1
|
Zhang J, Sun H, Gao S, Kang Y, Shang C. Prediction of disease-free survival using strain elastography and diffuse optical tomography in patients with T1 breast cancer: a 10-year follow-up study. BMC Cancer 2024; 24:1057. [PMID: 39192199 DOI: 10.1186/s12885-024-12844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Early-stage breast cancer (BC) presents a certain risk of recurrence, leading to variable prognoses and complicating individualized management. Yet, preoperative noninvasive tools for accurate prediction of disease-free survival (DFS) are lacking. This study assessed the potential of strain elastography (SE) and diffuse optical tomography (DOT) for non-invasive preoperative prediction of recurrence in T1 BC and developed a prediction model for estimating the probability of DFS. METHODS A total of 565 eligible patients with T1 invasive BC were enrolled prospectively and followed to investigate the recurrence. The associations between imaging features and DFS were evaluated and a best-prediction model for DFS was developed and validated. RESULTS During the median follow-up period of 10.8 years, 77 patients (13.6%) developed recurrences. The fully adjusted Cox proportional hazards model showed a significant trend between an increasing strain ratio (SR) (P < 0.001 for trend) and the total hemoglobin concentration (TTHC) (P = 0.001 for trend) and DFS. In the subgroup analysis, an intensified association between SR and DFS was observed among women who were progesterone receptor (PR)-positive, lower Ki-67 expression, HER2 negative, and without adjuvant chemotherapy and without Herceptin treatment (all P < 0.05 for interaction). Significant interactions between TTHC status and the lymphovascular invasion, estrogen receptor (ER) status, PR status, HER2 status, and Herceptin treatment were found for DFS(P < 0.05).The imaging-clinical combined model (TTHC + SR + clinicopathological variables) proved to be the best prediction model (AUC = 0.829, 95% CI = 0.786-0.872) and was identified as a potential risk stratification tool to discriminate the risk probability of recurrence. CONCLUSION The combined imaging-clinical model we developed outperformed traditional clinical prognostic indicators, providing a non-invasive, reliable tool for preoperative DFS risk stratification and personalized therapeutic strategies in T1 BC. These findings underscore the importance of integrating advanced imaging techniques into clinical practice and offer support for future research to validate and expand on these predictive methodologies.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Ultrasound, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China
| | - Hao Sun
- Department of Clinical Epidemiology and Evidence-Based Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Song Gao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Ye Kang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Cong Shang
- Department of Ultrasound, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
2
|
Fico N, Grezia GD, Cuccurullo V, Salvia AAH, Iacomino A, Sciarra A, La Forgia D, Gatta G. Breast Imaging Physics in Mammography (Part II). Diagnostics (Basel) 2023; 13:3582. [PMID: 38066823 PMCID: PMC10706410 DOI: 10.3390/diagnostics13233582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 10/16/2024] Open
Abstract
One of the most frequently detected neoplasms in women in Italy is breast cancer, for which high-sensitivity diagnostic techniques are essential for early diagnosis in order to minimize mortality rates. As addressed in Part I of this work, we have seen how conditions such as high glandular density or limitations related to mammographic sensitivity have driven the optimization of technology and the use of increasingly advanced and specific diagnostic methodologies. While the first part focused on analyzing the use of a mammography machine from a physical and dosimetric perspective, in this paper, we will examine other techniques commonly used in breast imaging: contrast-enhanced mammography, digital breast tomosynthesis, radio imaging, and include some notes on image processing. We will also explore the differences between these various techniques to provide a comprehensive overview of breast lesion detection techniques. We will examine the strengths and weaknesses of different diagnostic modalities and observe how, with the implementation of improvements over time, increasingly effective diagnoses can be achieved.
Collapse
Affiliation(s)
- Noemi Fico
- Department of Physics “Ettore Pancini”, Università di Napoli Federico II, 80127 Naples, Italy
| | | | - Vincenzo Cuccurullo
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80013 Naples, Italy; (V.C.); (A.A.H.S.); (G.G.)
| | | | - Aniello Iacomino
- Department of Human Science, Guglielmo Marconi University, 00193 Rome, Italy;
| | - Antonella Sciarra
- Department of Experimental Medicine, Università della Campania “Luigi Vanvitelli”, 80013 Naples, Italy;
| | | | - Gianluca Gatta
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80013 Naples, Italy; (V.C.); (A.A.H.S.); (G.G.)
| |
Collapse
|
3
|
Does MRI have added value in ultrasound-detected BIRADS-3 breast masses in candidates for assisted reproductive therapy? Eur J Radiol Open 2022; 10:100474. [PMID: 36624818 PMCID: PMC9823155 DOI: 10.1016/j.ejro.2022.100474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
Background Ultrasound-detected breast lesions with probably benign features are a great challenge for clinicians, especially in breasts with dense composition. We aimed to investigate the finding of two radiologic modalities on these lesions. Methods This retrospective cross-sectional study recruited patients including (1) candidates of assisted reproductive therapy (ART), (2) patients with prior high-risk lesions, and (3) the "suspected" BIRADS-3 masses referring to masses that US BIRADS-3 was not compatible with the clinical breast exam. The degree of agreement in diagnosing BIRADS-3 lesions between two modalities of magnetic resonance imaging (MRI) and ultrasonography (US), and comparison of the lesions in US and MRI were the study variables. Results A total number of 123 lesions in 67 patients with a median age of 38 (IQR: 11, range: 17-67). In the examination by MRI, 107 (87.0 %) lesions were BIRADS-3 indicating the agreement level between these two modalities. The median size of the lesions in US was 9 mm (IQR: 5, range: 3-43) and 9 mm (IQR: 10, range: 4-46) in MRI. The measured size of the lesions between the two modalities was highly correlated (Spearman correlation coefficient: 0.889, P-value < 0.001). MRI evaluation revealed two cases of deep lesions which were missed in the US imaging. Conclusions This study found relatively high agreement values between US and MRI in detecting BIRADS-3 breast lesions in candidates for ART or patients with prior high-risk lesions. Also, MRI could downgrade about one-tenth of the cases to a lower BIRADS level and resolved the need for closer follow-up.
Collapse
|
4
|
Tang Y, Tsumura R, Kaminski JT, Zhang HK. Actuated Reflector-Based 3-D Ultrasound Imaging With Synthetic Aperture Focusing. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2437-2446. [PMID: 35675232 PMCID: PMC9339534 DOI: 10.1109/tuffc.2022.3180980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The 3-D ultrasound (US) imaging addresses the limitation in field-of-view (FOV) in conventional 2-D US imaging by providing 3-D viewing of the anatomy. The 3-D US imaging has been extensively adapted for diagnosis and image-guided surgical intervention. However, conventional approaches to implement 3-D US imaging require either expensive and sophisticated 2-D array transducers or external actuation mechanisms to move a 1-D array mechanically. Here, we propose a 3-D US imaging mechanism using an actuated acoustic reflector instead of the sensor elements for volume acquisition with significantly extended 3-D FOV, which can be implemented with simple hardware and compact size. To improve image quality on the elevation plane, we implemented the synthetic aperture focusing (SAF) method according to the diagonal geometry of the virtual element array in the proposed imaging mechanism for elevation beamforming. We first evaluated the proposed imaging mechanism and SAF with simulated point targets and cyst targets. The results of point targets suggested improved image quality on the elevation plane, and the results of cysts targets demonstrated a potential to improve 3-D visualization of human anatomy. We built a prototype imaging system with a 3-D FOV of 38 mm (lateral) by 38 mm (elevation) by 50 mm (axial) and collected data in imaging experiments with phantoms. Experimental data showed consistency with simulation results. The SAF method enhanced quantifying the cyst volume size in the breast mimicking phantom compared with no elevation beamforming. These results suggested that the proposed 3-D US imaging mechanism could potentially be applied in clinical scenarios.
Collapse
|
5
|
Galati F, Moffa G, Pediconi F. Breast imaging: Beyond the detection. Eur J Radiol 2021; 146:110051. [PMID: 34864426 DOI: 10.1016/j.ejrad.2021.110051] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 07/23/2021] [Accepted: 11/15/2021] [Indexed: 12/23/2022]
Abstract
Breast cancer is a heterogeneous disease nowadays, including different biological subtypes with a variety of possible treatments, which aim to achieve the best outcome in terms of response to therapy and overall survival. In recent years breast imaging has evolved considerably, and the ultimate goal is to predict these strong phenotypic differences noninvasively. Indeed, breast cancer multiparametric studies can highlight not only qualitative imaging parameters, as the presence/absence of a likely malignant finding, but also quantitative parameters, suggesting clinical-pathological features through the evaluation of imaging biomarkers. A further step has been the introduction of artificial intelligence and in particular radiogenomics, that investigates the relationship between breast cancer imaging characteristics and tumor molecular, genomic and proliferation features. In this review, we discuss the main techniques currently in use for breast imaging, their respective fields of use and their technological and diagnostic innovations.
Collapse
Affiliation(s)
- Francesca Galati
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" - University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy.
| | - Giuliana Moffa
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" - University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Federica Pediconi
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" - University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy.
| |
Collapse
|
6
|
Zhu Y, O'Connell AM, Ma Y, Liu A, Li H, Zhang Y, Zhang X, Ye Z. Dedicated breast CT: state of the art-Part II. Clinical application and future outlook. Eur Radiol 2021; 32:2286-2300. [PMID: 34476564 DOI: 10.1007/s00330-021-08178-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022]
Abstract
Dedicated breast CT is being increasingly used for breast imaging. This technique provides images with no compression, removal of tissue overlap, rapid acquisition, and available simultaneous assessment of microcalcifications and contrast enhancement. In this second installment in a 2-part review, the current status of clinical applications and ongoing efforts to develop new imaging systems are discussed, with particular emphasis on how to achieve optimized practice including lesion detection and characterization, response to therapy monitoring, density assessment, intervention, and implant evaluation. The potential for future screening with breast CT is also addressed. KEY POINTS: • Dedicated breast CT is an emerging modality with enormous potential in the future of breast imaging by addressing numerous clinical needs from diagnosis to treatment. • Breast CT shows either noninferiority or superiority with mammography and numerical comparability to MRI after contrast administration in diagnostic statistics, demonstrates excellent performance in lesion characterization, density assessment, and intervention, and exhibits promise in implant evaluation, while potential application to breast cancer screening is still controversial. • New imaging modalities such as phase-contrast breast CT, spectral breast CT, and hybrid imaging are in the progress of R & D.
Collapse
Affiliation(s)
- Yueqiang Zhu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Avice M O'Connell
- Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Avenue, Box 648, Rochester, NY, 14642, USA
| | - Yue Ma
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Aidi Liu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Haijie Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Yuwei Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Xiaohua Zhang
- Koning Corporation, Lennox Tech Enterprise Center, 150 Lucius Gordon Drive, Suite 112, West Henrietta, NY, 14586, USA
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China.
| |
Collapse
|
7
|
[Connected bras for breast cancer detection in 2021: Analysis and perspectives]. ACTA ACUST UNITED AC 2021; 49:907-912. [PMID: 34091080 DOI: 10.1016/j.gofs.2021.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Breast cancer is the leading cancer in women worldwide with about 2 million new cases and 685,000 deaths each year. Mammography is the most widely used screening and diagnostic method. Currently, digital technologies advances facilitate the development of connected and portable devices. To overcome some of the disadvantages of mammography (breast compression, difficulty in analyzing dense breasts, radiation, limited accessibility in some countries, etc.), portable devices, conventionally known as connected bras (CB), have been created to offer an alternative method to mammography. The objective of our review was to list all the published CBs in order to know their main characteristics, their potential indications and their possible limitations. METHOD A bibliographical search in the PUBMED database selecting only articles written in French or English, between 2011 and 2020, found 7 CBs under development. RESULTS These CBs use thermal, ultrasonic and impedance sensors. Their advantages are an absence of irradiation, an absence of breast compression and a flexibility of use (outside an X-ray cabinet). Mammary gland analysis times vary, depending on the device, between 30min and 24h. They are all connected to data transmission systems and models that analyze the results. DISCUSSION AND CONCLUSION These CBs are mostly still undergoing clinical validation (only [iTBra] has been evaluated in a clinical trial) and require evaluation steps that will eventually allow their future use for breast cancer detection in high-risk women, particularly in women with dense breasts and in women between screening waves.
Collapse
|
8
|
Pang B, Yang H, Wang L, Chen J, Jin L, Shen B. Aptamer modified MoS2 nanosheets application in targeted photothermal therapy for breast cancer. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Irvin VL, Zhang Z, Simon MS, Chlebowski RT, Luoh SW, Shadyab AH, Krok-Schoen JL, Tabung FK, Qi L, Stefanick ML, Schedin P, Jindal S. Comparison of Mortality Among Participants of Women's Health Initiative Trials With Screening-Detected Breast Cancers vs Interval Breast Cancers. JAMA Netw Open 2020; 3:e207227. [PMID: 32602908 PMCID: PMC7327543 DOI: 10.1001/jamanetworkopen.2020.7227] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
IMPORTANCE Interval breast cancers (IBCs) are cancers that emerge after a mammogram with negative results but before the patient's next scheduled screening. Interval breast cancer has a worse prognosis than cancers detected by screening; however, it is unknown whether the length of the interscreening period is associated with prognostic features and mortality. OBJECTIVE To compare the prognostic features and mortality rate of women with IBCs diagnosed within 1 year or between 1 and 2.5 years of a mammogram with negative results with the prognostic features and mortality rate of women with breast cancers detected by screening. DESIGN, SETTING, AND PARTICIPANTS This cohort study used mammography data, tumor characteristics, and patient demographic data from the Women's Health Initiative study, which recruited participants from 1993 to 1998 and followed up with participants for a median of 19 years. The present study sample for these analyses included women aged 50 to 79 years who participated in the Women's Health Initiative study and includes data collected through March 31, 2018. There were 5455 incidents of breast cancer; only 3019 women compliant with screening were retained in analyses. Statistical analysis was performed from October 25, 2018, to November 24, 2019. Breast cancers detected by screening and IBCs were defined based on mammogram history, date of last mammogram, type of visit, and results of examination. Interval breast cancers were subdivided into those occurring within 1 year or between 1 and 2.5 years after the last protocol-mandated mammogram with negative results. MAIN OUTCOMES AND MEASURES The primary outcome of this study was breast cancer-specific mortality for each case of breast cancer detected by screening and IBCs detected within 1 year or between 1 and 2.5 years from a mammogram with negative results. Secondary outcomes included prognostic and tumor characteristics for each group. Comparisons between groups were made using the t test, the χ2 test, and Fine-Gray multivariable cumulative incidence regression analyses. RESULTS Among the 3019 participants in this analysis, all were women with a mean (SD) age of 63.1 (6.8) years at enrollment and 68.5 (7.1) years at diagnosis. A total of 1050 cases of IBC were identified, with 324 (30.9%) diagnosed within 1 year from a mammogram with negative results and 726 (69.1%) diagnosed between 1 and 2.5 years after last mammogram with negative results. The remaining 1969 cases were breast cancers detected by screening. Interval breast cancers diagnosed within 1 year from a mammogram with negative results had significantly more lobular histologic characteristics (13.0% vs. 8.1%), a larger tumor size (1.97 cm vs 1.43 cm), a higher clinical stage (28.4% vs 17.3% regional and 3.7% vs 0.6% distant), and more lymph node involvement (27.1% vs 17.0%) than cancers detected by screening. Unadjusted breast cancer-specific mortality hazard ratios were significantly higher for IBCs diagnosed within 1 year from a mammogram with negative results compared with breast cancers detected by screening (hazard ratio, 1.92; 95% CI, 1.39-2.65). Higher breast cancer-specific mortality remained statistically significant for IBCs diagnosed within 1 year after adjusting for trial group, molecular subtype, waist to hip ratio, histologic characteristics, and either tumor size (hazard ratio, 1.46; 95% CI, 1.03-2.08) or lymph node involvement (hazard ratio, 1.44; 95% CI, 1.03-2.01). However, significance was lost when tumor size and lymph node involvement were both included in the model (hazard ratio, 1.34; 95% CI, 0.96-1.88). Interval breast cancers diagnosed between 1 and 2.5 years from a mammogram with negative results were not different from breast cancers detected by screening based on prognostic factors or mortality. CONCLUSIONS AND RELEVANCE Women with IBCs diagnosed within 1 year of negative mammogram results overall were associated with worse survival than women with breast cancers detected by screening. These differences in survival may be due to a uniquely aggressive biology among IBC cases.
Collapse
Affiliation(s)
- Veronica L. Irvin
- College of Public Health and Human Sciences, Oregon State University, Corvallis
| | - Zhenzhen Zhang
- Division of Oncological Sciences, Oregon Health & Science University, Portland
- Knight Cancer Institute, Oregon Health & Science University, Portland
| | - Michael S. Simon
- Karmanos Cancer Institute, Department of Oncology, Wayne State University, Detroit, Michigan
| | - Rowan T. Chlebowski
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California
| | - Shiuh-Wen Luoh
- Knight Cancer Institute, Oregon Health & Science University, Portland
| | - Aladdin H. Shadyab
- Department of Family Medicine and Public Health, School of Medicine, University of California, San Diego, La Jolla
| | | | - Fred K. Tabung
- College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus
| | - Lihong Qi
- Department of Public Health Sciences, University of California Davis School of Medicine, Davis
| | - Marcia L. Stefanick
- Department of Medicine (Stanford Prevention Research Center), School of Medicine, Stanford University, Stanford, California
| | - Pepper Schedin
- Knight Cancer Institute, Oregon Health & Science University, Portland
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland
| | - Sonali Jindal
- Knight Cancer Institute, Oregon Health & Science University, Portland
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland
| |
Collapse
|
10
|
Zhang J, Tan X, Zhang X, Kang Y, Li J, Ren W, Ma Y. Efficacy of shear-wave elastography versus dynamic optical breast imaging for predicting the pathological response to neoadjuvant chemotherapy in breast cancer. Eur J Radiol 2020; 129:109098. [PMID: 32559591 DOI: 10.1016/j.ejrad.2020.109098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Explore the value of shear-wave elastography (SWE) parameters and dynamic optical breast imaging features for predicting pathological responses to neoadjuvant chemotherapy (NACT) in breast cancer (BC). METHOD This prospective cohort study included 91 BC patients receiving NACT. Tumor size, SWE (maximum stiffness [Emax] and mean stiffness [Emean]), blood score (BS), and oxygen score (OS) and their relative changes were collected before (t0), during (t1-t5), and after NACT (t6). The pathological response was classified according to the residual cancer burden. Relationships between tumor size, SWE stiffness, BS, and OS at t0-t6 were analyzed, and their predictive power was compared. RESULTS During six NACT cycles, tumor size, tumor stiffness, and BS decreased, and tumor OS increased. ΔEmean (t2), E2mean, BS2, and OS2 had a greater power than other indexes for predicting a favorable response (AUC = 0.79, 0.71, 0.77, 0.78) and a resistance response (0.86, 0.74, 0.71, 0.71). For the favorable response, predictive power did not differ significantly between ΔEmean (t2), E2mean, BS2, and OS2, whereas for the resistance response, ΔEmean (t2) showed better prediction than E2mean, BS2, and OS2. CONCLUSIONS SWE stiffness, BS, and OS exhibited good and similar performances in predicting a NACT favorable response, and SWE stiffness showed better performance than BS and OS in predicting NACT resistance. These results may provide an important reference for individualized treatment in BC patients receiving NACT.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Xueying Tan
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Xintong Zhang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Ye Kang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Jianyi Li
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Weidong Ren
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| | - Yan Ma
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
11
|
40th Anniversary Issue (25 Years of Medical Engineering & Physics). Med Eng Phys 2020; 72:1-2. [PMID: 31554570 DOI: 10.1016/j.medengphy.2019.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Pediconi F, Galati F. Breast cancer screening programs: does one risk fit all? Quant Imaging Med Surg 2020; 10:886-890. [PMID: 32355656 DOI: 10.21037/qims.2020.03.14] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Federica Pediconi
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Francesca Galati
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|