1
|
Woo K, Santamaria N, Beeckman D, Alves P, Cullen B, Gefen A, Lázaro-Martínez JL, Lev-Tov H, Najafi B, Sharpe A, Swanson T. Using patient-reported experiences to inform the use of foam dressings for hard-to-heal wounds: perspectives from a wound care expert panel. J Wound Care 2024; 33:814-822. [PMID: 39480734 DOI: 10.12968/jowc.2024.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Caring for patients with hard-to-heal (chronic) wounds requires a multifaceted approach that addresses their diverse needs, which can contribute to the complexity of care. Wound care providers must have a comprehensive understanding of the patient's comorbid conditions and psychosocial issues to provide personalised and effective treatment. Key quality indicators for effective wound care involves not only selecting appropriate local wound care products, such as foam dressings, but also addressing individual patient experiences of wound-related pain, odour, itch, excessive wound drainage, and self-care needs. The purpose of this review is to inculcate the wound care practice community, research scientists and healthcare industry with a sense of accountability in order to work collaboratively in addressing these unmet care needs.
Collapse
Affiliation(s)
- Kevin Woo
- 92 Barrie Street School of Nursing, Queen's University, Kingston, Ontario, Canada
- Toronto Grace Health Center, Toronto, Canada
| | - Nick Santamaria
- School of Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Dimitri Beeckman
- Skin Integrity Research Group (SKINT), University Centre for Nursing and Midwifery, Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
- Campus UZGent, Gent, Belgium
| | - Paulo Alves
- Wounds Research Lab - Centre for Interdisciplinary Research in Health, Catholic University of Portugal, Porto, Portugal
| | | | - Amit Gefen
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - José Luis Lázaro-Martínez
- Director of the Diabetic Foot Research Group, Complutense University and Health Research Institute at San Carlos Teaching Hospital, Madrid, Spain
| | - Hadar Lev-Tov
- University of Miami Hospital Miller School of Medicine, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami, Florida, US
| | - Bijan Najafi
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston TX, US
| | - Andrew Sharpe
- Podiatry Department, Salford Royal NHS Foundation Trust, Salford Care Organisation, Salford, UK
| | | |
Collapse
|
2
|
Gefen A. The complex interplay between mechanical forces, tissue response and individual susceptibility to pressure ulcers. J Wound Care 2024; 33:620-628. [PMID: 39287029 DOI: 10.12968/jowc.2024.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
OBJECTIVE The most recent edition of the International Clinical Practice Guideline for the Prevention and Treatment of Pressure Ulcers/Injuries was released in 2019. Shortly after, in 2020, the first edition of the SECURE Prevention expert panel report, focusing on device-related pressure ulcers/injuries, was published as a special issue in the Journal of Wound Care. A second edition followed in 2022. This article presents a comprehensive summary of the current understanding of the causes of pressure ulcers/injuries (PU/Is) as detailed in these globally recognised consensus documents. METHOD The literature reviewed in this summary specifically addresses the impact of prolonged soft tissue deformations on the viability of cells and tissues in the context of PU/Is related to bodyweight or medical devices. RESULTS Prolonged soft tissue deformations initially result in cell death and tissue damage on a microscopic scale, potentially leading to development of clinical PU/Is over time. That is, localised high tissue deformations or mechanical stress concentrations can cause microscopic damage within minutes, but it may take several hours of continued mechanical loading for this initial cell and tissue damage to become visible and clinically noticeable. Superficial tissue damage primarily stems from excessive shear loading on fragile or vulnerable skin. In contrast, deeper PU/Is, known as deep tissue injuries, typically arise from stress concentrations in soft tissues at body regions over sharp or curved bony prominences, or under stiff medical devices in prolonged contact with the skin. CONCLUSION This review promotes deeper understanding of the pathophysiology of PU/Is, indicating that their primary prevention should focus on alleviating the exposure of cells and tissues to stress concentrations. This goal can be achieved either by reducing the intensity of stress concentrations in soft tissues, or by decreasing the exposure time of soft tissues to such stress concentrations.
Collapse
Affiliation(s)
- Amit Gefen
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Skin Integrity Research Group (SKINT), University Centre for Nursing and Midwifery, Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
- Department of Mathematics and Statistics, Faculty of Sciences, Hasselt University, Hasselt, Belgium
| |
Collapse
|
3
|
Wilson P, Patton D, O'Connor T, Boland F, Budri AM, Moore Z, Phelan N. Biomarkers of local inflammation at the skin's surface may predict both pressure and diabetic foot ulcers. J Wound Care 2024; 33:630-635. [PMID: 39287043 DOI: 10.12968/jowc.2024.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
This commentary considers the similarities which exist between pressure ulcers (PUs) and diabetic foot ulcers (DFUs). It aims to describe what is known to be shared-both in theory and practice-by these wound types. It goes on to detail the literature surrounding the role of inflammation in both wound types. PUs occur following prolonged exposure to pressure or pressure in conjunction with shear, either due to impaired mobility or medical devices. As a result, inflammation occurs, causing cell damage. While DFUs are not associated with immobility, they are associated with altered mobility occurring as a result of complications of diabetes. The incidence and prevalence of both types of lesions are increased in the presence of multimorbidity. The prediction of either type of ulceration is challenging. Current risk assessment practices are reported to be ineffective at predicting when ulceration will occur. While systemic inflammation is easily measured, the presence of local or subclinical inflammation is harder to discern. In patients at risk of either DFUs or PUs, clinical signs and symptoms of inflammation may be masked, and systemic biomarkers of inflammation may not be elevated sufficiently to predict imminent damage until ulceration appears. The current literature suggests that the use of local biomarkers of inflammation at the skin's surface, namely oedema and temperature, may identify early tissue damage.
Collapse
Affiliation(s)
- Pauline Wilson
- St. James's Hospital, Dublin, Ireland
- Skin Wounds and Trauma Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- Health Service Executive, Dublin, Ireland
| | - Declan Patton
- Skin Wounds and Trauma Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- Fakeeh College of Health Sciences, Jeddah, Saudi Arabia
- School of Nursing and Midwifery, Griffith University, Queensland, Australia
- Faculty of Science, Medicine and Health, University of Wollongong, Australia
| | - Tom O'Connor
- Skin Wounds and Trauma Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- Fakeeh College of Health Sciences, Jeddah, Saudi Arabia
- School of Nursing and Midwifery, Griffith University, Queensland, Australia
- Lida Institute, Shanghai, China
| | - Fiona Boland
- Data Science, School of Population Health, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Aglecia Mv Budri
- Skin Wounds and Trauma Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- São Paulo State University (UNESP), Faculty of Medicine, Department of Nursing, São Paulo, Brazil
| | - Zena Moore
- Skin Wounds and Trauma Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- Fakeeh College of Health Sciences, Jeddah, Saudi Arabia
- School of Nursing and Midwifery, Griffith University, Queensland, Australia
- Lida Institute, Shanghai, China
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia
- Department of Public Health, Faculty of Medicine and Health Sciences, Ghent University, Belgium
- University of Wales, Cardiff, UK
- National Health and Medical Research Council Centre of Research Excellence in Wiser Wound Care, Menzies Health Institute Queensland, Queensland, Australia
| | | |
Collapse
|
4
|
Suryadinata KL, Basuki A, Song A, Yovita NV, Pakan AP, Sagala AE. Effect of honey and povidone-iodine on acute laceration wound healing: a pilot randomised controlled trial study. J Wound Care 2024; 33:570-576. [PMID: 39137253 DOI: 10.12968/jowc.2022.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
OBJECTIVE Acute laceration wound (ALW) is one of the most common injuries in Indonesia with potential significant morbidities. In rural areas, povidone-iodine and honey are commonly used as wound dressings. This study aimed to identify the effectiveness of honey compared to paraffin gauze and the commonly used povidone-iodine in improving ALW healing time. METHOD This study was a single-blind, pilot randomised controlled trial (RCT) with three intervention groups (honey, povidone-iodine, and paraffin). The outcomes were wound healing time, slow healing, secondary healing, signs of infection, wound dehiscence, oedema, maceration, necrosis, exudate and cost. RESULTS A total of 35 patients (male to female ratio: 4:1), with a mean age of 22.5 (range: 6-47) years, were included and randomised to treatment groups using predetermined randomisation according to wound location and wound dressing selection: honey group, n=12; povidone-iodine group, n=11; paraffin group, n=12 with one patient lost to follow-up. All groups achieved timely healing, with a mean healing time of 9.45±5.31 days and 11.09±5.14 days for the povidone-iodine and paraffin groups, respectively, and a median healing time of 10 (3-19) days for the honey group (p>0.05). More wounds in the honey group achieved healing in ≤10 days compared with the other groups. Both povidone-iodine and honey groups had fewer adverse events, with the latter having the lowest cost. CONCLUSION In this study, honey was clinically effective in accelerating healing time with a lower cost compared to paraffin, and was comparable to povidone-iodine. Future RCTs with a larger sample size should be pursued to determine honey's role in ALW treatment.
Collapse
Affiliation(s)
- Kevin Leonard Suryadinata
- Division of Plastic, Reconstructive, and Aesthetic Surgery, Department of Surgery, Dr. Hasan Sadikin General Hospital/Faculty of Medicine, Universitas Padjadjaran, Indonesia
| | - Adi Basuki
- Division of Plastic, Reconstructive, and Aesthetic Surgery, Department of Surgery, Dr. Cipto Mangunkusumo National General Hospital/Faculty of Medicine, Universitas Indonesia, Indonesia
| | - Agustini Song
- Department of Emergency, S.K. Lerik Public General Hospital, Kupang City, East Nusa Tenggara, Indonesia
- Wound Healing and Tissue Repair (MSc), School of Medicine, Cardiff University, UK
| | - Nabila Viera Yovita
- Department of Physical Medicine and Rehabilitation, Dr. Cipto Mangunkusumo National General Hospital/Faculty of Medicine, Universitas Indonesia, Indonesia
| | | | | |
Collapse
|
5
|
Chauhan S, Jhawat V, Singh RP, Yadav A. Topical delivery of insulin using novel organogel formulations: An approach for the management of diabetic wounds. Burns 2024; 50:1068-1082. [PMID: 38350788 DOI: 10.1016/j.burns.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/06/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
Diabetes mellitus is a growing chronic form of diabetes, with lengthy health implications. It is predicted as poor diabetic wound recovery affects roughly 25% of all diabetes mellitus patients, frequently resulting in lower traumatic injury and severe external factors and emotional expenses. The insulin-resistant condition increases biofilm development, making diabetic wounds harder to treat. Nowadays, medical treatment and management of diabetic wounds, which have a significant amputation rate, a high-frequency rate, and a high death rate, have become a global concern. Topical formulations have played a significant part in diabetic wound management and have been developed to achieve a number of features. Because of its significant biocompatibility, moisture retention, and therapeutic qualities, topical insulin has emerged as an appealing and feasible wound healing process effector. With a greater comprehension of the etiology of diabetic wounds, numerous functionalized topical insulins have been described and shown good outcomes in recent years, which has improved some diabetic injuries. The healing of wounds is a physiological phenomenon that restores skin integrity and heals damaged tissues. Insulin, a powerful wound-healing factor, is also used in several experimental and clinical studies accelerate healing of diverse injuries.
Collapse
Affiliation(s)
- Sunita Chauhan
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Vikas Jhawat
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India.
| | - Rahul Pratap Singh
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Abhishek Yadav
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| |
Collapse
|
6
|
Mihai MM, Bălăceanu-Gurău B, Ion A, Holban AM, Gurău CD, Popescu MN, Beiu C, Popa LG, Popa MI, Dragomirescu CC, Preda M, Muntean AA, Macovei IS, Lazăr V. Host-Microbiome Crosstalk in Chronic Wound Healing. Int J Mol Sci 2024; 25:4629. [PMID: 38731848 PMCID: PMC11083077 DOI: 10.3390/ijms25094629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The pathogenesis of chronic wounds (CW) involves a multifaceted interplay of biochemical, immunological, hematological, and microbiological interactions. Biofilm development is a significant virulence trait which enhances microbial survival and pathogenicity and has various implications on the development and management of CW. Biofilms induce a prolonged suboptimal inflammation in the wound microenvironment, associated with delayed healing. The composition of wound fluid (WF) adds more complexity to the subject, with proven pro-inflammatory properties and an intricate crosstalk among cytokines, chemokines, microRNAs, proteases, growth factors, and ECM components. One approach to achieve information on the mechanisms of disease progression and therapeutic response is the use of multiple high-throughput 'OMIC' modalities (genomic, proteomic, lipidomic, metabolomic assays), facilitating the discovery of potential biomarkers for wound healing, which may represent a breakthrough in this field and a major help in addressing delayed wound healing. In this review article, we aim to summarize the current progress achieved in host-microbiome crosstalk in the spectrum of CW healing and highlight future innovative strategies to boost the host immune response against infections, focusing on the interaction between pathogens and their hosts (for instance, by harnessing microorganisms like probiotics), which may serve as the prospective advancement of vaccines and treatments against infections.
Collapse
Affiliation(s)
- Mara Mădălina Mihai
- Department of Oncologic Dermatology, “Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.M.M.); (C.B.); (L.G.P.)
- Clinic of Dermatology, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
- Research Institute of the University of Bucharest, Department of Botany-Microbiology, Faculty of Biology, University of Bucharest, 050663 Bucharest, Romania; (A.M.H.); (V.L.)
| | | | - Ana Ion
- Clinic of Dermatology, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Alina Maria Holban
- Research Institute of the University of Bucharest, Department of Botany-Microbiology, Faculty of Biology, University of Bucharest, 050663 Bucharest, Romania; (A.M.H.); (V.L.)
| | - Cristian-Dorin Gurău
- Orthopedics and Traumatology Clinic, Clinical Emergency Hospital, 014451 Bucharest, Romania;
| | - Marius Nicolae Popescu
- Department of Physical and Rehabilitation Medicine, “Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Clinic of Physical and Rehabilitation Medicine, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Cristina Beiu
- Department of Oncologic Dermatology, “Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.M.M.); (C.B.); (L.G.P.)
- Clinic of Dermatology, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Liliana Gabriela Popa
- Department of Oncologic Dermatology, “Elias” Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.M.M.); (C.B.); (L.G.P.)
- Clinic of Dermatology, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Mircea Ioan Popa
- Department of Microbiology, “Cantacuzino” Institute, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.P.); (C.C.D.); (A.-A.M.)
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania; (M.P.); (I.S.M.)
| | - Cerasella Cristiana Dragomirescu
- Department of Microbiology, “Cantacuzino” Institute, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.P.); (C.C.D.); (A.-A.M.)
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania; (M.P.); (I.S.M.)
| | - Mădălina Preda
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania; (M.P.); (I.S.M.)
- Department of Microbiology, Parasitology and Virology, Faculty of Midwives and Nursing, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Alexandru-Andrei Muntean
- Department of Microbiology, “Cantacuzino” Institute, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.P.); (C.C.D.); (A.-A.M.)
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania; (M.P.); (I.S.M.)
| | - Ioana Sabina Macovei
- Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania; (M.P.); (I.S.M.)
| | - Veronica Lazăr
- Research Institute of the University of Bucharest, Department of Botany-Microbiology, Faculty of Biology, University of Bucharest, 050663 Bucharest, Romania; (A.M.H.); (V.L.)
| |
Collapse
|
7
|
Gefen A, Alves P, Beeckman D, Cullen B, Lázaro‐Martínez JL, Lev‐Tov H, Santamaria N, Swanson T, Woo K, Söderström B, Svensby A, Malone M, Nygren E. Fluid handling by foam wound dressings: From engineering theory to advanced laboratory performance evaluations. Int Wound J 2024; 21:e14674. [PMID: 38353372 PMCID: PMC10865423 DOI: 10.1111/iwj.14674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 02/16/2024] Open
Abstract
This article describes the contemporary bioengineering theory and practice of evaluating the fluid handling performance of foam-based dressings, with focus on the important and clinically relevant engineering structure-function relationships and on advanced laboratory testing methods for pre-clinical quantitative assessments of this common type of wound dressings. The effects of key wound dressing material-related and treatment-related physical factors on the absorbency and overall fluid handling of foam-based dressings are thoroughly and quantitively analysed. Discussions include exudate viscosity and temperature, action of mechanical forces and the dressing microstructure and associated interactions. Based on this comprehensive review, we propose a newly developed testing method, experimental metrics and clinical benchmarks that are clinically relevant and can set the standard for robust fluid handling performance evaluations. The purpose of this evaluative framework is to translate the physical characteristics and performance determinants of a foam dressing into achievable best clinical outcomes. These guiding principles are key to distinguishing desirable properties of a dressing that contribute to optimal performance in clinical settings.
Collapse
Affiliation(s)
- Amit Gefen
- Department of Biomedical Engineering, Faculty of EngineeringTel Aviv UniversityTel AvivIsrael
- Skin Integrity Research Group (SKINT), University Centre for Nursing and Midwifery, Department of Public Health and Primary CareGhent UniversityGhentBelgium
- Department of Mathematics and Statistics, Faculty of SciencesHasselt UniversityHasseltBelgium
| | - Paulo Alves
- Wounds Research Lab, Centre for Interdisciplinary Research in Health, Faculty of Nursing and Health SciencesUniversidade Católica PortuguesaPortoPortugal
| | - Dimitri Beeckman
- Skin Integrity Research Group (SKINT), University Centre for Nursing and Midwifery, Department of Public Health and Primary CareGhent UniversityGhentBelgium
- Swedish Centre for Skin and Wound Research, Faculty of Medicine and Health, School of Health SciencesÖrebro UniversityÖrebroSweden
| | | | | | - Hadar Lev‐Tov
- Dr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Hospital Miller School of MedicineMiamiFloridaUSA
| | - Nick Santamaria
- School of Health SciencesUniversity of MelbourneMelbourneVictoriaAustralia
| | | | - Kevin Woo
- School of NursingQueen's UniversityKingstonOntarioCanada
| | - Bengt Söderström
- Wound Care Research and DevelopmentMölnlycke Health Care ABGothenburgSweden
| | - Anna Svensby
- Wound Care Research and DevelopmentMölnlycke Health Care ABGothenburgSweden
| | - Matthew Malone
- Research and Development, Bioactives and Wound Biology, Mölnlycke Health Care AB, Gothenburg, Sweden; and Infectious Diseases and Microbiology, School of MedicineWestern Sydney UniversitySydneyNew South WalesAustralia
| | - Erik Nygren
- Wound Care Research and DevelopmentMölnlycke Health Care ABGothenburgSweden
| |
Collapse
|
8
|
Chauhan S, Jhawat V, Singh RP, Yadav A, Garg V. Design, Development and In-Vitro Characterization of Insulin Loaded Topical Pluronic-Lecithin Based Organogel Formulation for the Management of Diabetic Wound. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:50-60. [PMID: 38284692 DOI: 10.2174/0126673878279693231227081931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 01/30/2024]
Abstract
AIM To develop and characterize the topical insulin-loaded organogel formulation for the management of diabetic wounds. OBJECTIVES To formulate and evaluate organogel of insulin that can serve as a topical administration for promoting enhanced wound healing in diabetic patients by providing sustained and localized delivery of drug to the wound site. METHODOLOGY The insulin organogel formulated by the micro-emulsion method involves mixing the "aqueous and oil phases" at high shear. Physical and chemical properties, as well as an in vitro study with a Franz diffusion chamber, were used to evaluate the prepared organogel. RESULTS All formulations proved to be off-white, homogeneous, washable, and had a pH between 6 and 6.5; moreover, they were non-irritating and skin-compatible. Formulations F1-F6 had viscosity ranging from 2058 to 3168 cps, spreadability ranges of 0.35 to 0.52 g*cm/s, and gel transition ranges of 28.33 to 35.33 °C. In formulations F1-F3, the concentration of lecithin was gradually increased, and in formulations F4-F6, the concentration of PF-127 was increased, resulting in a decrease in gel transition temperature, an increase in viscosity, and a gradual change in spreadability. The higher-viscosity formulations were much more stable and had better drug release. All formulations were fitted to a kinetic model belonging to first-order kinetics. However, after examining the parameter evaluation, it was found that the formulations F2 and F6 were better suited to the kinetic model and were consistent with the first-order and Higuchi models in Korsmeyer-Peppas F2 (r2 = 0.9544 and n = 1.0412); F6 (r2 = 0.9019 and n = 1.0822), which was a confirmation of the sustainability of the release system with matrix diffusion and drug delivery mechanisms that were based on the Super-Case II transport. CONCLUSION Further research and clinical trials are needed to validate its efficacy, optimize the formulation, and establish its long-term safety. Topical insulin organogel has the potential to revolutionize diabetic wound management by improving healing outcomes, reducing complications, and raising the standard of living for those who have diabetes.
Collapse
Affiliation(s)
- Sunita Chauhan
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Vikas Jhawat
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Rahul Pratap Singh
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Abhishek Yadav
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Vandana Garg
- Department of Pharmaceutical Science, MD University, Rohtak, Haryana, India
| |
Collapse
|
9
|
Dabas M, Kreychman I, Katz T, Gefen A. Testing the effectiveness of a polymeric membrane dressing in modulating the inflammation of intact, non-injured, mechanically irritated skin. Int Wound J 2024; 21:e14347. [PMID: 37568272 PMCID: PMC10777768 DOI: 10.1111/iwj.14347] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
We investigated the inflammatory (IL-1 alpha) and thermal (infrared thermography) reactions of healthy sacral skin to sustained, irritating mechanical loading. We further acquired digital photographs of the irritated skin (at the visible light domain) to assess whether infrared imaging is advantageous. For clinical context, the skin status was monitored under a polymeric membrane dressing known to modulate the inflammatory skin response. The IL-1 alpha and infrared thermography measurements were consistent in representing the skin status after 40 min of continuous irritation. Infrared thermography overpowered conventional digital photography as a contactless optical method for image processing inputs, by revealing skin irritation trends that were undetectable through digital photography in the visual light, not even with the aid of advanced image processing. The polymeric membrane dressings were shown to offer prophylactic benefits over simple polyurethane foam in the aspects of inflammation reduction and microclimate management. We also concluded that infrared thermography is a feasible method for monitoring the skin health status and the risk for pressure ulcers, as it avoids the complexity of biological marker studies and empowers visual skin assessments or digital photography of skin, both of which were shown to be insufficient for detecting the inflammatory skin status.
Collapse
Affiliation(s)
- Mai Dabas
- Department of Biomedical Engineering, Faculty of EngineeringTel Aviv UniversityTel AvivIsrael
| | - Ida Kreychman
- Department of Biomedical Engineering, Faculty of EngineeringTel Aviv UniversityTel AvivIsrael
| | - Tomer Katz
- Department of Biomedical Engineering, Faculty of EngineeringTel Aviv UniversityTel AvivIsrael
| | - Amit Gefen
- Department of Biomedical Engineering, Faculty of EngineeringTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
10
|
Pan Y, Yang D, Zhou M, Liu Y, Pan J, Wu Y, Huang L, Li H. Advance in topical biomaterials and mechanisms for the intervention of pressure injury. iScience 2023; 26:106956. [PMID: 37378311 PMCID: PMC10291478 DOI: 10.1016/j.isci.2023.106956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Pressure injuries (PIs) are localized tissue damage resulting from prolonged compression or shear forces on the skin or underlying tissue, or both. Different stages of PIs share common features include intense oxidative stress, abnormal inflammatory response, cell death, and subdued tissue remodeling. Despite various clinical interventions, stage 1 or stage 2 PIs are hard to monitor for the changes of skin or identify from other disease, whereas stage 3 or stage 4 PIs are challenging to heal, painful, expensive to manage, and have a negative impact on quality of life. Here, we review the underlying pathogenesis and the current advances of biochemicals in PIs. We first discuss the crucial events involved in the pathogenesis of PIs and key biochemical pathways lead to wound delay. Then, we examine the recent progress of biomaterials-assisted wound prevention and healing and their prospects.
Collapse
Affiliation(s)
- Yingying Pan
- School of Nursing, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Dejun Yang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Min Zhou
- School of Nursing, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yong Liu
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
| | - Jiandan Pan
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yunlong Wu
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lijiang Huang
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
| | - Huaqiong Li
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
| |
Collapse
|
11
|
Gao Y, Li T, Meng F, Hou Z, Xu C, Yang L. Topological Optimisation Structure Design for Personalisation of Hydrogel Controlled Drug Delivery System. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2687. [PMID: 37048980 PMCID: PMC10095648 DOI: 10.3390/ma16072687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Personalised controlled drug delivery systems (CDDSs) can adjust drug concentration levels according to patient needs, which has enormous research prospects in precision medicine. In this study, the topological optimisation method was utilised in the structural design of a hydrogel CDDS to achieve a parameter-based adjustment of the drug average concentration in the hydrogel. A polyacrylamide/sodium alginate dual-network hydrogel was selected as a drug carrier, and tetracycline hydrochloride was used as a model drug. The topological optimisation model of the hydrogel CDDS was developed. The effects of the mesh size, target concentration, and volume factor on the optimised results were investigated. Hydrogel flow channel structures were obtained, which satisfied the different target concentrations. To verify the rationality of the optimisation model, in vitro drug release experiments were carried out. The results show that the hydrogel CDDS can control drug release within 7 days, and the drug release tends to follow zero-order release behaviour. The adjustable average concentration of tetracycline hydrochloride in hydrogel CDDS is recommended in the range of 20.79 to 31.04 mol/m3. This novel method provides a reference for personalised structure design of CDDS in the context of precision medicine.
Collapse
Affiliation(s)
- Yang Gao
- School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Tan Li
- School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Fanshu Meng
- School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Zhenzhong Hou
- College of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Chao Xu
- School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Laixia Yang
- School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| |
Collapse
|
12
|
Abstract
OBJECTIVE To determine whether changes in skin temperature can affect the integrity of skin. METHODOLOGY The authors conducted a systematic literature search as per the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. They searched the CINAHL (Cumulative Index to Nursing and Allied Health Literature), Cochrane, MEDLINE Complete, Academic Search Ultimate, and HyDi databases for articles examining the effects of skin temperature on skin integrity published through April 2020. Two independent reviewers scored the methodologic quality of the 13 included studies. RESULTS Only 11 studies were included in the qualitative analysis, as the other two articles had a critical risk of bias. There is strong evidence to indicate that an increase in skin temperature leads to changes in skin structure and function. However, ulcer formation was more affected by intrinsic and extrinsic factors, rather than by temperature alone. CONCLUSION Further high-quality randomized controlled trials are required to investigate the direct effect of skin temperature on ulceration.
Collapse
|
13
|
Jan YK, Major MJ, Pu F, Sonenblum SE. Editorial: Soft Tissue Biomechanics in Wound Healing and Prevention. Front Bioeng Biotechnol 2022; 10:897860. [PMID: 35449596 PMCID: PMC9017806 DOI: 10.3389/fbioe.2022.897860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yih-Kuen Jan
- Rehabilitation Engineering Lab, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- *Correspondence: Yih-Kuen Jan,
| | - Matthew J. Major
- Departments of Physical Medicine and Rehabilitation and Biomedical Engineering, Northwestern University, Chicago, IL, United States
- Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Fang Pu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Sharon Eve Sonenblum
- Rehabilitation Engineering and Applied Research Laboratory, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
14
|
Lustig M, Gefen A. The biomechanical efficacy of a dressing with a soft cellulose fluff core in protecting prone surgical patients from chest injuries on the operating table. Int Wound J 2022; 19:1786-1796. [PMID: 35243764 PMCID: PMC9615289 DOI: 10.1111/iwj.13783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/22/2022] [Indexed: 12/01/2022] Open
Abstract
Pressure ulcers are soft‐tissue damage associated with tissue exposure to sustained deformations and stress concentrations. In patients who are proned for ventilation or surgery, such damage may occur in the superficial chest tissues that are compressed between the rib cage and the support surface. Prophylactic dressings have been previously proven as generally effective for pressure ulcer prevention. In this study, our goal was to develop a novel computational modelling framework to investigate the biomechanical efficacy of a dressing with a soft cellulose fluff core in protecting proned surgical patients from chest pressure ulcers occurring on the operating table, due to body fixation by the Relton‐Hall frame. We compared the levels of mechanical compressive stresses developing in the soft chest tissues, above the sternum and ribs, due to the trunk weight, whilst the body is supported by the Relton‐Hall frame pads, with versus without the prophylactically applied bilateral dressings. The protective efficacy index for the extremely high stresses, above the 95th‐percentile, were 40.5%, 25.6% and 24.2% for skin, adipose and muscle, respectively, indicating that the dressings dispersed elevated soft‐tissue stresses. The current results provide additional support for using soft cellulose fluff core dressings for pressure ulcer prophylaxis, including during surgery.
Collapse
Affiliation(s)
- Maayan Lustig
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Amit Gefen
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
Lustig A, Gefen A. The performance of gelling fibre wound dressings under clinically relevant robotic laboratory tests. Int Wound J 2022; 19 Suppl 1:3-21. [PMID: 35142062 PMCID: PMC9478960 DOI: 10.1111/iwj.13761] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 12/16/2022] Open
Abstract
The effectiveness of wound dressing performance in exudate management is commonly gauged in simple, non‐realistic laboratory setups, typically, where dressing specimens are submersed in vessels containing aqueous solutions, rather than by means of clinically relevant test configurations. Specifically, two key fluid–structure interaction concepts: sorptivity—the ability of wound dressings to transfer exudate, including viscous fluids, away from the wound bed by capillary action and durability—the capacity of dressings to maintain their structural integrity over time and particularly, at removal events, have not been properly addressed in existing test protocols. The present article reviews our recent published research concerning the development of clinically relevant testing methods for wound dressings, focussing on the clinical relevance of the tests as well as on the standardisation and automation of laboratory measurements of dressing performance. A second objective of this work was to compile the experimental results characterising the performance of gelling fibre dressings, which were acquired using advanced testing methods, to demonstrate differences across products that apparently belong to the same “gelling fibre” family but differ remarkably in materials, structure and composition and, thereby, in performance.
Collapse
Affiliation(s)
- Adi Lustig
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Amit Gefen
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
16
|
Lustig M, Schwartz D, Bryant R, Gefen A. A machine learning algorithm for early detection of heel deep tissue injuries based on a daily history of sub-epidermal moisture measurements. Int Wound J 2022; 19:1339-1348. [PMID: 35019208 PMCID: PMC9493225 DOI: 10.1111/iwj.13728] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 12/28/2022] Open
Abstract
Sub‐epidermal moisture is an established biophysical marker of pressure ulcer formation based on biocapacitance changes in affected soft tissues, which has been shown to facilitate early detection of these injuries. Artificial intelligence shows great promise in wound prevention and care, including in automated analyses of quantitative measures of tissue health such as sub‐epidermal moisture readings acquired over time for effective, patient‐specific, and anatomical‐site‐specific pressure ulcer prophylaxis. Here, we developed a novel machine learning algorithm for early detection of heel deep tissue injuries, which was trained using a database comprising six consecutive daily sub‐epidermal moisture measurements recorded from 173 patients in acute and post‐acute care settings. This algorithm was able to achieve strong predictive power in forecasting heel deep tissue injury events the next day, with sensitivity and specificity of 77% and 80%, respectively, revealing the clinical potential of artificial intelligence‐powered technology for hospital‐acquired pressure ulcer prevention. The current work forms the scientific basis for clinical implementation of machine learning algorithms that provide effective, early, and anatomy‐specific preventive interventions to minimise the occurrence of hospital‐acquired pressure ulcers based on routine tissue health status measurements.
Collapse
Affiliation(s)
- Maayan Lustig
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Dafna Schwartz
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ruth Bryant
- Principal Research Scientist/Nursing and President, Association for the Advancement of Wound Care (AAWC), Abbott Northwestern Hospital, part of Allina Health, Minneapolis, MN, USA
| | - Amit Gefen
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Fagotti de Almeida CE, Cirino Dos Santos APB, Biaziolo CFB, Mateus de Vasconcelos ECL, Oliveira FV, Jorge JLG, Ferreira MC, Coltro PS, Junior JAF. The role of the perioperative prone position in the low recurrence of pressure injuries in the pelvic region. J Wound Care 2022; 31:92-98. [PMID: 35077205 DOI: 10.12968/jowc.2022.31.1.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE A pressure injury (PI) is a localised area of damage to the skin and/or underlying soft tissue as a result of a sustained mechanical loading. There are three key aetiological mechanisms to PI formation-direct cell deformation, inflammatory oedema and ischaemic damage-which are typically activated sequentially to drive a spiral of injury. This article discusses the role of the perioperative prone position as a rational approach to reducing the recurrence of pelvic PI after reconstructive surgery. METHOD Patients with deep PI in the pelvic region, who were operated on from 2011 to 2019, were retrospectively evaluated. The protocol of care included training in the prone position, followed by maintenance of the prone position for 4-6 weeks postoperatively. The reconstruction was performed with fasciocutaneous and myocutaneous local or regional flaps. RESULTS The study evaluated a total of 26 patients. The rate of recurrence of PIs was 15.4% (4/26) in the mean follow-up of 54 months. Regarding postoperative complications, four cases of partial dehiscence of the suture occurred. CONCLUSION This perioperative protocol of maintaining a prone position seems to be safe for the patient, and it can be used to prevent or reduce the recurrence of deep PIs on the pelvic region after reconstructive surgery.
Collapse
Affiliation(s)
| | | | | | | | | | - João Luís Gil Jorge
- Division of Plastic Surgery, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Marcus Castro Ferreira
- Division of Plastic Surgery, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Pedro Soler Coltro
- Division of Plastic Surgery, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | | |
Collapse
|
18
|
Zubairi W, Zehra M, Mehmood A, Iqbal F, Badar R, Hasan A, Yar M. Evaluation of angiogenic potential of heparin and thyroxine releasing wound dressings. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1960335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Waliya Zubairi
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Lahore, Pakistan
- Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Mubashra Zehra
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Lahore, Pakistan
- National Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Azra Mehmood
- National Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Farasat Iqbal
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Lahore, Pakistan
| | - Rida Badar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Lahore, Pakistan
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad Lahore Campus, Lahore, Pakistan
| |
Collapse
|
19
|
Schmitt T, Katz N, Kishore V. A Feasibility Study on 3D Bioprinting of Microfat Constructs Towards Wound Healing Applications. Front Bioeng Biotechnol 2021; 9:707098. [PMID: 34386485 PMCID: PMC8353388 DOI: 10.3389/fbioe.2021.707098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic wounds affect over 400,000 people in the United States alone, with up to 60,000 deaths each year from non-healing ulcerations. Tissue grafting (e.g., autografts, allografts, and xenografts) and synthetic skin substitutes are common treatment methods, but most solutions are limited to symptomatic treatment and do not address the underlying causes of the chronic wound. Use of fat grafts for wound healing applications has demonstrated promise but these grafts suffer from low cell viability and poor retention at the wound site resulting in suboptimal healing of chronic wounds. Herein, we report on an innovative closed-loop fat processing system (MiniTCTM) that can efficiently process lipoaspirates into microfat clusters comprising of highly viable regenerative cell population (i.e., adipose stromal cells, endothelial progenitors) preserved in their native niche. Cryopreservation of MiniTCTM isolated microfat retained cell count and viability. To improve microfat retention and engraftment at the wound site, microfat was mixed with methacrylated collagen (CMA) bioink and 3D printed to generate microfat-laden collagen constructs. Modulating the concentration of microfat in CMA constructs had no effect on print fidelity or stability of the printed constructs. Results from the Alamar blue assay showed that the cells remain viable and metabolically active in microfat-laden collagen constructs for up to 10 days in vitro. Further, quantitative assessment of cell culture medium over time using ELISA revealed a temporal expression of proinflammatory and anti-inflammatory cytokines indicative of wound healing microenvironment progression. Together, these results demonstrate that 3D bioprinting of microfat-laden collagen constructs is a promising approach to generate viable microfat grafts for potential use in treatment of non-healing chronic wounds.
Collapse
Affiliation(s)
- Trevor Schmitt
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - Nathan Katz
- Jointechlabs Inc., North Barrington, IL, United States
| | - Vipuil Kishore
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States
| |
Collapse
|
20
|
Soppi E, Knuuti J, Kalliokoski K. Positron emission tomography study of effects of two pressure-relieving support surfaces on pressure ulcer development. J Wound Care 2021; 30:54-62. [PMID: 33439081 DOI: 10.12968/jowc.2021.30.1.54] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To study the pathophysiological cascade of pressure ulcer (PU) development consisting of tissue deformation, inflammation and hypoxia. METHOD In this crossover study, deformation was measured with computerised tomography (CT) linked with contact area reflecting immersion and envelopment. Inflammation and hypoxia were measured using subepidermal moisture (SEM), skin temperature and tissue perfusion with positron emission tomography. These variables were investigated under 90 minutes of pressure exposure caused by two functionally different support surfaces-a regular foam mattress and a minimum pressure air (MPA) mattress. RESULTS A total of eight healthy volunteers took part in the study. There was major tissue deformation when the participants lay on a foam mattress while the tissues retained their original shape on the MPA mattress (p<0.0001). During the pressure exposure, the skin temperature increased significantly on both support surfaces but the final temperature on the foam mattress was about 1oC higher than on the MPA mattress (p<0.0001). SEM increased on both support surfaces compared with an unexposed reference site, but the cause may be different between the two support surfaces. Tissue perfusion was lowest in the skin followed by subcutaneous tissues and highest in the muscles. The pressure exposure did not cause any substantial changes in perfusion. The results showed that tissue deformation was more pronounced, the support surface contact area (envelopment), was smaller and the skin temperature higher on the foam mattress than on the MPA mattress, without significant differences in tissue perfusion. CONCLUSION In this study, the MPA mattress support surface had mechanobiological properties that counteracted tissue deformation and thereby may prevent PUs.
Collapse
Affiliation(s)
- Esa Soppi
- Outpatient Clinic, Eira Hospital, Laivurinkatu 29, FI-00150 Helsinki, Finland
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, Turku, Finland
| | - Kari Kalliokoski
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, Turku, Finland
| |
Collapse
|
21
|
Abstract
GENERAL PURPOSE To outline a conceptual schema describing the relationships among the empirically supported risk factors, the etiologic factors, and the mitigating measures that influence pressure injury (PI) development in the critical care population. TARGET AUDIENCE This continuing education activity is intended for physicians, physician assistants, nurse practitioners, and nurses with an interest in skin and wound care. LEARNING OBJECTIVES/OUTCOMES After participating in this educational activity, the participant will: 1. Choose a static intrinsic factor that increases the risk for the development of PI. 2. List several dynamic intrinsic risk factors for developing a PI. 3. Identify dynamic extrinsic risk factors that may predispose a patient to developing a PI. 4. Explain the pathophysiology of PI development.
Collapse
|
22
|
The mechanobiology theory of the development of medical device-related pressure ulcers revealed through a cell-scale computational modeling framework. Biomech Model Mechanobiol 2021; 20:851-860. [PMID: 33606118 PMCID: PMC7893381 DOI: 10.1007/s10237-021-01432-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022]
Abstract
Pressure ulcers are localized sites of tissue damage which form due to the continuous exposure of skin and underlying soft tissues to sustained mechanical loading, by bodyweight forces or because a body site is in prolonged contact with an interfacing object. The latter is the common cause for the specific sub-class of pressure ulcers termed ‘medical device-related pressure ulcers’, where the injury is known to have been caused by a medical device applied for a diagnostic or therapeutic purpose. Etiological research has established three key contributors to pressure ulcer formation, namely direct cell and tissue deformation, inflammatory edema and ischemic damage which are typically activated sequentially to fuel the injury spiral. Here, we visualize and analyze the above etiological mechanism using a new cell-scale modeling framework. Specifically, we consider here the deformation-inflicted and inflammatory contributors to the damage progression in a medical device-related pressure ulcer scenario, forming under a continuous positive airway pressure ventilation mask at the microarchitecture of the nasal bridge. We demonstrate the detrimental effects of exposure to high-level continuous external strains, which causes deformation-inflicted cell damage almost immediately. This in turn induces localized edema, which exacerbates the cell-scale mechanical loading state and thereby progresses cell damage further in a nonlinear, escalating pattern. The cell-scale quantitative description of the damage cascade provided here is important not only from a basic science perspective, but also for creating awareness among clinicians as well as industry and regulators with regards to the need for improving the design of skin-contacting medical devices.
Collapse
|
23
|
Reflections on pressure ulcers. J Tissue Viability 2021; 30:1-2. [PMID: 33485787 DOI: 10.1016/j.jtv.2021.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Abstract
The objective of this educational article is to explain in non-technical terms how the engineering considerations in the design of prophylactic dressings for pressure ulcer (PU, also known as pressure injury) prevention eventually determine the associated clinical and cost-benefit outcomes. The article specifically describes a bioengineering algorithm for quantitative evaluation of the biomechanical efficacy of different prophylactic dressing designs, which is exemplified for two fundamentally different dressing technologies, one based on superabsorbent cellulose core versus the conventional silicone-foam dressing design. A set of three biomechanical indices is described and employed for the above comparative evaluation, namely, the protective efficacy index, the protective endurance and the prophylactic trade-off design parameter. It is demonstrated that the dressing with the superabsorbent cellulose core is at least as good as silicone-foams but, importantly, provides a good balance between its protective performance in its ‘new’ condition, as opposed to its ‘used’ condition, i.e., after being exposed to moisture. Most notably, we show that preventative dressings are never equal in their performances; the underlying structure and the dressing ingredients together determine the extent of the delivered tissue protection and its durability.
Collapse
Affiliation(s)
- Amit Gefen
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University Tel Aviv 6997801, Israel
| |
Collapse
|
25
|
Lustig A, Alves P, Call E, Santamaria N, Gefen A. The sorptivity and durability of gelling fibre dressings tested in a simulated sacral pressure ulcer system. Int Wound J 2020; 18:194-208. [PMID: 33236856 PMCID: PMC8243987 DOI: 10.1111/iwj.13515] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/03/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Wound‐dressing performances are affected by exudate viscosity, resistance to flow because of gravity, and bodyweight loads, the level of which is related to the body position. Here, we focussed on two dressing properties: (a) Sorptivity—the ability of dressings to transfer exudate away from the wound bed by capillary action—and (b) Durability—the capacity of dressings to maintain their integrity over time and during their removal. Both properties are critically important for avoiding further tissue damage but require the development of new laboratory tests for their measurement. A computer‐controlled phantom of an exuding sacral pressure ulcer has therefore been developed and used to compare the performances of Exufiber (Mölnlycke Health Care) vs an alternative market‐leading dressing. Sorptivity was determined using weight tests, and durability was measured through tensile tests of the used dressings. For a supine configuration, the Exufiber dressing demonstrated ~three times higher sorptivity and better durability, withstanding ~five times greater strain energy than the other product before failure occurred. This work paves the way for quantitative, standardised testing of dressings in all aspects of exudate management. The reported tests are further suitable for testing dressing combinations or how dressings interact with negative pressure wound therapy.
Collapse
Affiliation(s)
- Adi Lustig
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Paulo Alves
- Centre for Interdisciplinary Research in Health, Catholic University of Portugal, Porto, Portugal
| | - Evan Call
- Department of Microbiology, Weber State University, Ogden, Utah, USA
| | - Nick Santamaria
- School of Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Amit Gefen
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
26
|
The Role of Foot-Loading Factors and Their Associations with Ulcer Development and Ulcer Healing in People with Diabetes: A Systematic Review. J Clin Med 2020; 9:jcm9113591. [PMID: 33171726 PMCID: PMC7694972 DOI: 10.3390/jcm9113591] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
We aimed to comprehensively and systematically review studies associating key foot-loading factors (i.e., plantar pressure, weight-bearing activity, adherence or a combination thereof) with ulcer development and ulcer healing in people with diabetes. A systematic literature search was performed in PubMed and EMBASE. We included studies if barefoot or in-shoe plantar pressure, weight-bearing activity or footwear or device adherence was measured and associated with either ulcer development or ulcer healing in people with diabetes. Out of 1954 records, 36 studies were included and qualitatively analyzed. We found low to moderate quality evidence that lower barefoot plantar pressure and higher footwear and device adherence associate with lower risk of ulcer development and shorter healing times. For the other foot-loading factors, we found low quality evidence with limited or contradictory results. For combined measures of foot-loading factors, we found low quality evidence suggesting that lower cumulative plantar tissue stress is associated with lower risk of ulcer development and higher ulcer healing incidence. We conclude that evidence for barefoot plantar pressure and adherence in association with ulcer outcome is present, but is limited for the other foot-loading factors. More comprehensive investigation in particularly the combination of foot-loading factors may improve the evidence and targeting preventative treatment.
Collapse
|
27
|
Affiliation(s)
- Amit Gefen
- Professor of Biomedical Engineering and the Herbert J. Berman Chair in Vascular Bioengineering, Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Karen Ousey
- Professor and Director for the Institute of Skin Integrity and Infection Prevention, School of Human and Health Sciences, University of Huddersfield, Queensgate, West Yorkshire, UK
| |
Collapse
|
28
|
Results of Laboratory Testing for Immersion, Envelopment, and Horizontal Stiffness on Turn and Position Devices to Manage Pressure Injury. Adv Skin Wound Care 2020; 33:S11-S22. [DOI: 10.1097/01.asw.0000696412.04000.98] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Katzengold R, Orlov A, Gefen A. A novel system for dynamic stretching of cell cultures reveals the mechanobiology for delivering better negative pressure wound therapy. Biomech Model Mechanobiol 2020; 20:193-204. [PMID: 32803464 DOI: 10.1007/s10237-020-01377-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022]
Abstract
Serious wounds, both chronic and acute (e.g., surgical), are among the most common, expensive and difficult-to-treat health problems. Negative pressure wound therapy (NPWT) is considered a mainstream procedure for treating both wound types. Soft tissue deformation stimuli are the crux of NPWT, enhancing cell proliferation and migration from peri-wound tissues which contributes to healing. We developed a dynamic stretching device (DSD) contained in a miniature incubator for applying controlled deformations to fibroblast wound assays. Prior to the stretching experiments, fibroblasts were seeded in 6-well culture plates with elastic substrata and let to reach confluency. Squashing damage was then induced at the culture centers, and the DSD was activated to deliver stretching regimes that represented common clinical NPWT protocols at two peak strain levels, 0.5% and 3%. Analyses of the normalized maximal migration rate (MMR) data for the collective cell movement revealed that for the 3% strain level, the normalized MMR of cultures subjected to a 0.1 Hz stretch frequency regime was ~ 1.4 times and statistically significantly greater (p < 0.05) than that of the cultures subjected to no-stretch (control) or to static stretch (2nd control). Correspondingly, analysis of the time to gap closure data indicated that the closure time of the wound assays subjected to the 0.1 Hz regime was ~ 30% shorter than that of the cultures subjected to the control regimes (p < 0.05). Other simulated NPWT protocols did not emerge as superior to the controls. The present method and system are a powerful platform for further revealing the mechanobiology of NPWT and for improving this technology.
Collapse
Affiliation(s)
- Rona Katzengold
- The Herbert J. Berman Chair in Vascular Bioengineering, Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Alexey Orlov
- The Herbert J. Berman Chair in Vascular Bioengineering, Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Amit Gefen
- The Herbert J. Berman Chair in Vascular Bioengineering, Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
30
|
Budri AMV, Moore Z, Patton D, O'Connor T, Nugent L, Avsar P. Sub-epidermal moisture measurement: an evidence-based approach to the assessment for early evidence of pressure ulcer presence. Int Wound J 2020; 17:1615-1623. [PMID: 32683789 DOI: 10.1111/iwj.13437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/27/2022] Open
Abstract
This paper aims to discuss the literature pertaining to early pressure-shear induced tissue damage detection, with emphasis on sub-epidermal moisture measurement (SEM). The current method for pressure detection is visual skin assessment (VSA); however, this method is fraught with challenges. Advances in early detection of pressure ulcers are reported in the literature and mainly involve measuring inflammation markers on weight-bearing anatomical areas in order to capture the first signs of tissue damage. One novel technique currently in use is SEM measurement. This biophysical marker is the product of plasma that leaks as a response to local inflammation arising due to pressure-shear induced damage over bony prominences. The early detection of tissue damage is beneficial in two different ways. First, it enables early intervention when the damage is still microscopic and reversible and, therefore, has the potential to prevent further aggravation of healthy surrounding tissue. This arises by avoiding the causation of the problem and stopping the knock-on effect of inflammation, especially when the rapid pressure ulceration pathway of deformation is in place. Second, when the slow ischaemic-reperfusion related mechanism is undergoing, cell death can be avoided when the problem is identified before the cell reaches the "death threshold," completely averting a pressure ulcer.
Collapse
Affiliation(s)
| | - Zena Moore
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Declan Patton
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tom O'Connor
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Linda Nugent
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Pinar Avsar
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
31
|
Peko L, Barakat-Johnson M, Gefen A. Protecting prone positioned patients from facial pressure ulcers using prophylactic dressings: A timely biomechanical analysis in the context of the COVID-19 pandemic. Int Wound J 2020; 17:1595-1606. [PMID: 32618418 PMCID: PMC7361768 DOI: 10.1111/iwj.13435] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/08/2020] [Indexed: 01/08/2023] Open
Abstract
Prone positioning is used for surgical access and recently in exponentially growing numbers of coronavirus disease 2019 patients who are ventilated prone. To reduce their facial pressure ulcer risk, prophylactic dressings can be used; however, the biomechanical efficacy of this intervention has not been studied yet. We, therefore, evaluated facial soft tissue exposures to sustained mechanical loads in a prone position, with versus without multi‐layered silicone foam dressings applied as tissue protectors at the forehead and chin. We used an anatomically realistic validated finite element model of an adult male head to determine the contribution of the dressings to the alleviation of the sustained tissue loads. The application of the dressings considerably relieved the tissue exposures to loading. Specifically, with respect to the forehead, the application of a dressing resulted in 52% and 71% reductions in soft tissue exposures to effective stresses and strain energy densities, respectively. Likewise, a chin dressing lowered the soft tissue exposures to stresses and strain energy densities by 78% and 92%, respectively. While the surgical context is clear and there is a solid, relevant need for biomechanical information regarding prophylaxis for the prone positions, the projected consequences of the coronavirus pandemic make the present work more relevant than ever before.
Collapse
Affiliation(s)
- Lea Peko
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Michelle Barakat-Johnson
- Pressure Injury Prevention and Management, Sydney Local Health District, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Amit Gefen
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
32
|
Gefen A. The bioengineering theory of the key modes of action of a cyanoacrylate liquid skin protectant. Int Wound J 2020; 17:1396-1404. [PMID: 32488944 DOI: 10.1111/iwj.13401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
The objective of this article is to formulate a new bioengineering theoretical framework for modelling the biomechanical efficacy of cyanoacrylate skin protectants, with specific focus on the Marathon technology (Medline Industries, Inc., Northfield, Illinois) and its modes of action. This work details the bioengineering and mathematical formulations of the theory, which is based on the classic engineering theories of flexural stiffness of coated elements and deformation friction. Based on the relevant skin anatomy and physiology, this paper demonstrates: (a) the contribution of the polymerised cyanoacrylate coating to flexural skin stiffness, which facilitates protection from non-axial (eg, compressive) localised mechanical forces; and (b) the contribution of the aforementioned coating to reduction in frictional forces and surface shear stresses applied by contacting objects such as medical devices. The present theoretical framework establishes that application of the cyanoacrylate coating provides considerable biomechanical protection to skin and subdermally, by shielding skin from both compressive and frictional (shearing) forces. Moreover, these analyses indicate that the prophylactic effects of the studied cyanoacrylate coating become particularly strong where the skin is thin or fragile (typically less than ~0.7 mm thick), which is characteristic to old age, post-neural injuries, neuromuscular diseases, and in disuse-induced tissue atrophy conditions.
Collapse
Affiliation(s)
- Amit Gefen
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
33
|
40th Anniversary Issue (25 Years of Medical Engineering & Physics). Med Eng Phys 2020; 72:1-2. [PMID: 31554570 DOI: 10.1016/j.medengphy.2019.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Vasile BS, Birca AC, Musat MC, Holban AM. Wound Dressings Coated with Silver Nanoparticles and Essential Oils for The Management of Wound Infections. MATERIALS 2020; 13:ma13071682. [PMID: 32260273 PMCID: PMC7178656 DOI: 10.3390/ma13071682] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 12/29/2022]
Abstract
Infection represents one of the major risk factors in persistent and difficult to treat wounds. This study focuses on developing antimicrobial wound dressings coated with silver nanoparticles, sodium alginate and different essential oils, to avoid wound infection and biofilm formation. The design of the wound dressings was done by the dip coating method. The characteristics of the developed materials were analysed by physicochemical (FT-IR, XRD, SEM, TEM) and biological (antimicrobial tests) approaches. The results demonstrated uniform silver nanoparticle formation on the substrate, and the developed nanomodified dressings were proven to have increased antimicrobial and antibiofilm potential. The developed wound dressings based on silver nanoparticles, sodium alginate and essential oils have real potential in treating infections, and can be investigated as an efficient alternative to antibiotics and topical preparations for wound management.
Collapse
Affiliation(s)
- Bogdan Stefan Vasile
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independenţei Street, No. 313, 060042 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu Street, No. 1-7, 060042 Bucharest, Romania
- Correspondence:
| | - Alexandra Catalina Birca
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independenţei Street, No. 313, 060042 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu Street, No. 1-7, 060042 Bucharest, Romania
| | - Mihaela Carmen Musat
- Faculty of Engineering in Foreign Language, University Politehnica of Bucharest, Romania, Splaiul Independenţei Street, No. 313, 060042 Bucharest, Romania;
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Aleea Portocalelor, No. 1-3, 050663 Bucharest, Romania;
| |
Collapse
|
35
|
Peko L, Gefen A. Sensitivity and laboratory performances of a second-generation sub-epidermal moisture measurement device. Int Wound J 2020; 17:864-867. [PMID: 32160386 DOI: 10.1111/iwj.13339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Lea Peko
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Amit Gefen
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
36
|
Lustig M, Wiggermann N, Gefen A. How patient migration in bed affects the sacral soft tissue loading and thereby the risk for a hospital-acquired pressure injury. Int Wound J 2020; 17:631-640. [PMID: 32048476 PMCID: PMC7217162 DOI: 10.1111/iwj.13316] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Head‐of‐bed (HOB) elevation is a common clinical practice in hospitals causing the patient's body to slide down in bed because of gravity. This migration effect likely results in tissue shearing between the sacrum and the support surface, which increases the risk for pressure injuries. StayInPlace (HillRom Inc.) is a commercial migration‐reduction technology (MRT) incorporated in intensive care bedframes. Yet, the effects of migration‐reduction on tissue shear stresses during HOB elevation are unknown. We analysed relationships between migration and resulting sacral soft tissue stresses by combining motion analysis and three‐dimensional finite element modelling of the buttocks. Migration data were collected for 10 subjects, lying supine on two bedframe types with and without MRT, and at HOB elevations of 45°/65°. Migration data were used as displacement boundary conditions for the modelling to calculate tissue stress exposures. Migration values for the conventional bed were 1.75‐ and 1.6‐times greater than those for the migration‐reduction bed, for elevations of 45° and 65°, respectively (P < .001). The modelling showed that the farther the migration, the greater the tissue stress exposures. Internal stresses were 1.8‐fold greater than respective skin stresses. Our results, based on the novel integrated experimental‐computational method, point to clear biomechanical benefits in minimising migration using MRT.
Collapse
Affiliation(s)
- Maayan Lustig
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | | | - Amit Gefen
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
37
|
Okonkwo H, Bryant R, Milne J, Molyneaux D, Sanders J, Cunningham G, Brangman S, Eardley W, Chan GK, Mayer B, Waldo M, Ju B. A blinded clinical study using a subepidermal moisture biocapacitance measurement device for early detection of pressure injuries. Wound Repair Regen 2020; 28:364-374. [PMID: 31965682 PMCID: PMC7217158 DOI: 10.1111/wrr.12790] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
This study aimed to evaluate the sensitivity and specificity of subepidermal moisture (SEM), a biomarker employed for early detection of pressure injuries (PI), compared to the "Gold Standard" of clinical skin and tissue assessment (STA), and to characterize the timing of SEM changes relative to the diagnosis of a PI. This blinded, longitudinal, prospective clinical study enrolled 189 patients (n = 182 in intent-to-treat [ITT]) at acute and post-acute sites (9 USA, 3 UK). Data were collected from patients' heels and sacrums using a biocapacitance measurement device beginning at admission and continuing for a minimum of 6 days to: (a) the patient developing a PI, (b) discharge from care, or (c) a maximum of 21 days. Standard of care clinical interventions prevailed, uninterrupted. Principal investigators oversaw the study at each site. Blinded Generalists gathered SEM data, and blinded Specialists diagnosed the presence or absence of PIs. Of the ITT population, 26.4% developed a PI during the study; 66.7% classified as Stage 1 injuries, 23% deep tissue injuries, the remaining being Stage 2 or Unstageable. Sensitivity was 87.5% (95% CI: 74.8%-95.3%) and specificity was 32.9% (95% CI: 28.3%-37.8%). Area under the receiver operating characteristic curve (AUC) was 0.6713 (95% CI 0.5969-0.7457, P < .001). SEM changes were observed 4.7 (± 2.4 days) earlier than diagnosis of a PI via STA alone. Latency between the SEM biomarker and later onset of a PI, in combination with standard of care interventions administered to at-risk patients, may have confounded specificity. Aggregate SEM sensitivity and specificity and 67.13% AUC exceeded that of clinical judgment alone. While acknowledging specificity limitations, these data suggest that SEM biocapacitance measures can complement STAs, facilitate earlier identification of the risk of specific anatomies developing PIs, and inform earlier anatomy-specific intervention decisions than STAs alone. Future work should include cost-consequence analyses of SEM informed interventions.
Collapse
Affiliation(s)
- Henry Okonkwo
- Seacliff Healthcare Center, Los Angeles, California.,Grand Park Convalescent Hospital, Los Angeles, California.,Vermont Convalescent Care Center, Los Angeles, California
| | | | - Jeanette Milne
- Tissue Viability & Community Research Service, Nursery Park Health Centre, Northumbria NHS Trust, Northumberland, UK
| | - Donna Molyneaux
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania.,Gwynedd Mercy University, Gwynedd Valley, Pennsylvania
| | - Julie Sanders
- St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | | | - Sharon Brangman
- SUNY Upstate Medical University and Loretto Health and Rehabilitation, Syracuse, New York
| | - William Eardley
- Department of Trauma and Orthopaedics Middlesbrough, James Cook University Hospital, Middlesbrough, UK
| | | | | | - Mary Waldo
- Providence Portland Medical Center, Portland, Oregon
| | - Barbara Ju
- Providence Portland Medical Center, Portland, Oregon
| |
Collapse
|