators is different with axial motion more obvious than planar motion. Surrounding fixation of the intercostal arteries and the branch vessels on aortic arch would reduce the influence of aortic root motion. The compliance of the aorta has different influences at different regions, leading to decrease in TAWSS and helical flow, increase in OSI, RRT at the aortic arch, but has reversed effects on the branch vessels. When compared with the steady flow, the pulsatile blood flow would obviously increase the WSS, the displacement, and the effective stress in most regions. In conclusion, to accurately quantify the blood flow and structural mechanics of rat aorta, the motion of the aortic root, the compliance of aortic wall, and the pulsation of blood flow should be considered. However, when only focusing on the effective stress in rat aorta, the motion of the aortic root may be neglected.
Collapse
Affiliation(s)
- Longzhu Han
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Quan Ren
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jianxiu Lian
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Liyi Luo
- School of Instrumentation Science & Opto-electronics Engineering, Beihang University, Beijing, China
| | - Huawei Liu
- Department of Stomatology, Chinese PLA General Hospital, Beijing, China
| | - Tianxiang Ma
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xin Li
- Miyun Hospital, Peking University First Hospital, Beijing, China
| | - Xiaoyan Deng
- Artificial Intelligence Key Laboratory of Sichuan Province, School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, China
| | - Xiao Liu
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
30
|
Shirakawa T, Kuratani T, Yoshitatsu M, Shimamura K, Fukui S, Kurata A, Koyama Y, Toda K, Fukuda I, Sawa Y. Towards a Clinical Implementation of Measuring the Elastic Modulus of the Aorta from Cardiac Computed Tomography Images. IEEE Trans Biomed Eng 2021; 68:3543-3553. [PMID: 33945468 DOI: 10.1109/tbme.2021.3077362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The elasticity of the aortic wall varies depending on age, vessel location, and the presence of aortic diseases. Noninvasive measurement will be a powerful tool to understand the mechanical state of the aorta in a living human body. This study aimed to determine the elastic modulus of the aorta using computed tomography images. METHODS We constructed our original formulae based on mechanics of materials. Then, we performed computed tomography scans of a silicon rubber tube by applying four pressure conditions to the lumen. The segment elastic modulus was calculated from the scanned images using our formulae. The actual modulus was measured using a tensile loading test for comparison. RESULTS The segment moduli of elasticity from the images were 0.525 [0.524, 0.527], 0.524 [0.520, 0.524], 0.520 [0.515, 0.523], and 0.522 [0.516, 0.532] (unit: MPa, median [25%, 75% quantiles]) for the four pressure conditions, respectively. The corresponding measurements in the tensile test were 0.548 [0.539, 0.566], 0.535 [0.528, 0.553], 0.526 [0.513, 0.543], and 0.523 [0.508, 0.530], respectively. These results indicated errors of 4.2%, 2.1%, 1.1%, and 0.2%, respectively. CONCLUSION Our formulae provided good estimations of the segment elastic moduli of a silicon rubber tube under physiological pressure conditions using the computed tomography images. SIGNIFICANCE In addition to the elasticity, the formulae provide the strain energy as well. These properties can be better predictors of aortic diseases. The formulae consist of clinical parameters commonly used in medical settings (pressure, diameter, and wall thickness).
Collapse
|
31
|
Thamsen B, Yevtushenko P, Gundelwein L, Setio AAA, Lamecker H, Kelm M, Schafstedde M, Heimann T, Kuehne T, Goubergrits L. Synthetic Database of Aortic Morphometry and Hemodynamics: Overcoming Medical Imaging Data Availability. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1438-1449. [PMID: 33544670 DOI: 10.1109/tmi.2021.3057496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Modeling of hemodynamics and artificial intelligence have great potential to support clinical diagnosis and decision making. While hemodynamics modeling is extremely time- and resource-consuming, machine learning (ML) typically requires large training data that are often unavailable. The aim of this study was to develop and evaluate a novel methodology generating a large database of synthetic cases with characteristics similar to clinical cohorts of patients with coarctation of the aorta (CoA), a congenital heart disease associated with abnormal hemodynamics. Synthetic data allows use of ML approaches to investigate aortic morphometric pathology and its influence on hemodynamics. Magnetic resonance imaging data (154 patients as well as of healthy subjects) of aortic shape and flow were used to statistically characterize the clinical cohort. The methodology generating the synthetic cohort combined statistical shape modeling of aortic morphometry and aorta inlet flow fields and numerical flow simulations. Hierarchical clustering and non-linear regression analysis were successfully used to investigate the relationship between morphometry and hemodynamics and to demonstrate credibility of the synthetic cohort by comparison with a clinical cohort. A database of 2652 synthetic cases with realistic shape and hemodynamic properties was generated. Three shape clusters and respective differences in hemodynamics were identified. The novel model predicts the CoA pressure gradient with a root mean square error of 4.6 mmHg. In conclusion, synthetic data for anatomy and hemodynamics is a suitable means to address the lack of large datasets and provide a powerful basis for ML to gain new insights into cardiovascular diseases.
Collapse
|
32
|
A computational model for cardiovascular hemodynamics and protein transport phenomena. HEALTH AND TECHNOLOGY 2021. [DOI: 10.1007/s12553-021-00530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Vardhan M, Randles A. Application of physics-based flow models in cardiovascular medicine: Current practices and challenges. BIOPHYSICS REVIEWS 2021; 2:011302. [PMID: 38505399 PMCID: PMC10903374 DOI: 10.1063/5.0040315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/18/2021] [Indexed: 03/21/2024]
Abstract
Personalized physics-based flow models are becoming increasingly important in cardiovascular medicine. They are a powerful complement to traditional methods of clinical decision-making and offer a wealth of physiological information beyond conventional anatomic viewing using medical imaging data. These models have been used to identify key hemodynamic biomarkers, such as pressure gradient and wall shear stress, which are associated with determining the functional severity of cardiovascular diseases. Importantly, simulation-driven diagnostics can help researchers understand the complex interplay between geometric and fluid dynamic parameters, which can ultimately improve patient outcomes and treatment planning. The possibility to compute and predict diagnostic variables and hemodynamics biomarkers can therefore play a pivotal role in reducing adverse treatment outcomes and accelerate development of novel strategies for cardiovascular disease management.
Collapse
Affiliation(s)
- M. Vardhan
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - A. Randles
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
34
|
Ibanez I, de Azevedo Gomes BA, Nieckele AO. Effect of percutaneous aortic valve position on stress map in ascending aorta: A fluid-structure interaction analysis. Artif Organs 2021; 45:O195-O206. [PMID: 33326639 DOI: 10.1111/aor.13883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 11/30/2022]
Abstract
Transcatheter aortic valve implantation (TAVI) is an increasingly widespread procedure. Although this intervention is indicated for high and low surgical risk patients, some issues still remain, such as prosthesis positioning optimization in the aortic annulus. Coaxial positioning of the percutaneous prosthesis influences directly on the aortic wall stress map. The determination of the mechanical stress that acts on the vascular endothelium resulting from blood flow can be considered an important task, since TAVI positioning can lead to unfavorable hemodynamic patterns, resulting in changes in parietal stress, such as those found in post-stenotic dilatation region. This research aims to investigate the influence of the prosthetic valve inclination angle in the mechanical stresses acting in the ascending aortic wall. Aortic compliance and blood flow during cardiac cycle were numerically obtained using fluid structure interaction. The aortic model was developed through segmentation of a computed tomography image of a specific patient submitted to TAVI. When compared to standard position (coaxiality match between the prosthesis and the aortic annulus), the inclination of 4° directed to the left main coronary artery decreased the aortic wall area with high values of wall shear stress and pressure. Coaxial positioning optimization of percutaneous aortic prosthesis may decrease the high mechanical stress area. These changes may be important to reduce the aortic remodeling process, vascular calcification or even the prosthesis half-life. Computational fluid dynamics makes room for personalized medicine, with manufactured prosthesis tailored to each patient.
Collapse
Affiliation(s)
- Ivan Ibanez
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno A de Azevedo Gomes
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Cardiologia - MS, Rio de Janeiro, Brazil
| | - Angela O Nieckele
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Feiger B, Adebiyi A, Randles A. Multiscale modeling of blood flow to assess neurological complications in patients supported by venoarterial extracorporeal membrane oxygenation. Comput Biol Med 2020; 129:104155. [PMID: 33333365 DOI: 10.1016/j.compbiomed.2020.104155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 12/28/2022]
Abstract
Computational blood flow models in large arteries elucidate valuable relationships between cardiovascular diseases and hemodynamics, leading to improvements in treatment planning and clinical decision making. One such application with potential to benefit from simulation is venoarterial extracorporeal membrane oxygenation (VA-ECMO), a support system for patients with cardiopulmonary failure. VA-ECMO patients develop high rates of neurological complications, partially due to abnormal blood flow throughout the vasculature from the VA-ECMO system. To better understand these hemodynamic changes, it is important to resolve complex local flow parameters derived from three-dimensional (3D) fluid dynamics while also capturing the impact of VA-ECMO support throughout the systemic arterial system. As high-resolution 3D simulations of the arterial network remain computationally expensive and intractable for large studies, a validated, multiscale model is needed to compute both global effects and high-fidelity local hemodynamics. In this work, we developed and demonstrated a framework to model hemodynamics in VA-ECMO patients using coupled 3D and one-dimensional (1D) models (1D→3D). We demonstrated the ability of these multiscale models to simulate complex flow patterns in specific regions of interest while capturing bulk flow throughout the systemic arterial system. We compared 1D, 3D, and 1D→3D coupled models and found that multiscale models were able to sufficiently capture both global and local hemodynamics in the cerebral arteries and aorta in VA-ECMO patients. This study is the first to develop and compare 1D, 3D, and 1D→ 3D coupled models on the larger arterial system scale in VA-ECMO patients, with potential use for other large scale applications.
Collapse
Affiliation(s)
- Bradley Feiger
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Adebayo Adebiyi
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Amanda Randles
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
36
|
Nama N, Aguirre M, Humphrey JD, Figueroa CA. A nonlinear rotation-free shell formulation with prestressing for vascular biomechanics. Sci Rep 2020; 10:17528. [PMID: 33067508 PMCID: PMC7567841 DOI: 10.1038/s41598-020-74277-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/28/2020] [Indexed: 02/01/2023] Open
Abstract
We implement a nonlinear rotation-free shell formulation capable of handling large deformations for applications in vascular biomechanics. The formulation employs a previously reported shell element that calculates both the membrane and bending behavior via displacement degrees of freedom for a triangular element. The thickness stretch is statically condensed to enforce vessel wall incompressibility via a plane stress condition. Consequently, the formulation allows incorporation of appropriate 3D constitutive material models. We also incorporate external tissue support conditions to model the effect of surrounding tissue. We present theoretical and variational details of the formulation and verify our implementation against axisymmetric results and literature data. We also adapt a previously reported prestress methodology to identify the unloaded configuration corresponding to the medically imaged in vivo vessel geometry. We verify the prestress methodology in an idealized bifurcation model and demonstrate the significance of including prestress. Lastly, we demonstrate the robustness of our formulation via its application to mouse-specific models of arterial mechanics using an experimentally informed four-fiber constitutive model.
Collapse
Affiliation(s)
- Nitesh Nama
- grid.214458.e0000000086837370Department of Surgery, University of Michigan, Ann Arbor, MI USA
| | - Miquel Aguirre
- grid.6279.a0000 0001 2158 1682Mines Saint-Étienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, 42023 Saint-Étienne, France
| | - Jay D. Humphrey
- grid.47100.320000000419368710Department of Biomedical Engineering, Yale University, New Haven, CT USA
| | - C. Alberto Figueroa
- grid.214458.e0000000086837370Department of Surgery, University of Michigan, Ann Arbor, MI USA ,grid.214458.e0000000086837370Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
37
|
Capellini K, Gasparotti E, Cella U, Costa E, Fanni BM, Groth C, Porziani S, Biancolini ME, Celi S. A novel formulation for the study of the ascending aortic fluid dynamics with in vivo data. Med Eng Phys 2020; 91:68-78. [PMID: 33008714 DOI: 10.1016/j.medengphy.2020.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/20/2020] [Accepted: 09/12/2020] [Indexed: 01/18/2023]
Abstract
Numerical simulations to evaluate thoracic aortic hemodynamics include a computational fluid dynamic (CFD) approach or fluid-structure interaction (FSI) approach. While CFD neglects the arterial deformation along the cardiac cycle by applying a rigid wall simplification, on the other side the FSI simulation requires a lot of assumptions for the material properties definition and high computational costs. The aim of this study is to investigate the feasibility of a new strategy, based on Radial Basis Functions (RBF) mesh morphing technique and transient simulations, able to introduce the patient-specific changes in aortic geometry during the cardiac cycle. Starting from medical images, aorta models at different phases of cardiac cycle were reconstructed and a transient shape deformation was obtained by proper activating incremental RBF solutions during the simulation process. The results, in terms of main hemodynamic parameters, were compared with two performed CFD simulations for the aortic model at minimum and maximum volume. Our implemented strategy copes the actual arterial variation during cardiac cycle with high accuracy, capturing the impact of geometrical variations on fluid dynamics, overcoming the complexity of a standard FSI approach.
Collapse
Affiliation(s)
- Katia Capellini
- BioCardioLab, Fondazione Toscana Gabriele Monasterio, Massa, Italy; Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Emanuele Gasparotti
- BioCardioLab, Fondazione Toscana Gabriele Monasterio, Massa, Italy; Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Ubaldo Cella
- Department of Enterprise Engineering, University of Rome Tor Vergata, Rome, Italy
| | | | - Benigno Marco Fanni
- BioCardioLab, Fondazione Toscana Gabriele Monasterio, Massa, Italy; Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Corrado Groth
- Department of Enterprise Engineering, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Porziani
- Department of Enterprise Engineering, University of Rome Tor Vergata, Rome, Italy
| | | | - Simona Celi
- BioCardioLab, Fondazione Toscana Gabriele Monasterio, Massa, Italy.
| |
Collapse
|
38
|
Surman TL, Abrahams JM, O'Rourke D, Reynolds KJ, Edwards J, Worthington MG, Beltrame J. The functional limits of the aneurysmal aortic root. A unique pressure testing apparatus. J Cardiothorac Surg 2020; 15:259. [PMID: 32943099 PMCID: PMC7500551 DOI: 10.1186/s13019-020-01288-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/01/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The aortic root has unique embryological development and is a highly sophisticated and complex structure. In studies that report on the biomechanical characteristics of the thoracic aorta, distinction between the aortic root and ascending aorta regions is nonexistent. Our objective is to determine the maximal pressures at which dissection occurs or tissue failure occurs in the aortic root compared to that of the ascending aorta in the presence of aortic aneurysms. This may help guide preoperative monitoring, diagnosis and the decision for operative intervention for aortic root aneurysms in the normal and susceptible populations. METHODS We developed a simple aortic root and ascending aorta pressure testing unit in series. Ten fresh porcine hearts were obtained from the local abattoir (n = 5 aortic root and n = 5 ascending aorta for comparison). Using a saline filled needle and syringe, artificial fluid-filled aneurysms were created between the intima and medial layers of the aortic root. The aorta lumen was then progressively filled with saline solution. Pressure measurement was taken at time of loss of tissue integrity, obvious tissue dissection or aneurysm rupture, and the tissue structure was then visually examined. RESULTS In the aortic root, mean maximal pressure (mmHg) at tissue failure was 208 mmHg. Macroscopic examination revealed luminal tears around the coronary ostia in 2/5 specimens, and in all specimens, there was propagation of the dissection in the aortic root in a circumferential direction. In all ascending aorta specimens, the maximal aortic pressures exceeded 300 mmHg without tissue failure or dissection, and eventual apparatus failure. CONCLUSION Our results indicate that the aneurysmal aortic root tissues are at greater risk of rupture and dissection propagation at lower aortic pressure. With further analysis, this could guide clinical and surgical management.
Collapse
Affiliation(s)
- Timothy Luke Surman
- D'Arcy Sutherland Cardiothoracic Surgical Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia.
| | - John Matthew Abrahams
- D'Arcy Sutherland Cardiothoracic Surgical Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Dermot O'Rourke
- Medical Device Research Institute, College of Science & Engineering, Flinders University, Adelaide, South Australia
| | - Karen Jane Reynolds
- Medical Device Research Institute, College of Science & Engineering, Flinders University, Adelaide, South Australia
| | - James Edwards
- D'Arcy Sutherland Cardiothoracic Surgical Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Michael George Worthington
- D'Arcy Sutherland Cardiothoracic Surgical Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - John Beltrame
- Cardiology Department, Queen Elizabeth Hospital, Adelaide, South Australia
| |
Collapse
|
39
|
Sundström E, Jonnagiri R, Gutmark-Little I, Gutmark E, Critser P, Taylor MD, Tretter JT. Hemodynamics and tissue biomechanics of the thoracic aorta with a trileaflet aortic valve at different phases of valve opening. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3345. [PMID: 32359198 DOI: 10.1002/cnm.3345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 02/17/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
In a normal cardiac cycle, the trileaflet aortic valve opening is progressive, which correlates with the phasic blood flow. Therefore, we aimed to determine the impact of including an anatomically accurate reconstructed trileaflet aortic valve within a fluid-structure interaction (FSI) simulation model and determine the cyclical hemodynamic forces imposed on the thoracic aortic walls from aortic valve opening to closure. A pediatric patient with a normal trileaflet valve was recruited. Using the Cardiac Magnetic Resonance Data (CMR), a 3D model of the aortic valve and thoracic aorta was reconstructed. FSI simulations were employed to assess the tissue stress during a cardiac cycle as the result of changes in the valve opening. The blood flow was simulated as a mixture of blood plasma and red blood cells to account for non-Newtonian effects. The computation was validated with phase-contrast CMR. Windkessel boundary conditions were employed to ensure physiological pressures during the cardiac cycle. The leaflets' dynamic motion during the cardiac cycle was defined with an analytic grid velocity function. At the beginning of the valve opening a thin jet is developing. From mid-open towards full opening the stress level increases where the jet impinges the convex wall. At peak systole two counter-rotating Dean-like vortex cores manifest in the ascending aorta, which correlates with increased integrated mean stress levels. An accurate trileaflet aortic valve is needed for capturing of both primary and secondary flow features that impact the forces on the thoracic aorta wall. Omitting the aortic valve underestimates the biomechanical response.
Collapse
Affiliation(s)
- Elias Sundström
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| | - Raghuvir Jonnagiri
- Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Iris Gutmark-Little
- Division of Endocrine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ephraim Gutmark
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Paul Critser
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Michael D Taylor
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Justin T Tretter
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
40
|
Dottori J, Casciaro M, Craiem D, El-Batti S, Mousseaux E, Alsac JM, Larrabide I. Regional assessment of vascular morphology and hemodynamics: methodology and evaluation for abdominal aortic aneurysms after endovascular repair. Comput Methods Biomech Biomed Engin 2020; 23:1060-1070. [DOI: 10.1080/10255842.2020.1786073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Javier Dottori
- Pladema - CONICET, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - Mariano Casciaro
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro - CONICET, Buenos Aires, Argentina
| | - Damian Craiem
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro - CONICET, Buenos Aires, Argentina
| | | | | | | | - Ignacio Larrabide
- Pladema - CONICET, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| |
Collapse
|
41
|
Cebull HL, Rayz VL, Goergen CJ. Recent Advances in Biomechanical Characterization of Thoracic Aortic Aneurysms. Front Cardiovasc Med 2020; 7:75. [PMID: 32478096 PMCID: PMC7235347 DOI: 10.3389/fcvm.2020.00075] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
Thoracic aortic aneurysm (TAA) is a focal enlargement of the thoracic aorta, but the etiology of this disease is not fully understood. Previous work suggests that various genetic syndromes, congenital defects such as bicuspid aortic valve, hypertension, and age are associated with TAA formation. Though occurrence of TAAs is rare, they can be life-threatening when dissection or rupture occurs. Prevention of these adverse events often requires surgical intervention through full aortic root replacement or implantation of endovascular stent grafts. Currently, aneurysm diameters and expansion rates are used to determine if intervention is warranted. Unfortunately, this approach oversimplifies the complex aortopathy. Improving treatment of TAAs will likely require an increased understanding of the biological and biomechanical factors contributing to the disease. Past studies have substantially contributed to our knowledge of TAAs using various ex vivo, in vivo, and computational methods to biomechanically characterize the thoracic aorta. However, any singular approach typically focuses on only material properties of the aortic wall, intra-aneurysmal hemodynamics, or in vivo vessel dynamics, neglecting combinatorial factors that influence aneurysm development and progression. In this review, we briefly summarize the current understanding of TAA causes, treatment, and progression, before discussing recent advances in biomechanical studies of TAAs and possible future directions. We identify the need for comprehensive approaches that combine multiple characterization methods to study the mechanisms contributing to focal weakening and rupture. We hope this summary and analysis will inspire future studies leading to improved prediction of thoracic aneurysm progression and rupture, improving patient diagnoses and outcomes.
Collapse
Affiliation(s)
- Hannah L Cebull
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Vitaliy L Rayz
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States.,Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
42
|
Lipp SN, Niedert EE, Cebull HL, Diorio TC, Ma JL, Rothenberger SM, Stevens Boster KA, Goergen CJ. Computational Hemodynamic Modeling of Arterial Aneurysms: A Mini-Review. Front Physiol 2020; 11:454. [PMID: 32477163 PMCID: PMC7235429 DOI: 10.3389/fphys.2020.00454] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/09/2020] [Indexed: 01/02/2023] Open
Abstract
Arterial aneurysms are pathological dilations of blood vessels, which can be of clinical concern due to thrombosis, dissection, or rupture. Aneurysms can form throughout the arterial system, including intracranial, thoracic, abdominal, visceral, peripheral, or coronary arteries. Currently, aneurysm diameter and expansion rates are the most commonly used metrics to assess rupture risk. Surgical or endovascular interventions are clinical treatment options, but are invasive and associated with risk for the patient. For aneurysms in locations where thrombosis is the primary concern, diameter is also used to determine the level of therapeutic anticoagulation, a treatment that increases the possibility of internal bleeding. Since simple diameter is often insufficient to reliably determine rupture and thrombosis risk, computational hemodynamic simulations are being developed to help assess when an intervention is warranted. Created from subject-specific data, computational models have the potential to be used to predict growth, dissection, rupture, and thrombus-formation risk based on hemodynamic parameters, including wall shear stress, oscillatory shear index, residence time, and anomalous blood flow patterns. Generally, endothelial damage and flow stagnation within aneurysms can lead to coagulation, inflammation, and the release of proteases, which alter extracellular matrix composition, increasing risk of rupture. In this review, we highlight recent work that investigates aneurysm geometry, model parameter assumptions, and other specific considerations that influence computational aneurysm simulations. By highlighting modeling validation and verification approaches, we hope to inspire future computational efforts aimed at improving our understanding of aneurysm pathology and treatment risk stratification.
Collapse
Affiliation(s)
- Sarah N. Lipp
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Elizabeth E. Niedert
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Hannah L. Cebull
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Tyler C. Diorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Jessica L. Ma
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Sean M. Rothenberger
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Kimberly A. Stevens Boster
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
43
|
Black RA, Houston G. 40th Anniversary Issue: Reflections on papers from the archive on "Cardiovascular devices and modelling". Med Eng Phys 2020; 72:74-75. [PMID: 31554581 DOI: 10.1016/j.medengphy.2019.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Richard A Black
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, Scotland, UK.
| | - Gregor Houston
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, Scotland, UK
| |
Collapse
|
44
|
A parametric model for studying the aorta hemodynamics by means of the computational fluid dynamics. J Biomech 2020; 103:109691. [PMID: 32147240 DOI: 10.1016/j.jbiomech.2020.109691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/20/2020] [Accepted: 02/21/2020] [Indexed: 11/23/2022]
Abstract
Perturbed aorta hemodynamics, as for the carotid and the coronary artery, has been identified as potential predicting factor for cardiovascular diseases. In this study, we propose a parametric study based on the computational fluid dynamics with the aim of providing information regarding aortic disease. In particular, the blood flow inside a parametrized aortic arch is computed as a function of morphological changes of baseline aorta geometry. Flow patterns, wall shear stress, time average wall shear stress and oscillatory shear index were calculated during the cardiac cycle. The influence of geometrical changes on the hemodynamics and on these variables was evaluated. The results suggest that the distance between inflow and aortic arch and the angle between aortic arch and descending trunk are the most influencing parameters regarding the WSS-related indices while the effect of the inlet diameter seems limited. In particular, an increase of the aforementioned distance produces a reduction of the spatial distribution of the higher values of the time average wall shear stress and of the oscillatory shear index independently on the other two parameters while an increase of the angle produce an opposite effect. Moreover, as expected, the analysis of the wall shear stress descriptors suggests that the inlet diameter influences only the flow intensity. As conclusion, the proposed parametric study can be used to evaluate the aorta hemodynamics and could be also applied in the future, for analyzing pathological cases and virtual situations, such as pre- and/or post-operative cardiovascular surgical states that present enhanced changes in the aorta morphology yet promoting important variations on the considered indexes.
Collapse
|
45
|
Hessenthaler A, Balmus M, Röhrle O, Nordsletten D. A class of analytic solutions for verification and convergence analysis of linear and nonlinear fluid-structure interaction algorithms. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2020; 362:112841. [PMID: 34093913 PMCID: PMC7610903 DOI: 10.1016/j.cma.2020.112841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fluid-structure interaction (FSI) problems are pervasive in the computational engineering community. The need to address challenging FSI problems has led to the development of a broad range of numerical methods addressing a variety of applicationspecific demands. While a range of numerical and experimental benchmarks are present in the literature, few solutions are available that enable both verification and spatiotemporal convergence analysis. In this paper, we introduce a class of analytic solutions to FSI problems involving shear in channels and pipes. Comprised of 16 separate analytic solutions, our approach is permuted to enable progressive verification and analysis of FSI methods and implementations, in two and three dimensions, for static and transient scenarios as well as for linear and hyperelastic solid materials. Results are shown for a range of analytic models exhibiting progressively complex behavior. The utility of these solutions for analysis of convergence behavior is further demonstrated using a previously published monolithic FSI technique. The resulting class of analytic solutions addresses a core challenge in the development of novel FSI algorithms and implementations, providing a progressive testbed for verification and detailed convergence analysis.
Collapse
Affiliation(s)
- Andreas Hessenthaler
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Pfaffenwaldring 5a, 70569 Stuttgart, Germany
| | - Maximilian Balmus
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th FL Rayne Institute, St. Thomas Hospital, London, SE1 7EH, United Kingdom of Great Britain and Northern Ireland
| | - Oliver Röhrle
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Pfaffenwaldring 5a, 70569 Stuttgart, Germany
| | - David Nordsletten
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th FL Rayne Institute, St. Thomas Hospital, London, SE1 7EH, United Kingdom of Great Britain and Northern Ireland
- Department of Biomedical Engineering and Cardiac Surgery, University of Michigan, NCRC B20, 2800 Plymouth Rd, Ann Arbor, 48109, United States of America
| |
Collapse
|
46
|
Zhang N, Yuan H, Chen X, Liu J, Zhou C, Huang M, Jian Q, Zhuang J. Hemodynamic of the patent ductus arteriosus in neonates with modified Blalock-Taussig shunts. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 186:105223. [PMID: 31760306 DOI: 10.1016/j.cmpb.2019.105223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Studying the hemodynamic effects of nonclosure of patent ductus arteriosus (PDA) on the modified Blalock-Taussig shunt (MBTS) is beneficial for surgical PDA management. In the present study, the effect of PDA on MBTS was investigated numerically. A series of parameters including energy loss, wall shear stress (WSS), and left/right Pulmonary artery (LPA/RPA) flow ratio were computed from simulations to analyze the hemodynamic effects of PDA on MBTS. METHODS To ensure the universality of the research conclusions, three typical models, including models with a well-developed RPA, a symmetrically-developed pulmonary artery(PA) and a well-developed LPA, were constructed based on patient-specific pre-surgery clinical data sets. A commercial CFD solver ANSYS-Fluent software was adopted for this study. A pressure-based solver for incompressible Newtonian flows, the K-omega based shear-stress-transport model and a second-order accurate numerical discretization scheme were employed for simulation. RESULTS Our results show that MBTS with nonclosure of PDA is accompanied by lower blood velocity, energy loss and WSS values at the MBT shunt; smaller vortex regions; higher oxygen content(Sao2) and PA flow; and more uniform velocity distribution in the LPA and RPA than MBTS with closure of PDA. If the PDA was not closed when performing primary MBTS, a series of hemodynamic changes occurs during PDA closure in postoperative recovery: the energy loss, PA flow and Sao2 decrease, while the oxygen delivery(Do2) and WSS values at the MBT shunt increase. CONCLUSION Nonclosure of PDA could provide a better hemodynamic environment and play an active role in preventing early acute shunt failure. It could be preferred for cases with very low PA overflow risk and may benefit patients with an underdeveloped myocardium due to its lower energy dissipation than PDA closure. However, excessive PA flow induced by nonclosure of PDA may result in a series of complications. Surgeon's decision-making process with respect to PDA management should consider the individual patient to achieve optimal postoperative recovery.
Collapse
Affiliation(s)
- Neichuan Zhang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China.
| | - Haiyun Yuan
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Xiangyu Chen
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Jiawei Liu
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Chengbin Zhou
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Meiping Huang
- Department of Catheterization Lab, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qifei Jian
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China.
| | - Jian Zhuang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
47
|
OLIVEIRA DIANAC, LARANJO SÉRGIO, TIAGO JORGE, PINTO FÁTIMAF, SEQUEIRA ADÉLIA. NUMERICAL SIMULATION OF DILATION PATTERNS OF THE ASCENDING AORTA IN AORTOPATHIES. J MECH MED BIOL 2020. [DOI: 10.1142/s0219519419500684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aortic dilation is associated with congenital bicuspid aortic valve (BAV) disease, and its etiology is still not completely understood. The aim of this study is to provide further insight into aortic hemodynamics in a BAV population with different degrees of aortic dilation and regurgitation in comparison with a patient without pathology. A fluid–structure interaction (FSI) numerical approach is implemented regarding patient-specific geometries, where the aortic valves are defined by analytical orifices. Results show that, while the patient without pathology displays a typical hemodynamic behavior of flows in bends, BAV-related aortas present an accelerated flow along the outer aortic wall. Wall shear stress (WSS) overload in the outer curvature is observed, more marked in more dilated aortas. Moreover, helices in the ascending aorta are present in these patients, enhanced with greater dilation. These findings support the fact that hemodynamic factors play an important role in aortic dilation onset and development in BAV patients, caused by a prolonged exposure of the outer ascending aortic curvature to altered WSS. Besides, our results suggest that greater aortic regurgitation may be associated with abnormal WSS distributions in the ascending aorta during diastole, which can facilitate aortic root dilation.
Collapse
Affiliation(s)
- DIANA C. OLIVEIRA
- Department of Bioengineering and CEMAT, Instituto Superior Técnico, Ulisboa Av. Rovisco Pais, 1 1049-001 Lisboa, Portugal
| | - SÉRGIO LARANJO
- Pediatric Cardiology Department, Congenital Heart Diseases Reference Centre, Hospital de Santa Marta (CHLC), Rua de Santa Marta 50 1169-024 Lisboa, Portugal
| | - JORGE TIAGO
- Department of Mathematics and CEMAT, Instituto Superior Técnico, Ulisboa Av. Rovisco Pais, 1 1049-001 Lisboa, Portugal
| | - FÁTIMA F. PINTO
- Pediatric Cardiology Department, Congenital Heart Diseases Reference Centre, Hospital de Santa Marta (CHLC), Rua de Santa Marta 50 1169-024 Lisboa, Portugal
| | - ADÉLIA SEQUEIRA
- Department of Mathematics and CEMAT, Instituto Superior Técnico, Ulisboa Av. Rovisco Pais, 1 1049-001 Lisboa, Portugal
| |
Collapse
|
48
|
Bäumler K, Vedula V, Sailer AM, Seo J, Chiu P, Mistelbauer G, Chan FP, Fischbein MP, Marsden AL, Fleischmann D. Fluid-structure interaction simulations of patient-specific aortic dissection. Biomech Model Mechanobiol 2020; 19:1607-1628. [PMID: 31993829 DOI: 10.1007/s10237-020-01294-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/14/2020] [Indexed: 12/01/2022]
Abstract
Credible computational fluid dynamic (CFD) simulations of aortic dissection are challenging, because the defining parallel flow channels-the true and the false lumen-are separated from each other by a more or less mobile dissection membrane, which is made up of a delaminated portion of the elastic aortic wall. We present a comprehensive numerical framework for CFD simulations of aortic dissection, which captures the complex interplay between physiologic deformation, flow, pressures, and time-averaged wall shear stress (TAWSS) in a patient-specific model. Our numerical model includes (1) two-way fluid-structure interaction (FSI) to describe the dynamic deformation of the vessel wall and dissection flap; (2) prestress and (3) external tissue support of the structural domain to avoid unphysiologic dilation of the aortic wall and stretching of the dissection flap; (4) tethering of the aorta by intercostal and lumbar arteries to restrict translatory motion of the aorta; and a (5) independently defined elastic modulus for the dissection flap and the outer vessel wall to account for their different material properties. The patient-specific aortic geometry is derived from computed tomography angiography (CTA). Three-dimensional phase contrast magnetic resonance imaging (4D flow MRI) and the patient's blood pressure are used to inform physiologically realistic, patient-specific boundary conditions. Our simulations closely capture the cyclical deformation of the dissection membrane, with flow simulations in good agreement with 4D flow MRI. We demonstrate that decreasing flap stiffness from [Formula: see text] to [Formula: see text] kPa (a) increases the displacement of the dissection flap from 1.4 to 13.4 mm, (b) decreases the surface area of TAWSS by a factor of 2.3, (c) decreases the mean pressure difference between true lumen and false lumen by a factor of 0.63, and (d) decreases the true lumen flow rate by up to 20% in the abdominal aorta. We conclude that the mobility of the dissection flap substantially influences local hemodynamics and therefore needs to be accounted for in patient-specific simulations of aortic dissection. Further research to accurately measure flap stiffness and its local variations could help advance future CFD applications.
Collapse
Affiliation(s)
- Kathrin Bäumler
- 3D and Quantitative Imaging Laboratory, Department of Radiology, Stanford University, Stanford, CA, 94305, USA.
| | - Vijay Vedula
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, 94305, USA
| | - Anna M Sailer
- 3D and Quantitative Imaging Laboratory, Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Jongmin Seo
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, 94305, USA
| | - Peter Chiu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
| | - Gabriel Mistelbauer
- Department of Simulation and Graphics, University of Magdeburg, Magdeburg, Germany
| | - Frandics P Chan
- 3D and Quantitative Imaging Laboratory, Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Michael P Fischbein
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
| | - Alison L Marsden
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Dominik Fleischmann
- 3D and Quantitative Imaging Laboratory, Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
49
|
Sundström E, Jonnagiri R, Gutmark-Little I, Gutmark E, Critser P, Taylor MD, Tretter JT. Effects of Normal Variation in the Rotational Position of the Aortic Root on Hemodynamics and Tissue Biomechanics of the Thoracic Aorta. Cardiovasc Eng Technol 2019; 11:47-58. [PMID: 31701357 DOI: 10.1007/s13239-019-00441-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/30/2019] [Indexed: 01/04/2023]
Abstract
PURPOSE Variation in the rotational position of the aortic root relative to the left ventricle is present in normal trileaflet aortic valves. Its impact on the resulting fluid mechanics of blood flow in the thoracic aorta and structural mechanics in the aortic wall are unknown. We aimed to determine the regional hemodynamic and biomechanical differences in different rotational positions of the normal aortic root (clockwise, central, and counterclockwise positions). METHOD Cardiac magnetic resonance imaging (CMR) data was acquired from a normal pediatric patient. These were used for reconstruction of the aortic valve and thoracic aorta 3D model. Fluid-structure interaction (FSI) simulations were employed to study the influence of the root rotation with a central position as compared to observed extreme variations. Patient-specific phase-encoding CMR data were used to assess the validity of computed blood flow. The 3D FSI model was coupled with Windkessel boundary conditions that were tuned for physiological pressures. A grid velocity function was adopted for the valve motion during the systolic period. RESULTS The largest wall shear stress level is detected in the clockwise positioned aortic root at the sinutubular junction. Two counter-rotating vortex cores are formed within the aortic root of both the central and extreme root configurations, however, in the clockwise root the vortex system becomes more symmetric. This also coincides with more entrainment of the valve jet and more turbulence production along the shear layer. CONCLUSION A clockwise rotational position of the aortic root imparts an increased wall shear stress at the sinutubular junction and proximal ascending aorta in comparison to other root rotation positions. This may pose increased risk for dilation of the sinutubular junction and ascending aorta in the patient with a clockwise positioned aortic root compared to other normal positional configurations.
Collapse
Affiliation(s)
- Elias Sundström
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati, Cincinnati, OH, 45267, USA.
| | - Raghuvir Jonnagiri
- Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Iris Gutmark-Little
- Division of Endocrine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Ephraim Gutmark
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati, Cincinnati, OH, 45267, USA.,Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Paul Critser
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Michael D Taylor
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Justin T Tretter
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45267, USA
| |
Collapse
|
50
|
Donadoni F, Bonfanti M, Pichardo-Almarza C, Homer-Vanniasinkam S, Dardik A, Díaz-Zuccarini V. An in silico study of the influence of vessel wall deformation on neointimal hyperplasia progression in peripheral bypass grafts. Med Eng Phys 2019; 74:137-145. [PMID: 31540730 DOI: 10.1016/j.medengphy.2019.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/08/2019] [Accepted: 09/08/2019] [Indexed: 10/26/2022]
Abstract
Neointimal hyperplasia (NIH) is a major obstacle to graft patency in the peripheral arteries. A complex interaction of biomechanical factors contribute to NIH development and progression, and although haemodynamic markers such as wall shear stress have been linked to the disease, these have so far been insufficient to fully capture its behaviour. Using a computational model linking computational fluid dynamics (CFD) simulations of blood flow with a biochemical model representing NIH growth mechanisms, we analyse the effect of compliance mismatch, due to the presence of surgical stitches and/or to the change in distensibility between artery and vein graft, on the haemodynamics in the lumen and, subsequently, on NIH progression. The model enabled to simulate NIH at proximal and distal anastomoses of three patient-specific end-to-side saphenous vein grafts under two compliance-mismatch configurations, and a rigid wall case for comparison, obtaining values of stenosis similar to those observed in the computed tomography (CT) scans. The maximum difference in time-averaged wall shear stress between the rigid and compliant models was 3.4 Pa, and differences in estimation of NIH progression were only observed in one patient. The impact of compliance on the haemodynamic-driven development of NIH was small in the patient-specific cases considered.
Collapse
Affiliation(s)
- Francesca Donadoni
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Mirko Bonfanti
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Department of Medical Physics and Biomedical Engineering, University College London, W1W 7TS, UK
| | - Cesar Pichardo-Almarza
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Shervanthi Homer-Vanniasinkam
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; Leeds Teaching Hospitals NHS Trust, LS1 3EX, UK; Division of Surgery, University of Warwick, Warwick, UK
| | - Alan Dardik
- The Department of Surgery, Yale University School of Medicine, New Haven, CT, USA; Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Vanessa Díaz-Zuccarini
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Department of Medical Physics and Biomedical Engineering, University College London, W1W 7TS, UK.
| |
Collapse
|