1
|
Li Y, Lin C, Zhang Y, Feng S, Huang M, Bai Z. Automatic segmentation of prostate MRI based on 3D pyramid pooling Unet. Med Phys 2023; 50:906-921. [PMID: 35923153 DOI: 10.1002/mp.15895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Automatic segmentation of prostate magnetic resonance (MR) images is crucial for the diagnosis, evaluation, and prognosis of prostate diseases (including prostate cancer). In recent years, the mainstream segmentation method for the prostate has been converted to convolutional neural networks. However, owing to the complexity of the tissue structure in MR images and the limitations of existing methods in spatial context modeling, the segmentation performance should be improved further. METHODS In this study, we proposed a novel 3D pyramid pool Unet that benefits from the pyramid pooling structure embedded in the skip connection (SC) and the deep supervision (DS) in the up-sampling of the 3D Unet. The parallel SC of the conventional 3D Unet network causes low-resolution information to be sent to the feature map repeatedly, resulting in blurred image features. To overcome the shortcomings of the conventional 3D Unet, we merge each decoder layer with the feature map of the same scale as the encoder and the smaller scale feature map of the pyramid pooling encoder. This SC combines the low-level details and high-level semantics at two different levels of feature maps. In addition, pyramid pooling performs multifaceted feature extraction on each image behind the convolutional layer, and DS learns hierarchical representations from comprehensive aggregated feature maps, which can improve the accuracy of the task. RESULTS Experiments on 3D prostate MR images of 78 patients demonstrated that our results were highly correlated with expert manual segmentation. The average relative volume difference and Dice similarity coefficient of the prostate volume area were 2.32% and 91.03%, respectively. CONCLUSION Quantitative experiments demonstrate that, compared with other methods, the results of our method are highly consistent with the expert manual segmentation.
Collapse
Affiliation(s)
- Yuchun Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of information and Communication Engineering, Hainan University, Haikou, China
| | - Cong Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of information and Communication Engineering, Hainan University, Haikou, China.,College of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang, China
| | - Yu Zhang
- College of Computer science and Technology, Hainan University, Haikou, China
| | - Siling Feng
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of information and Communication Engineering, Hainan University, Haikou, China
| | - Mengxing Huang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of information and Communication Engineering, Hainan University, Haikou, China
| | - Zhiming Bai
- Haikou Municipal People's Hospital and Central South University Xiangya Medical College Affiliated Hospital, Haikou, China
| |
Collapse
|
2
|
Wu X, Huang W, Wu X, Wu S, Huang J. Classification of thermal image of clinical burn based on incremental reinforcement learning. Neural Comput Appl 2022. [DOI: 10.1007/s00521-021-05772-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Rouvière O, Moldovan PC, Vlachomitrou A, Gouttard S, Riche B, Groth A, Rabotnikov M, Ruffion A, Colombel M, Crouzet S, Weese J, Rabilloud M. Combined model-based and deep learning-based automated 3D zonal segmentation of the prostate on T2-weighted MR images: clinical evaluation. Eur Radiol 2022; 32:3248-3259. [PMID: 35001157 DOI: 10.1007/s00330-021-08408-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/28/2021] [Accepted: 10/09/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To train and to test for prostate zonal segmentation an existing algorithm already trained for whole-gland segmentation. METHODS The algorithm, combining model-based and deep learning-based approaches, was trained for zonal segmentation using the NCI-ISBI-2013 dataset and 70 T2-weighted datasets acquired at an academic centre. Test datasets were randomly selected among examinations performed at this centre on one of two scanners (General Electric, 1.5 T; Philips, 3 T) not used for training. Automated segmentations were corrected by two independent radiologists. When segmentation was initiated outside the prostate, images were cropped and segmentation repeated. Factors influencing the algorithm's mean Dice similarity coefficient (DSC) and its precision were assessed using beta regression. RESULTS Eighty-two test datasets were selected; one was excluded. In 13/81 datasets, segmentation started outside the prostate, but zonal segmentation was possible after image cropping. Depending on the radiologist chosen as reference, algorithm's median DSCs were 96.4/97.4%, 91.8/93.0% and 79.9/89.6% for whole-gland, central gland and anterior fibromuscular stroma (AFMS) segmentations, respectively. DSCs comparing radiologists' delineations were 95.8%, 93.6% and 81.7%, respectively. For all segmentation tasks, the scanner used for imaging significantly influenced the mean DSC and its precision, and the mean DSC was significantly lower in cases with initial segmentation outside the prostate. For central gland segmentation, the mean DSC was also significantly lower in larger prostates. The radiologist chosen as reference had no significant impact, except for AFMS segmentation. CONCLUSIONS The algorithm performance fell within the range of inter-reader variability but remained significantly impacted by the scanner used for imaging. KEY POINTS • Median Dice similarity coefficients obtained by the algorithm fell within human inter-reader variability for the three segmentation tasks (whole gland, central gland, anterior fibromuscular stroma). • The scanner used for imaging significantly impacted the performance of the automated segmentation for the three segmentation tasks. • The performance of the automated segmentation of the anterior fibromuscular stroma was highly variable across patients and showed also high variability across the two radiologists.
Collapse
Affiliation(s)
- Olivier Rouvière
- Department of Urinary and Vascular Imaging, Hôpital Edouard Herriot, Hospices Civils de Lyon, Pavillon B, 5 place d'Arsonval, F-69437, Lyon, France. .,Université de Lyon, F-69003, Lyon, France. .,Faculté de Médecine Lyon Est, Université Lyon 1, F-69003, Lyon, France. .,INSERM, LabTau, U1032, Lyon, France.
| | - Paul Cezar Moldovan
- Department of Urinary and Vascular Imaging, Hôpital Edouard Herriot, Hospices Civils de Lyon, Pavillon B, 5 place d'Arsonval, F-69437, Lyon, France
| | - Anna Vlachomitrou
- Philips France, 33 rue de Verdun, CS 60 055, 92156, Suresnes Cedex, France
| | - Sylvain Gouttard
- Department of Urinary and Vascular Imaging, Hôpital Edouard Herriot, Hospices Civils de Lyon, Pavillon B, 5 place d'Arsonval, F-69437, Lyon, France
| | - Benjamin Riche
- Service de Biostatistique Et Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, F-69003, Lyon, France.,Laboratoire de Biométrie Et Biologie Évolutive, Équipe Biostatistique-Santé, UMR 5558, CNRS, F-69100, Villeurbanne, France
| | - Alexandra Groth
- Philips Research, Röntgenstrasse 24-26, 22335, Hamburg, Germany
| | | | - Alain Ruffion
- Department of Urology, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, F-69310, Pierre-Bénite, France
| | - Marc Colombel
- Université de Lyon, F-69003, Lyon, France.,Faculté de Médecine Lyon Est, Université Lyon 1, F-69003, Lyon, France.,Department of Urology, Hôpital Edouard Herriot, Hospices Civils de Lyon, F-69437, Lyon, France
| | - Sébastien Crouzet
- Department of Urology, Hôpital Edouard Herriot, Hospices Civils de Lyon, F-69437, Lyon, France
| | - Juergen Weese
- Philips Research, Röntgenstrasse 24-26, 22335, Hamburg, Germany
| | - Muriel Rabilloud
- Université de Lyon, F-69003, Lyon, France.,Faculté de Médecine Lyon Est, Université Lyon 1, F-69003, Lyon, France.,Service de Biostatistique Et Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, F-69003, Lyon, France.,Laboratoire de Biométrie Et Biologie Évolutive, Équipe Biostatistique-Santé, UMR 5558, CNRS, F-69100, Villeurbanne, France
| |
Collapse
|
4
|
Zabihollahy F, Viswanathan AN, Schmidt EJ, Morcos M, Lee J. Fully automated multiorgan segmentation of female pelvic magnetic resonance images with coarse-to-fine convolutional neural network. Med Phys 2021; 48:7028-7042. [PMID: 34609756 PMCID: PMC8597653 DOI: 10.1002/mp.15268] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/25/2021] [Accepted: 09/17/2021] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Brachytherapy combined with external beam radiotherapy (EBRT) is the standard treatment for cervical cancer and has been shown to improve overall survival rates compared to EBRT only. Magnetic resonance (MR) imaging is used for radiotherapy (RT) planning and image guidance due to its excellent soft tissue image contrast. Rapid and accurate segmentation of organs at risk (OAR) is a crucial step in MR image-guided RT. In this paper, we propose a fully automated two-step convolutional neural network (CNN) approach to delineate multiple OARs from T2-weighted (T2W) MR images. METHODS We employ a coarse-to-fine segmentation strategy. The coarse segmentation step first identifies the approximate boundary of each organ of interest and crops the MR volume around the centroid of organ-specific region of interest (ROI). The cropped ROI volumes are then fed to organ-specific fine segmentation networks to produce detailed segmentation of each organ. A three-dimensional (3-D) U-Net is trained to perform the coarse segmentation. For the fine segmentation, a 3-D Dense U-Net is employed in which a modified 3-D dense block is incorporated into the 3-D U-Net-like network to acquire inter and intra-slice features and improve information flow while reducing computational complexity. Two sets of T2W MR images (221 cases for MR1 and 62 for MR2) were taken with slightly different imaging parameters and used for our network training and test. The network was first trained on MR1 which was a larger sample set. The trained model was then transferred to the MR2 domain via a fine-tuning approach. Active learning strategy was utilized for selecting the most valuable data from MR2 to be included in the adaptation via transfer learning. RESULTS The proposed method was tested on 20 MR1 and 32 MR2 test sets. Mean ± SD dice similarity coefficients are 0.93 ± 0.04, 0.87 ± 0.03, and 0.80 ± 0.10 on MR1 and 0.94 ± 0.05, 0.88 ± 0.04, and 0.80 ± 0.05 on MR2 for bladder, rectum, and sigmoid, respectively. Hausdorff distances (95th percentile) are 4.18 ± 0.52, 2.54 ± 0.41, and 5.03 ± 1.31 mm on MR1 and 2.89 ± 0.33, 2.24 ± 0.40, and 3.28 ± 1.08 mm on MR2, respectively. The performance of our method is superior to other state-of-the-art segmentation methods. CONCLUSIONS We proposed a two-step CNN approach for fully automated segmentation of female pelvic MR bladder, rectum, and sigmoid from T2W MR volume. Our experimental results demonstrate that the developed method is accurate, fast, and reproducible, and outperforms alternative state-of-the-art methods for OAR segmentation significantly (p < 0.05).
Collapse
Affiliation(s)
- Fatemeh Zabihollahy
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Akila N Viswanathan
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Ehud J Schmidt
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Marc Morcos
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Junghoon Lee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
5
|
Kalantar R, Lin G, Winfield JM, Messiou C, Lalondrelle S, Blackledge MD, Koh DM. Automatic Segmentation of Pelvic Cancers Using Deep Learning: State-of-the-Art Approaches and Challenges. Diagnostics (Basel) 2021; 11:1964. [PMID: 34829310 PMCID: PMC8625809 DOI: 10.3390/diagnostics11111964] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/18/2022] Open
Abstract
The recent rise of deep learning (DL) and its promising capabilities in capturing non-explicit detail from large datasets have attracted substantial research attention in the field of medical image processing. DL provides grounds for technological development of computer-aided diagnosis and segmentation in radiology and radiation oncology. Amongst the anatomical locations where recent auto-segmentation algorithms have been employed, the pelvis remains one of the most challenging due to large intra- and inter-patient soft-tissue variabilities. This review provides a comprehensive, non-systematic and clinically-oriented overview of 74 DL-based segmentation studies, published between January 2016 and December 2020, for bladder, prostate, cervical and rectal cancers on computed tomography (CT) and magnetic resonance imaging (MRI), highlighting the key findings, challenges and limitations.
Collapse
Affiliation(s)
- Reza Kalantar
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK; (R.K.); (J.M.W.); (C.M.); (S.L.); (D.-M.K.)
| | - Gigin Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou and Chang Gung University, 5 Fuhsing St., Guishan, Taoyuan 333, Taiwan;
| | - Jessica M. Winfield
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK; (R.K.); (J.M.W.); (C.M.); (S.L.); (D.-M.K.)
- Department of Radiology, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Christina Messiou
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK; (R.K.); (J.M.W.); (C.M.); (S.L.); (D.-M.K.)
- Department of Radiology, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Susan Lalondrelle
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK; (R.K.); (J.M.W.); (C.M.); (S.L.); (D.-M.K.)
- Department of Radiology, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Matthew D. Blackledge
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK; (R.K.); (J.M.W.); (C.M.); (S.L.); (D.-M.K.)
| | - Dow-Mu Koh
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK; (R.K.); (J.M.W.); (C.M.); (S.L.); (D.-M.K.)
- Department of Radiology, The Royal Marsden Hospital, London SW3 6JJ, UK
| |
Collapse
|
6
|
Meyer A, Ghosh S, Schindele D, Schostak M, Stober S, Hansen C, Rak M. Uncertainty-aware temporal self-learning (UATS): Semi-supervised learning for segmentation of prostate zones and beyond. Artif Intell Med 2021; 116:102073. [PMID: 34020751 DOI: 10.1016/j.artmed.2021.102073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/09/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Various convolutional neural network (CNN) based concepts have been introduced for the prostate's automatic segmentation and its coarse subdivision into transition zone (TZ) and peripheral zone (PZ). However, when targeting a fine-grained segmentation of TZ, PZ, distal prostatic urethra (DPU) and the anterior fibromuscular stroma (AFS), the task becomes more challenging and has not yet been solved at the level of human performance. One reason might be the insufficient amount of labeled data for supervised training. Therefore, we propose to apply a semi-supervised learning (SSL) technique named uncertainty-aware temporal self-learning (UATS) to overcome the expensive and time-consuming manual ground truth labeling. We combine the SSL techniques temporal ensembling and uncertainty-guided self-learning to benefit from unlabeled images, which are often readily available. Our method significantly outperforms the supervised baseline and obtained a Dice coefficient (DC) of up to 78.9%, 87.3%, 75.3%, 50.6% for TZ, PZ, DPU and AFS, respectively. The obtained results are in the range of human inter-rater performance for all structures. Moreover, we investigate the method's robustness against noise and demonstrate the generalization capability for varying ratios of labeled data and on other challenging tasks, namely the hippocampus and skin lesion segmentation. UATS achieved superiority segmentation quality compared to the supervised baseline, particularly for minimal amounts of labeled data.
Collapse
Affiliation(s)
- Anneke Meyer
- Faculty of Computer Science and Research Campus STIMULATE, University of Magdeburg, Germany.
| | - Suhita Ghosh
- Faculty of Computer Science and Research Campus STIMULATE, University of Magdeburg, Germany
| | - Daniel Schindele
- Clinic of Urology and Pediatric Urology, University Hospital Magdeburg, Germany
| | - Martin Schostak
- Clinic of Urology and Pediatric Urology, University Hospital Magdeburg, Germany
| | - Sebastian Stober
- Faculty of Computer Science and Research Campus STIMULATE, University of Magdeburg, Germany
| | - Christian Hansen
- Faculty of Computer Science and Research Campus STIMULATE, University of Magdeburg, Germany
| | - Marko Rak
- Faculty of Computer Science and Research Campus STIMULATE, University of Magdeburg, Germany
| |
Collapse
|
7
|
3D multi-scale discriminative network with multi-directional edge loss for prostate zonal segmentation in bi-parametric MR images. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.07.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Aldoj N, Biavati F, Michallek F, Stober S, Dewey M. Automatic prostate and prostate zones segmentation of magnetic resonance images using DenseNet-like U-net. Sci Rep 2020; 10:14315. [PMID: 32868836 PMCID: PMC7459118 DOI: 10.1038/s41598-020-71080-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/10/2020] [Indexed: 02/08/2023] Open
Abstract
Magnetic resonance imaging (MRI) provides detailed anatomical images of the prostate and its zones. It has a crucial role for many diagnostic applications. Automatic segmentation such as that of the prostate and prostate zones from MR images facilitates many diagnostic and therapeutic applications. However, the lack of a clear prostate boundary, prostate tissue heterogeneity, and the wide interindividual variety of prostate shapes make this a very challenging task. To address this problem, we propose a new neural network to automatically segment the prostate and its zones. We term this algorithm Dense U-net as it is inspired by the two existing state-of-the-art tools-DenseNet and U-net. We trained the algorithm on 141 patient datasets and tested it on 47 patient datasets using axial T2-weighted images in a four-fold cross-validation fashion. The networks were trained and tested on weakly and accurately annotated masks separately to test the hypothesis that the network can learn even when the labels are not accurate. The network successfully detects the prostate region and segments the gland and its zones. Compared with U-net, the second version of our algorithm, Dense-2 U-net, achieved an average Dice score for the whole prostate of 92.1± 0.8% vs. 90.7 ± 2%, for the central zone of [Formula: see text]% vs. [Formula: see text] %, and for the peripheral zone of 78.1± 2.5% vs. [Formula: see text]%. Our initial results show Dense-2 U-net to be more accurate than state-of-the-art U-net for automatic segmentation of the prostate and prostate zones.
Collapse
Affiliation(s)
- Nader Aldoj
- Department of Radiology, Charité Medical University, Berlin, Germany.
| | - Federico Biavati
- Department of Radiology, Charité Medical University, Berlin, Germany
| | - Florian Michallek
- Department of Radiology, Charité Medical University, Berlin, Germany
| | | | - Marc Dewey
- Department of Radiology, Charité Medical University, Berlin, Germany
| |
Collapse
|
9
|
CNN-Based Prostate Zonal Segmentation on T2-Weighted MR Images: A Cross-Dataset Study. NEURAL APPROACHES TO DYNAMICS OF SIGNAL EXCHANGES 2020. [DOI: 10.1007/978-981-13-8950-4_25] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
USE-Net: Incorporating Squeeze-and-Excitation blocks into U-Net for prostate zonal segmentation of multi-institutional MRI datasets. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.07.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Kuang H, Menon BK, Qiu W. Semi‐automated infarct segmentation from follow‐up noncontrast CT scans in patients with acute ischemic stroke. Med Phys 2019; 46:4037-4045. [DOI: 10.1002/mp.13703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/30/2019] [Accepted: 06/28/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- Hulin Kuang
- Department of Clinical Neurosciences University of Calgary Calgary Alberta T2N 2T9 Canada
| | - Bijoy K. Menon
- Department of Clinical Neurosciences University of Calgary Calgary Alberta T2N 2T9 Canada
| | - Wu Qiu
- Department of Clinical Neurosciences University of Calgary Calgary Alberta T2N 2T9 Canada
| |
Collapse
|
12
|
Zabihollahy F, Schieda N, Krishna Jeyaraj S, Ukwatta E. Automated segmentation of prostate zonal anatomy on T2-weighted (T2W) and apparent diffusion coefficient (ADC) map MR images using U-Nets. Med Phys 2019; 46:3078-3090. [PMID: 31002381 DOI: 10.1002/mp.13550] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Accurate regional segmentation of the prostate boundaries on magnetic resonance (MR) images is a fundamental requirement before automated prostate cancer diagnosis can be achieved. In this paper, we describe a novel methodology to segment prostate whole gland (WG), central gland (CG), and peripheral zone (PZ), where PZ + CG = WG, from T2W and apparent diffusion coefficient (ADC) map prostate MR images. METHODS We designed two similar models each made up of two U-Nets to delineate the WG, CG, and PZ from T2W and ADC map MR images, separately. The U-Net, which is a modified version of a fully convolutional neural network, includes contracting and expanding paths with convolutional, pooling, and upsampling layers. Pooling and upsampling layers help to capture and localize image features with a high spatial consistency. We used a dataset consisting of 225 patients (combining 153 and 72 patients with and without clinically significant prostate cancer) imaged with multiparametric MRI at 3 Tesla. RESULTS AND CONCLUSION Our proposed model for prostate zonal segmentation from T2W was trained and tested using 1154 and 1587 slices of 100 and 125 patients, respectively. Median of Dice similarity coefficient (DSC) on test dataset for prostate WG, CG, and PZ were 95.33 ± 7.77%, 93.75 ± 8.91%, and 86.78 ± 3.72%, respectively. Designed model for regional prostate delineation from ADC map images was trained and validated using 812 and 917 slices from 100 and 125 patients. This model yielded a median DSC of 92.09 ± 8.89%, 89.89 ± 10.69%, and 86.1 ± 9.56% for prostate WG, CG, and PZ on test samples, respectively. Further investigation indicated that the proposed algorithm reported high DSC for prostate WG segmentation from both T2W and ADC map MR images irrespective of WG size. In addition, segmentation accuracy in terms of DSC does not significantly vary among patients with or without significant tumors. SIGNIFICANCE We describe a method for automated prostate zonal segmentation using T2W and ADC map MR images independent of prostate size and the presence or absence of tumor. Our results are important in terms of clinical perspective as fully automated methods for ADC map images, which are considered as one of the most important sequences for prostate cancer detection in the PZ and CG, have not been reported previously.
Collapse
Affiliation(s)
- Fatemeh Zabihollahy
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada
| | - Nicola Schieda
- Department of Radiology, University of Ottawa, Ottawa, ON, Canada
| | | | - Eranga Ukwatta
- School of Engineering, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
13
|
Hambarde P, Talbar SN, Sable N, Mahajan A, Chavan SS, Thakur M. Radiomics for peripheral zone and intra-prostatic urethra segmentation in MR imaging. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2019.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Jensen C, Sørensen KS, Jørgensen CK, Nielsen CW, Høy PC, Langkilde NC, Østergaard LR. Prostate zonal segmentation in 1.5T and 3T T2W MRI using a convolutional neural network. J Med Imaging (Bellingham) 2019; 6:014501. [PMID: 30820440 DOI: 10.1117/1.jmi.6.1.014501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/28/2018] [Indexed: 12/22/2022] Open
Abstract
Zonal segmentation of the prostate gland using magnetic resonance imaging (MRI) is clinically important for prostate cancer (PCa) diagnosis and image-guided treatments. A two-dimensional convolutional neural network (CNN) based on the U-net architecture was evaluated for segmentation of the central gland (CG) and peripheral zone (PZ) using a dataset of 40 patients (34 PCa positive and 6 PCa negative) scanned on two different MRI scanners (1.5T GE and 3T Siemens). Images were cropped around the prostate gland to exclude surrounding tissues, resampled to 0.5 × 0.5 × 0.5 mm voxels and z -score normalized before being propagated through the CNN. Performance was evaluated using the Dice similarity coefficient (DSC) and mean absolute distance (MAD) in a fivefold cross-validation setup. Overall performance showed DSC of 0.794 and 0.692, and MADs of 3.349 and 2.993 for CG and PZ, respectively. Dividing the gland into apex, mid, and base showed higher DSC for the midgland compared to apex and base for both CG and PZ. We found no significant difference in DSC between the two scanners. A larger dataset, preferably with multivendor scanners, is necessary for validation of the proposed algorithm; however, our results are promising and have clinical potential.
Collapse
Affiliation(s)
- Carina Jensen
- Aalborg University Hospital, Department of Medical Physics, Department of Oncology, Aalborg, Denmark
| | | | | | | | - Pia Christine Høy
- Aalborg University, Department of Health Science and Technology, Aalborg, Denmark
| | | | | |
Collapse
|
15
|
Antonelli M, Cardoso MJ, Johnston EW, Appayya MB, Presles B, Modat M, Punwani S, Ourselin S. GAS: A genetic atlas selection strategy in multi-atlas segmentation framework. Med Image Anal 2019; 52:97-108. [PMID: 30476698 DOI: 10.1016/j.media.2018.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 11/15/2022]
Abstract
Multi-Atlas based Segmentation (MAS) algorithms have been successfully applied to many medical image segmentation tasks, but their success relies on a large number of atlases and good image registration performance. Choosing well-registered atlases for label fusion is vital for an accurate segmentation. This choice becomes even more crucial when the segmentation involves organs characterized by a high anatomical and pathological variability. In this paper, we propose a new genetic atlas selection strategy (GAS) that automatically chooses the best subset of atlases to be used for segmenting the target image, on the basis of both image similarity and segmentation overlap. More precisely, the key idea of GAS is that if two images are similar, the performances of an atlas for segmenting each image are similar. Since the ground truth of each atlas is known, GAS first selects a predefined number of similar images to the target, then, for each one of them, finds a near-optimal subset of atlases by means of a genetic algorithm. All these near-optimal subsets are then combined and used to segment the target image. GAS was tested on single-label and multi-label segmentation problems. In the first case, we considered the segmentation of both the whole prostate and of the left ventricle of the heart from magnetic resonance images. Regarding multi-label problems, the zonal segmentation of the prostate into peripheral and transition zone was considered. The results showed that the performance of MAS algorithms statistically improved when GAS is used.
Collapse
Affiliation(s)
- Michela Antonelli
- Centre for Medical Image Computing, University College London, U.K..
| | - M Jorge Cardoso
- Dep. of Medical Physics and Biomedical Engineering, University College London, U.K.; School of Biomedical Engineering and Imaging Science, Kings College London, U.K
| | | | | | - Benoit Presles
- Centre for Medical Image Computing, University College London, U.K
| | - Marc Modat
- Dep. of Medical Physics and Biomedical Engineering, University College London, U.K.; School of Biomedical Engineering and Imaging Science, Kings College London, U.K
| | - Shonit Punwani
- Centre for Medical Imaging, University College London, U.K
| | - Sebastien Ourselin
- Dep. of Medical Physics and Biomedical Engineering, University College London, U.K.; School of Biomedical Engineering and Imaging Science, Kings College London, U.K
| |
Collapse
|
16
|
Zhu Y, Wei R, Gao G, Ding L, Zhang X, Wang X, Zhang J. Fully automatic segmentation on prostate MR images based on cascaded fully convolution network. J Magn Reson Imaging 2018; 49:1149-1156. [PMID: 30350434 DOI: 10.1002/jmri.26337] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/29/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Yi Zhu
- Academy for Advanced Interdisciplinary StudiesPeking University Beijing P.R. China
| | - Rong Wei
- Academy for Advanced Interdisciplinary StudiesPeking University Beijing P.R. China
| | - Ge Gao
- Department of RadiologyPeking University First Hospital Beijing P.R. China
| | - Lian Ding
- Academy for Advanced Interdisciplinary StudiesPeking University Beijing P.R. China
| | - Xiaodong Zhang
- Department of RadiologyPeking University First Hospital Beijing P.R. China
| | - Xiaoying Wang
- Academy for Advanced Interdisciplinary StudiesPeking University Beijing P.R. China
- Department of RadiologyPeking University First Hospital Beijing P.R. China
| | - Jue Zhang
- Academy for Advanced Interdisciplinary StudiesPeking University Beijing P.R. China
- College of EngineeringPeking University Beijing P.R. China
| |
Collapse
|
17
|
Tang Z, Wang M, Song Z. Rotationally resliced 3D prostate segmentation of MR images using Bhattacharyya similarity and active band theory. Phys Med 2018; 54:56-65. [PMID: 30337011 DOI: 10.1016/j.ejmp.2018.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 11/24/2022] Open
Abstract
PURPOSE In this article, we propose a novel, semi-automatic segmentation method to process 3D MR images of the prostate using the Bhattacharyya coefficient and active band theory with the goal of providing technical support for computer-aided diagnosis and surgery of the prostate. METHODS Our method consecutively segments a stack of rotationally resectioned 2D slices of a prostate MR image by assessing the similarity of the shape and intensity distribution in neighboring slices. 2D segmentation is first performed on an initial slice by manually selecting several points on the prostate boundary, after which the segmentation results are propagated consecutively to neighboring slices. A framework of iterative graph cuts is used to optimize the energy function, which contains a global term for the Bhattacharyya coefficient with the help of an auxiliary function. Our method does not require previously segmented data for training or for building statistical models, and manual intervention can be applied flexibly and intuitively, indicating the potential utility of this method in the clinic. RESULTS We tested our method on 3D T2-weighted MR images from the ISBI dataset and PROMISE12 dataset of 129 patients, and the Dice similarity coefficients were 90.34 ± 2.21% and 89.32 ± 3.08%, respectively. The comparison was performed with several state-of-the-art methods, and the results demonstrate that the proposed method is robust and accurate, achieving similar or higher accuracy than other methods without requiring training. CONCLUSION The proposed algorithm for segmenting 3D MR images of the prostate is accurate, robust, and readily applicable to a clinical environment for computer-aided surgery or diagnosis.
Collapse
Affiliation(s)
- Zhixian Tang
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai, China; Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, China
| | - Manning Wang
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai, China; Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, China.
| | - Zhijian Song
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai, China; Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai, China.
| |
Collapse
|
18
|
|
19
|
Qiu W, Chen Y, Kishimoto J, de Ribaupierre S, Chiu B, Fenster A, Menon BK, Yuan J. Longitudinal Analysis of Pre-Term Neonatal Cerebral Ventricles From 3D Ultrasound Images Using Spatial-Temporal Deformable Registration. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:1016-1026. [PMID: 28026756 DOI: 10.1109/tmi.2016.2643635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Preterm neonates with a very low birth weight of less than 1,500 grams are at increased risk for developing intraventricular hemorrhage (IVH), which is a major cause of brain injury in preterm neonates. Quantitative measurements of ventricular dilatation or shrinkage play an important role in monitoring patients and evaluating treatment options. 3D ultrasound (US) has been developed to monitor ventricle volume as a biomarker for ventricular changes. However, ventricle volume as a global indicator does not allow for precise analysis of local ventricular changes, which could be linked to specific neurological problems often seen in the patient population later in life. In this work, a 3D+t spatial-temporal deformable registration approachis proposed, which is applied to the analysis of the detailed local changes of preterm IVH neonatal ventricles from 3D US images. In particular, a novel sequential convex/dual optimization algorithm is introduced to extract the optimal 3D+t spatial-temporal deformable field, which simultaneously optimizes the sequence of 3D deformation fieldswhile enjoying both efficiencyand simplicity in numerics. The developed registration technique was evaluated by comparing two manually extracted ventricle surfaces from the baseline and the registered follow-up images using the metrics of Dice similarity coefficient (DSC), mean absolute surface distance (MAD), and maximum absolute surface distance (MAXD). The performed experiments using 14 patients with 5 time-point images per patient show that the proposed 3D+t registration approach accurately recovered the longitudinal deformation of ventricle surfaces from 3D US images. The proposed approach may be potentially used to analyse the change pattern of cerebral ventricles of IVH patients, their response to different treatment options, and to elucidate the deficiencies that a patient could have later in life. To the best of our knowledge, this paper reports the first study on the longitudinalanalysis of neonatal ventricular system from 3D US images.
Collapse
|
20
|
Fei B, Nieh PT, Master VA, Zhang Y, Osunkoya AO, Schuster DM. Molecular imaging and fusion targeted biopsy of the prostate. Clin Transl Imaging 2017; 5:29-43. [PMID: 28971090 PMCID: PMC5621648 DOI: 10.1007/s40336-016-0214-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/03/2016] [Indexed: 01/08/2023]
Abstract
PURPOSE This paper provides a review on molecular imaging with positron emission tomography (PET) and magnetic resonance imaging (MRI) for prostate cancer detection and its applications in fusion targeted biopsy of the prostate. METHODS Literature search was performed through the PubMed database using the keywords "prostate cancer", "MRI/ultrasound fusion", "molecular imaging", and "targeted biopsy". Estimates in autopsy studies indicate that 50% of men older than 50 years of age have prostate cancer. Systematic transrectal ultrasound (TRUS) guided prostate biopsy is considered the standard method for prostate cancer detection and has a significant sampling error and a low sensitivity. Molecular imaging technology and new biopsy approaches are emerging to improve the detection of prostate cancer. RESULTS Molecular imaging with PET and MRI shows promising results in the early detection of prostate cancer. MRI/TRUS fusion targeted biopsy has become a new clinical standard for the diagnosis of prostate cancer. PET molecular image-directed, three-dimensional ultrasound-guided biopsy is a new technology that has great potential for improving prostate cancer detection rate and for distinguishing aggressive prostate cancer from indolent disease. CONCLUSION Molecular imaging and fusion targeted biopsy are active research areas in prostate cancer research.
Collapse
Affiliation(s)
- Baowei Fei
- Department of Radiology and Imaging Sciences, Emory University School of
Medicine, 1841 Clifton Road NE, Atlanta, GA 30329, USA
- Department of Biomedical Engineering, Emory University and Georgia Institute
of Technology, Atlanta, GA 30329, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30329, USA
| | - Peter T. Nieh
- Department of Urology, Emory University School of Medicine, Atlanta, GA
30322, USA
| | - Viraj A. Master
- Department of Urology, Emory University School of Medicine, Atlanta, GA
30322, USA
| | - Yun Zhang
- Department of Radiology and Imaging Sciences, Emory University School of
Medicine, 1841 Clifton Road NE, Atlanta, GA 30329, USA
| | - Adeboye O. Osunkoya
- Winship Cancer Institute of Emory University, Atlanta, GA 30329, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA
30322, USA
- Department of Pathology and Laboratory Medicine, Emory University School of
Medicine, Atlanta, GA 30322, USA
- Department of Pathology, Veterans Affairs Medical Center, Decatur, GA 30033,
USA
| | - David M. Schuster
- Department of Radiology and Imaging Sciences, Emory University School of
Medicine, 1841 Clifton Road NE, Atlanta, GA 30329, USA
| |
Collapse
|
21
|
Qiu W, Chen Y, Kishimoto J, de Ribaupierre S, Chiu B, Fenster A, Yuan J. Automatic segmentation approach to extracting neonatal cerebral ventricles from 3D ultrasound images. Med Image Anal 2017; 35:181-191. [DOI: 10.1016/j.media.2016.06.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 01/26/2023]
|
22
|
Liu L, Tian Z, Zhang Z, Fei B. Computer-aided Detection of Prostate Cancer with MRI: Technology and Applications. Acad Radiol 2016; 23:1024-46. [PMID: 27133005 PMCID: PMC5355004 DOI: 10.1016/j.acra.2016.03.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 01/10/2023]
Abstract
One in six men will develop prostate cancer in his lifetime. Early detection and accurate diagnosis of the disease can improve cancer survival and reduce treatment costs. Recently, imaging of prostate cancer has greatly advanced since the introduction of multiparametric magnetic resonance imaging (mp-MRI). Mp-MRI consists of T2-weighted sequences combined with functional sequences including dynamic contrast-enhanced MRI, diffusion-weighted MRI, and magnetic resonance spectroscopy imaging. Because of the big data and variations in imaging sequences, detection can be affected by multiple factors such as observer variability and visibility and complexity of the lesions. To improve quantitative assessment of the disease, various computer-aided detection systems have been designed to help radiologists in their clinical practice. This review paper presents an overview of literatures on computer-aided detection of prostate cancer with mp-MRI, which include the technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application.
Collapse
Affiliation(s)
- Lizhi Liu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1841 Clifton Road NE, Atlanta, GA 30329; Center of Medical Imaging and Image-guided Therapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Zhiqiang Tian
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1841 Clifton Road NE, Atlanta, GA 30329
| | - Zhenfeng Zhang
- Center of Medical Imaging and Image-guided Therapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Baowei Fei
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1841 Clifton Road NE, Atlanta, GA 30329; Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 1841 Clifton Road NE, Atlanta, Georgia 30329; Winship Cancer Institute of Emory University, 1841 Clifton Road NE, Atlanta, Georgia 30329.
| |
Collapse
|
23
|
Debats OA, Meijs M, Litjens GJS, Huisman HJ. Automated multistructure atlas-assisted detection of lymph nodes using pelvic MR lymphography in prostate cancer patients. Med Phys 2016; 43:3132-3142. [PMID: 27277059 DOI: 10.1118/1.4951726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To investigate whether atlas-based anatomical information can improve a fully automated lymph node detection system for pelvic MR lymphography (MRL) images of patients with prostate cancer. METHODS Their data set contained MRL images of 240 prostate cancer patients who had an MRL as part of their clinical work-up between January 2008 and April 2010, with ferumoxtran-10 as contrast agent. Each MRL consisted of at least a 3D T1-weighted sequence, a 3D T2*-weighted sequence, and a FLASH-3D sequence. The reference standard was created by two expert readers, reading in consensus, who annotated and interactively segmented the lymph nodes in all MRL studies. A total of 5089 lymph nodes were annotated. A fully automated computer-aided detection (CAD) system was developed to find lymph nodes in the MRL studies. The system incorporates voxel features based on image intensities, the Hessian matrix, and spatial position. After feature calculation, a GentleBoost-classifier in combination with local maxima detection was used to identify lymph node candidates. Multiatlas based anatomical information was added to the CAD system to assess whether this could improve performance. Using histogram analysis and free-receiver operating characteristic analysis, this was compared to a strategy where relative position features were used to encode anatomical information. RESULTS Adding atlas-based anatomical information to the CAD system reduced false positive detections both visually and quantitatively. Median likelihood values of false positives decreased significantly in all annotated anatomical structures. The sensitivity increased from 53% to 70% at 10 false positives per lymph node. CONCLUSIONS Adding anatomical information through atlas registration significantly improves an automated lymph node detection system for MRL images.
Collapse
Affiliation(s)
- Oscar A Debats
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Midas Meijs
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Geert J S Litjens
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Henkjan J Huisman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| |
Collapse
|
24
|
Tian Z, Liu L, Zhang Z, Fei B. Superpixel-Based Segmentation for 3D Prostate MR Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:791-801. [PMID: 26540678 PMCID: PMC4831070 DOI: 10.1109/tmi.2015.2496296] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This paper proposes a method for segmenting the prostate on magnetic resonance (MR) images. A superpixel-based 3D graph cut algorithm is proposed to obtain the prostate surface. Instead of pixels, superpixels are considered as the basic processing units to construct a 3D superpixel-based graph. The superpixels are labeled as the prostate or background by minimizing an energy function using graph cut based on the 3D superpixel-based graph. To construct the energy function, we proposed a superpixel-based shape data term, an appearance data term, and two superpixel-based smoothness terms. The proposed superpixel-based terms provide the effectiveness and robustness for the segmentation of the prostate. The segmentation result of graph cuts is used as an initialization of a 3D active contour model to overcome the drawback of the graph cut. The result of 3D active contour model is then used to update the shape model and appearance model of the graph cut. Iterations of the 3D graph cut and 3D active contour model have the ability to jump out of local minima and obtain a smooth prostate surface. On our 43 MR volumes, the proposed method yields a mean Dice ratio of 89.3 ±1.9%. On PROMISE12 test data set, our method was ranked at the second place; the mean Dice ratio and standard deviation is 87.0±3.2%. The experimental results show that the proposed method outperforms several state-of-the-art prostate MRI segmentation methods.
Collapse
Affiliation(s)
- Zhiqiang Tian
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30329 USA
| | - Lizhi Liu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30329 USA. Center for Medical Imaging & Image-guided Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhenfeng Zhang
- Center for Medical Imaging & Image-guided Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Baowei Fei
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, also with Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30329 USA. website: www.feilab.org
| |
Collapse
|
25
|
Derraz F, Forzy G, Delebarre A, Taleb-Ahmed A, Oussalah M, Peyrodie L, Verclytte S. Prostate contours delineation using interactive directional active contours model and parametric shape prior model. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2015; 31. [PMID: 26009857 DOI: 10.1002/cnm.2726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 05/17/2015] [Accepted: 05/17/2015] [Indexed: 06/04/2023]
Abstract
Prostate contours delineation on Magnetic Resonance (MR) images is a challenging and important task in medical imaging with applications of guiding biopsy, surgery and therapy. While a fully automated method is highly desired for this application, it can be a very difficult task due to the structure and surrounding tissues of the prostate gland. Traditional active contours-based delineation algorithms are typically quite successful for piecewise constant images. Nevertheless, when MR images have diffuse edges or multiple similar objects (e.g. bladder close to prostate) within close proximity, such approaches have proven to be unsuccessful. In order to mitigate these problems, we proposed a new framework for bi-stage contours delineation algorithm based on directional active contours (DAC) incorporating prior knowledge of the prostate shape. We first explicitly addressed the prostate contour delineation problem based on fast globally DAC that incorporates both statistical and parametric shape prior model. In doing so, we were able to exploit the global aspects of contour delineation problem by incorporating a user feedback in contours delineation process where it is shown that only a small amount of user input can sometimes resolve ambiguous scenarios raised by DAC. In addition, once the prostate contours have been delineated, a cost functional is designed to incorporate both user feedback interaction and the parametric shape prior model. Using data from publicly available prostate MR datasets, which includes several challenging clinical datasets, we highlighted the effectiveness and the capability of the proposed algorithm. Besides, the algorithm has been compared with several state-of-the-art methods.
Collapse
Affiliation(s)
- Foued Derraz
- Telecommunications Laboratory, Technology Faculty, Abou Bekr Belkaïd University, Tlemcen, 13000, Algeria
- Université Nord de France, F-59000, Lille, France
- Unité de Traitement de Signaux Biomédicaux, Faculté de médecine et maïeutique, Lille, France
- LAMIH UMR CNRS 8201, Le Mont Houy, Université de Valenciennes et Cambresis, 59313, Valenciennes, France
| | - Gérard Forzy
- Unité de Traitement de Signaux Biomédicaux, Faculté de médecine et maïeutique, Lille, France
- Groupement des Hopitaux de l'́Institut Catholique de Lille, France
| | - Arnaud Delebarre
- Groupement des Hopitaux de l'́Institut Catholique de Lille, France
| | - Abdelmalik Taleb-Ahmed
- Université Nord de France, F-59000, Lille, France
- LAMIH UMR CNRS 8201, Le Mont Houy, Université de Valenciennes et Cambresis, 59313, Valenciennes, France
| | - Mourad Oussalah
- School of Electronics, Electrical and Computer Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Laurent Peyrodie
- Université Nord de France, F-59000, Lille, France
- Hautes Etudes dÍngénieur, 13 rue de Toul, 59000, Lille, France
| | | |
Collapse
|
26
|
Qiu W, Yuan J, Rajchl M, Kishimoto J, Chen Y, de Ribaupierre S, Chiu B, Fenster A. 3D MR ventricle segmentation in pre-term infants with post-hemorrhagic ventricle dilatation (PHVD) using multi-phase geodesic level-sets. Neuroimage 2015; 118:13-25. [DOI: 10.1016/j.neuroimage.2015.05.099] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 11/15/2022] Open
|
27
|
Tian Z, Liu L, Fei B. A supervoxel-based segmentation method for prostate MR images. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2015; 9413:941318. [PMID: 26848206 PMCID: PMC4736748 DOI: 10.1117/12.2082255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Accurate segmentation of the prostate has many applications in prostate cancer diagnosis and therapy. In this paper, we propose a "Supervoxel" based method for prostate segmentation. The prostate segmentation problem is considered as assigning a label to each supervoxel. An energy function with data and smoothness terms is used to model the labeling process. The data term estimates the likelihood of a supervoxel belongs to the prostate according to a shape feature. The geometric relationship between two neighboring supervoxels is used to construct a smoothness term. A three-dimensional (3D) graph cut method is used to minimize the energy function in order to segment the prostate. A 3D level set is then used to get a smooth surface based on the output of the graph cut. The performance of the proposed segmentation algorithm was evaluated with respect to the manual segmentation ground truth. The experimental results on 12 prostate volumes showed that the proposed algorithm yields a mean Dice similarity coefficient of 86.9%±3.2%. The segmentation method can be used not only for the prostate but also for other organs.
Collapse
Affiliation(s)
- Zhiqiang Tian
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA
| | - LiZhi Liu
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA
| | - Baowei Fei
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology
| |
Collapse
|
28
|
Qiu W, Yuan J, Kishimoto J, McLeod J, Chen Y, de Ribaupierre S, Fenster A. User-guided segmentation of preterm neonate ventricular system from 3-D ultrasound images using convex optimization. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:542-556. [PMID: 25542486 DOI: 10.1016/j.ultrasmedbio.2014.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/05/2014] [Accepted: 09/11/2014] [Indexed: 06/04/2023]
Abstract
A three-dimensional (3-D) ultrasound (US) system has been developed to monitor the intracranial ventricular system of preterm neonates with intraventricular hemorrhage (IVH) and the resultant dilation of the ventricles (ventriculomegaly). To measure ventricular volume from 3-D US images, a semi-automatic convex optimization-based approach is proposed for segmentation of the cerebral ventricular system in preterm neonates with IVH from 3-D US images. The proposed semi-automatic segmentation method makes use of the convex optimization technique supervised by user-initialized information. Experiments using 58 patient 3-D US images reveal that our proposed approach yielded a mean Dice similarity coefficient of 78.2% compared with the surfaces that were manually contoured, suggesting good agreement between these two segmentations. Additional metrics, the mean absolute distance of 0.65 mm and the maximum absolute distance of 3.2 mm, indicated small distance errors for a voxel spacing of 0.22 × 0.22 × 0.22 mm(3). The Pearson correlation coefficient (r = 0.97, p < 0.001) indicated a significant correlation of algorithm-generated ventricular system volume (VSV) with the manually generated VSV. The calculated minimal detectable difference in ventricular volume change indicated that the proposed segmentation approach with 3-D US images is capable of detecting a VSV difference of 6.5 cm(3) with 95% confidence, suggesting that this approach might be used for monitoring IVH patients' ventricular changes using 3-D US imaging. The mean segmentation times of the graphics processing unit (GPU)- and central processing unit-implemented algorithms were 50 ± 2 and 205 ± 5 s for one 3-D US image, respectively, in addition to 120 ± 10 s for initialization, less than the approximately 35 min required by manual segmentation. In addition, repeatability experiments indicated that the intra-observer variability ranges from 6.5% to 7.5%, and the inter-observer variability is 8.5% in terms of the coefficient of variation of the Dice similarity coefficient. The intra-class correlation coefficient for ventricular system volume measurements for each independent observer ranged from 0.988 to 0.996 and was 0.945 for three different observers. The coefficient of variation and intra-class correlation coefficient revealed that the intra- and inter-observer variability of the proposed approach introduced by the user initialization was small, indicating good reproducibility, independent of different users.
Collapse
Affiliation(s)
- Wu Qiu
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
| | - Jing Yuan
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Jessica Kishimoto
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Jonathan McLeod
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Yimin Chen
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
| | - Sandrine de Ribaupierre
- Neurosurgery, Department of Clinical Neurologic Sciences, University of Western Ontario, London, Ontario, Canada
| | - Aaron Fenster
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
29
|
Abstract
An efficient and accurate segmentation of 3D transrectal ultrasound (TRUS) images plays an important role in the planning and treatment of the practical 3D TRUS guided prostate biopsy. However, a meaningful segmentation of 3D TRUS images tends to suffer from US speckles, shadowing and missing edges etc, which make it a challenging task to delineate the correct prostate boundaries. In this paper, we propose a novel convex optimization based approach to extracting the prostate surface from the given 3D TRUS image, while preserving a new global volume-size prior. We, especially, study the proposed combinatorial optimization problem by convex relaxation and introduce its dual continuous max-flow formulation with the new bounded flow conservation constraint, which results in an efficient numerical solver implemented on GPUs. Experimental results using 12 patient 3D TRUS images show that the proposed approach while preserving the volume-size prior yielded a mean DSC of 89.5% +/- 2.4%, a MAD of 1.4 +/- 0.6 mm, a MAXD of 5.2 +/- 3.2 mm, and a VD of 7.5% +/- 6.2% in - 1 minute, deomonstrating the advantages of both accuracy and efficiency. In addition, the low standard deviation of the segmentation accuracy shows a good reliability of the proposed approach.
Collapse
|