1
|
Xu Y, Quan R, Xu W, Huang Y, Chen X, Liu F. Advances in Medical Image Segmentation: A Comprehensive Review of Traditional, Deep Learning and Hybrid Approaches. Bioengineering (Basel) 2024; 11:1034. [PMID: 39451409 PMCID: PMC11505408 DOI: 10.3390/bioengineering11101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Medical image segmentation plays a critical role in accurate diagnosis and treatment planning, enabling precise analysis across a wide range of clinical tasks. This review begins by offering a comprehensive overview of traditional segmentation techniques, including thresholding, edge-based methods, region-based approaches, clustering, and graph-based segmentation. While these methods are computationally efficient and interpretable, they often face significant challenges when applied to complex, noisy, or variable medical images. The central focus of this review is the transformative impact of deep learning on medical image segmentation. We delve into prominent deep learning architectures such as Convolutional Neural Networks (CNNs), Fully Convolutional Networks (FCNs), U-Net, Recurrent Neural Networks (RNNs), Adversarial Networks (GANs), and Autoencoders (AEs). Each architecture is analyzed in terms of its structural foundation and specific application to medical image segmentation, illustrating how these models have enhanced segmentation accuracy across various clinical contexts. Finally, the review examines the integration of deep learning with traditional segmentation methods, addressing the limitations of both approaches. These hybrid strategies offer improved segmentation performance, particularly in challenging scenarios involving weak edges, noise, or inconsistent intensities. By synthesizing recent advancements, this review provides a detailed resource for researchers and practitioners, offering valuable insights into the current landscape and future directions of medical image segmentation.
Collapse
Affiliation(s)
- Yan Xu
- School of Electrical, Electronic and Mechanical Engineering, University of Bristol, Bristol BS8 1QU, UK; (Y.X.); (R.Q.); (W.X.)
| | - Rixiang Quan
- School of Electrical, Electronic and Mechanical Engineering, University of Bristol, Bristol BS8 1QU, UK; (Y.X.); (R.Q.); (W.X.)
| | - Weiting Xu
- School of Electrical, Electronic and Mechanical Engineering, University of Bristol, Bristol BS8 1QU, UK; (Y.X.); (R.Q.); (W.X.)
| | - Yi Huang
- Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK;
| | - Xiaolong Chen
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Fengyuan Liu
- School of Electrical, Electronic and Mechanical Engineering, University of Bristol, Bristol BS8 1QU, UK; (Y.X.); (R.Q.); (W.X.)
| |
Collapse
|
2
|
Lin FF, Chen Q, Wu QY, Li SJ, Zhu YB, Tang Y, Xue YJ, Luo JW, Li ZA, Chen HY. The value of computed tomography angiography for evaluation of left atrial enlargement in patients with persistent atrial fibrillation. BMC Cardiovasc Disord 2024; 24:502. [PMID: 39300362 DOI: 10.1186/s12872-024-04187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The post-processing technology of CTA offers significant advantages in evaluating left atrial enlargement (LAE) in patients with persistent atrial fibrillation (PAF). This study aims to identify parameters for rapidly and accurately diagnosing LAE in patients with PAF using CT cross-sections. METHODS Left atrial pulmonary venous (PV) CT was performed to 300 PAF patients with dual-source CT, and left atrial volume (LAV), left atrial anteroposterior diameter (LAD1), left atrial transverse diameter (LAD2), and left atrial area (LAA) were measured in the ventricular end systolic (ES) and middle diastolic (MD). LA index (LAI) = LA parameter/body surface area (BSA). Left atrial volume index (LAVIES) > 77.7 ml/m2 was used as the reference standard for the LAE diagnosis. RESULTS 227 patients were enrolled in the group, 101 (44.5%) of whom had LAE. LAVES and LAVMD (r = 0.983), LAVIES and LAVIMD (r = 0.984), LAAES and LAVIES (r = 0.817), LAAMD and LAVIES (r = 0.814) had strong positive correlations. The area under curve (AUC) showed that all measured parameters were suitable for diagnosing LAE, and the diagnostic efficacy was compared as follows: LAA/LAAI> LAD> the relative value index of LAD, LAD2> LAD1. LAA and LAAI demonstrated comparable diagnostic efficacy, with LAA being more readily available than LAAI. CONCLUSIONS The axial LAA measured by CTA can be served as a parameter for the rapid and accurate diagnosis of LAE in patients with PAF.
Collapse
Affiliation(s)
- Fang-Fang Lin
- Department of Radiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, China
- Department of Radiology, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Qian Chen
- Department of Radiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Qiu-Yan Wu
- Department of Radiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Shi-Jie Li
- Department of Radiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Yao-Bin Zhu
- Department of Traditional Chinese Medicine, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yi Tang
- Department of Radiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Yun-Jing Xue
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Jie-Wei Luo
- Department of Radiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, China.
| | - Zuo-An Li
- Department of Radiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, China.
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Institute of Emergency Medicine, Fujian Emergency Medical Center, Fuzhou, 350001, China.
| | - Hong-Yi Chen
- Department of Radiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, China.
- Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Institute of Emergency Medicine, Fujian Emergency Medical Center, Fuzhou, 350001, China.
| |
Collapse
|
3
|
Aromiwura AA, Cavalcante JL, Kwong RY, Ghazipour A, Amini A, Bax J, Raman S, Pontone G, Kalra DK. The role of artificial intelligence in cardiovascular magnetic resonance imaging. Prog Cardiovasc Dis 2024; 86:13-25. [PMID: 38925255 DOI: 10.1016/j.pcad.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Cardiovascular magnetic resonance (CMR) imaging is the gold standard test for myocardial tissue characterization and chamber volumetric and functional evaluation. However, manual CMR analysis can be time-consuming and is subject to intra- and inter-observer variability. Artificial intelligence (AI) is a field that permits automated task performance through the identification of high-level and complex data relationships. In this review, we review the rapidly growing role of AI in CMR, including image acquisition, sequence prescription, artifact detection, reconstruction, segmentation, and data reporting and analysis including quantification of volumes, function, myocardial infarction (MI) and scar detection, and prediction of outcomes. We conclude with a discussion of the emerging challenges to widespread adoption and solutions that will allow for successful, broader uptake of this powerful technology.
Collapse
Affiliation(s)
| | | | - Raymond Y Kwong
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Aryan Ghazipour
- Medical Imaging Laboratory, Department of Electrical and Computer Engineering, University of Louisville, Louisville, KY, USA
| | - Amir Amini
- Medical Imaging Laboratory, Department of Electrical and Computer Engineering, University of Louisville, Louisville, KY, USA
| | - Jeroen Bax
- Department of Cardiology, Leiden University, Leiden, the Netherlands
| | - Subha Raman
- Division of Cardiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gianluca Pontone
- Department of Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, University of Milan, Milan, Italy
| | - Dinesh K Kalra
- Division of Cardiology, Department of Medicine, University of Louisville, Louisville, KY, USA; Center for Artificial Intelligence in Radiological Sciences (CAIRS), Department of Radiology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
4
|
Firouznia M, Henningsson M, Carlhäll CJ. FK-means: automatic atrial fibrosis segmentation using fractal-guided K-means clustering with Voronoi-clipping feature extraction of anatomical structures. Interface Focus 2023; 13:20230033. [PMID: 38106915 PMCID: PMC10722213 DOI: 10.1098/rsfs.2023.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023] Open
Abstract
Assessment of left atrial (LA) fibrosis from late gadolinium enhancement (LGE) magnetic resonance imaging (MRI) adds to the management of patients with atrial fibrillation. However, accurate assessment of fibrosis in the LA wall remains challenging. Excluding anatomical structures in the LA proximity using clipping techniques can reduce misclassification of LA fibrosis. A novel FK-means approach for combined automatic clipping and automatic fibrosis segmentation was developed. This approach combines a feature-based Voronoi diagram with a hierarchical 3D K-means fractal-based method. The proposed automatic Voronoi clipping method was applied on LGE-MRI data and achieved a Dice score of 0.75, similar to the score obtained by a deep learning method (3D UNet) for clipping (0.74). The automatic fibrosis segmentation method, which uses the Voronoi clipping method, achieved a Dice score of 0.76. This outperformed a 3D UNet method for clipping and fibrosis classification, which had a Dice score of 0.69. Moreover, the proposed automatic fibrosis segmentation method achieved a Dice score of 0.90, using manual clipping of anatomical structures. The findings suggest that the automatic FK-means analysis approach enables reliable LA fibrosis segmentation and that clipping of anatomical structures in the atrial proximity can add to the assessment of atrial fibrosis.
Collapse
Affiliation(s)
- Marjan Firouznia
- Unit of Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Markus Henningsson
- Unit of Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Carl-Johan Carlhäll
- Unit of Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Clinical Psychology in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
5
|
Wan K, Li L, Jia D, Gao S, Qian W, Wu Y, Lin H, Mu X, Gao X, Wang S, Wu F, Zhuang X. Multi-target landmark detection with incomplete images via reinforcement learning and shape prior embedding. Med Image Anal 2023; 89:102875. [PMID: 37441881 DOI: 10.1016/j.media.2023.102875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/05/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Medical images are generally acquired with limited field-of-view (FOV), which could lead to incomplete regions of interest (ROI), and thus impose a great challenge on medical image analysis. This is particularly evident for the learning-based multi-target landmark detection, where algorithms could be misleading to learn primarily the variation of background due to the varying FOV, failing the detection of targets. Based on learning a navigation policy, instead of predicting targets directly, reinforcement learning (RL)-based methods have the potential to tackle this challenge in an efficient manner. Inspired by this, in this work we propose a multi-agent RL framework for simultaneous multi-target landmark detection. This framework is aimed to learn from incomplete or (and) complete images to form an implicit knowledge of global structure, which is consolidated during the training stage for the detection of targets from either complete or incomplete test images. To further explicitly exploit the global structural information from incomplete images, we propose to embed a shape model into the RL process. With this prior knowledge, the proposed RL model can not only localize dozens of targets simultaneously, but also work effectively and robustly in the presence of incomplete images. We validated the applicability and efficacy of the proposed method on various multi-target detection tasks with incomplete images from practical clinics, using body dual-energy X-ray absorptiometry (DXA), cardiac MRI and head CT datasets. Results showed that our method could predict whole set of landmarks with incomplete training images up to 80% missing proportion (average distance error 2.29 cm on body DXA), and could detect unseen landmarks in regions with missing image information outside FOV of target images (average distance error 6.84 mm on 3D half-head CT). Our code will be released via https://zmiclab.github.io/projects.html.
Collapse
Affiliation(s)
- Kaiwen Wan
- School of Data Science, Fudan University, Shanghai, 200433, China
| | - Lei Li
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Dengqiang Jia
- School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China; Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Shangqi Gao
- School of Data Science, Fudan University, Shanghai, 200433, China
| | - Wei Qian
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yingzhi Wu
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Huandong Lin
- Department of Endocrinology and Metabolism, Zhong Shan Hospital, Fudan University, 200032 Shanghai, China
| | - Xiongzheng Mu
- Department of Plastic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhong Shan Hospital, Fudan University, 200032 Shanghai, China
| | - Sijia Wang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fuping Wu
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Xiahai Zhuang
- School of Data Science, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
6
|
Li L, Ding W, Huang L, Zhuang X, Grau V. Multi-modality cardiac image computing: A survey. Med Image Anal 2023; 88:102869. [PMID: 37384950 DOI: 10.1016/j.media.2023.102869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/01/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023]
Abstract
Multi-modality cardiac imaging plays a key role in the management of patients with cardiovascular diseases. It allows a combination of complementary anatomical, morphological and functional information, increases diagnosis accuracy, and improves the efficacy of cardiovascular interventions and clinical outcomes. Fully-automated processing and quantitative analysis of multi-modality cardiac images could have a direct impact on clinical research and evidence-based patient management. However, these require overcoming significant challenges including inter-modality misalignment and finding optimal methods to integrate information from different modalities. This paper aims to provide a comprehensive review of multi-modality imaging in cardiology, the computing methods, the validation strategies, the related clinical workflows and future perspectives. For the computing methodologies, we have a favored focus on the three tasks, i.e., registration, fusion and segmentation, which generally involve multi-modality imaging data, either combining information from different modalities or transferring information across modalities. The review highlights that multi-modality cardiac imaging data has the potential of wide applicability in the clinic, such as trans-aortic valve implantation guidance, myocardial viability assessment, and catheter ablation therapy and its patient selection. Nevertheless, many challenges remain unsolved, such as missing modality, modality selection, combination of imaging and non-imaging data, and uniform analysis and representation of different modalities. There is also work to do in defining how the well-developed techniques fit in clinical workflows and how much additional and relevant information they introduce. These problems are likely to continue to be an active field of research and the questions to be answered in the future.
Collapse
Affiliation(s)
- Lei Li
- Department of Engineering Science, University of Oxford, Oxford, UK.
| | - Wangbin Ding
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
| | - Liqin Huang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
| | - Xiahai Zhuang
- School of Data Science, Fudan University, Shanghai, China
| | - Vicente Grau
- Department of Engineering Science, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Hochhegger B, Pasini R, Roncally Carvalho A, Rodrigues R, Altmayer S, Kayat Bittencourt L, Marchiori E, Forghani R. Artificial Intelligence for Cardiothoracic Imaging: Overview of Current and Emerging Applications. Semin Roentgenol 2023; 58:184-195. [PMID: 37087139 DOI: 10.1053/j.ro.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 03/07/2023]
Abstract
Artificial intelligence algorithms can learn by assimilating information from large datasets in order to decipher complex associations, identify previously undiscovered pathophysiological states, and construct prediction models. There has been tremendous interest and increased incorporation of artificial intelligence into various industries, including healthcare. As a result, there has been an exponential rise in the number of research articles and industry participants producing models intended for a variety of applications in medical imaging, which can be challenging to navigate for radiologists. In thoracic imaging, multiple applications are being evaluated for chest radiography and computed tomography and include applications for lung nodule evaluation and cancer imaging, quantifying diffuse lung disorders, and cardiac imaging, to name a few. This review aims to provide an overview of current clinical AI models, focusing on the most common clinical applications of AI in cardiothoracic imaging.
Collapse
|
8
|
Artificial Intelligence in Cardiovascular CT and MR Imaging. Life (Basel) 2023; 13:life13020507. [PMID: 36836864 PMCID: PMC9968221 DOI: 10.3390/life13020507] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
The technological development of Artificial Intelligence (AI) has grown rapidly in recent years. The applications of AI to cardiovascular imaging are various and could improve the radiologists' workflow, speeding up acquisition and post-processing time, increasing image quality and diagnostic accuracy. Several studies have already proved AI applications in Coronary Computed Tomography Angiography and Cardiac Magnetic Resonance, including automatic evaluation of calcium score, quantification of coronary stenosis and plaque analysis, or the automatic quantification of heart volumes and myocardial tissue characterization. The aim of this review is to summarize the latest advances in the field of AI applied to cardiovascular CT and MR imaging.
Collapse
|
9
|
Qiu J, Li L, Wang S, Zhang K, Chen Y, Yang S, Zhuang X. MyoPS-Net: Myocardial pathology segmentation with flexible combination of multi-sequence CMR images. Med Image Anal 2023; 84:102694. [PMID: 36495601 DOI: 10.1016/j.media.2022.102694] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/05/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
Myocardial pathology segmentation (MyoPS) can be a prerequisite for the accurate diagnosis and treatment planning of myocardial infarction. However, achieving this segmentation is challenging, mainly due to the inadequate and indistinct information from an image. In this work, we develop an end-to-end deep neural network, referred to as MyoPS-Net, to flexibly combine five-sequence cardiac magnetic resonance (CMR) images for MyoPS. To extract precise and adequate information, we design an effective yet flexible architecture to extract and fuse cross-modal features. This architecture can tackle different numbers of CMR images and complex combinations of modalities, with output branches targeting specific pathologies. To impose anatomical knowledge on the segmentation results, we first propose a module to regularize myocardium consistency and localize the pathologies, and then introduce an inclusiveness loss to utilize relations between myocardial scars and edema. We evaluated the proposed MyoPS-Net on two datasets, i.e., a private one consisting of 50 paired multi-sequence CMR images and a public one from MICCAI2020 MyoPS Challenge. Experimental results showed that MyoPS-Net could achieve state-of-the-art performance in various scenarios. Note that in practical clinics, the subjects may not have full sequences, such as missing LGE CMR or mapping CMR scans. We therefore conducted extensive experiments to investigate the performance of the proposed method in dealing with such complex combinations of different CMR sequences. Results proved the superiority and generalizability of MyoPS-Net, and more importantly, indicated a practical clinical application. The code has been released via https://github.com/QJYBall/MyoPS-Net.
Collapse
Affiliation(s)
- Junyi Qiu
- School of Data Science, Fudan University, Shanghai, China
| | - Lei Li
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Sihan Wang
- School of Data Science, Fudan University, Shanghai, China
| | - Ke Zhang
- School of Data Science, Fudan University, Shanghai, China
| | - Yinyin Chen
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Medical Imaging, Shanghai Medical School, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, China
| | - Shan Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Medical Imaging, Shanghai Medical School, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, China
| | - Xiahai Zhuang
- School of Data Science, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Xu W, Shi J, Lin Y, Liu C, Xie W, Liu H, Huang S, Zhu D, Su L, Huang Y, Ye Y, Huang J. Deep learning-based image segmentation model using an MRI-based convolutional neural network for physiological evaluation of the heart. Front Physiol 2023; 14:1148717. [PMID: 37025385 PMCID: PMC10070825 DOI: 10.3389/fphys.2023.1148717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/22/2023] [Indexed: 04/08/2023] Open
Abstract
Background and Objective: Cardiovascular disease is a high-fatality health issue. Accurate measurement of cardiovascular function depends on precise segmentation of physiological structure and accurate evaluation of functional parameters. Structural segmentation of heart images and calculation of the volume of different ventricular activity cycles form the basis for quantitative analysis of physiological function and can provide the necessary support for clinical physiological diagnosis, as well as the analysis of various cardiac diseases. Therefore, it is important to develop an efficient heart segmentation algorithm. Methods: A total of 275 nuclear magnetic resonance imaging (MRI) heart scans were collected, analyzed, and preprocessed from Huaqiao University Affiliated Strait Hospital, and the data were used in our improved deep learning model, which was designed based on the U-net network. The training set included 80% of the images, and the remaining 20% was the test set. Based on five time phases from end-diastole (ED) to end-systole (ES), the segmentation findings showed that it is possible to achieve improved segmentation accuracy and computational complexity by segmenting the left ventricle (LV), right ventricle (RV), and myocardium (myo). Results: We improved the Dice index of the LV to 0.965 and 0.921, and the Hausdorff index decreased to 5.4 and 6.9 in the ED and ES phases, respectively; RV Dice increased to 0.938 and 0.860, and the Hausdorff index decreased to 11.7 and 12.6 in the ED and ES, respectively; myo Dice increased to 0.889 and 0.901, and the Hausdorff index decreased to 8.3 and 9.2 in the ED and ES, respectively. Conclusion: The model obtained in the final experiment provided more accurate segmentation of the left and right ventricles, as well as the myocardium, from cardiac MRI. The data from this model facilitate the prediction of cardiovascular disease in real-time, thereby providing potential clinical utility.
Collapse
Affiliation(s)
- Wanni Xu
- Department of Mathematics and Computer Science, Quanzhou Normal University, Quanzhou, China
- Fujian Provincial Key Laboratory of Data Intensive Computing, Quanzhou, China
- Key Laboratory of Intelligent Computing and Information Processing, Fujian Province University, Quanzhou, China
| | - Jianshe Shi
- Department of General Surgery, Huaqiao University Affiliated Strait Hospital, Quanzhou, China
| | - Yunling Lin
- Department of Diagnostic Radiology, Huaqiao University Affiliated Strait Hospital, Quanzhou, China
| | - Chao Liu
- Department of Mathematics and Computer Science, Quanzhou Normal University, Quanzhou, China
- Fujian Provincial Key Laboratory of Data Intensive Computing, Quanzhou, China
- Key Laboratory of Intelligent Computing and Information Processing, Fujian Province University, Quanzhou, China
| | - Weifang Xie
- Department of Mathematics and Computer Science, Quanzhou Normal University, Quanzhou, China
- Fujian Provincial Key Laboratory of Data Intensive Computing, Quanzhou, China
- Key Laboratory of Intelligent Computing and Information Processing, Fujian Province University, Quanzhou, China
| | - Huifang Liu
- Department of General Surgery, Huaqiao University Affiliated Strait Hospital, Quanzhou, China
| | - Siyu Huang
- Department of Mathematics and Computer Science, Quanzhou Normal University, Quanzhou, China
| | - Daxin Zhu
- Department of Mathematics and Computer Science, Quanzhou Normal University, Quanzhou, China
- Fujian Provincial Key Laboratory of Data Intensive Computing, Quanzhou, China
- Key Laboratory of Intelligent Computing and Information Processing, Fujian Province University, Quanzhou, China
| | - Lianta Su
- Department of Mathematics and Computer Science, Quanzhou Normal University, Quanzhou, China
- Key Laboratory of Intelligent Computing and Information Processing, Fujian Province University, Quanzhou, China
| | - Yifeng Huang
- Department of Diagnostic Radiology, Huaqiao University Affiliated Strait Hospital, Quanzhou, China
| | - Yuguang Ye
- Department of Mathematics and Computer Science, Quanzhou Normal University, Quanzhou, China
- Fujian Provincial Key Laboratory of Data Intensive Computing, Quanzhou, China
- Key Laboratory of Intelligent Computing and Information Processing, Fujian Province University, Quanzhou, China
- *Correspondence: Yuguang Ye, ; Jianlong Huang,
| | - Jianlong Huang
- Department of Mathematics and Computer Science, Quanzhou Normal University, Quanzhou, China
- Fujian Provincial Key Laboratory of Data Intensive Computing, Quanzhou, China
- Key Laboratory of Intelligent Computing and Information Processing, Fujian Province University, Quanzhou, China
- *Correspondence: Yuguang Ye, ; Jianlong Huang,
| |
Collapse
|
11
|
Muscogiuri G, Volpato V, Cau R, Chiesa M, Saba L, Guglielmo M, Senatieri A, Chierchia G, Pontone G, Dell’Aversana S, Schoepf UJ, Andrews MG, Basile P, Guaricci AI, Marra P, Muraru D, Badano LP, Sironi S. Application of AI in cardiovascular multimodality imaging. Heliyon 2022; 8:e10872. [PMID: 36267381 PMCID: PMC9576885 DOI: 10.1016/j.heliyon.2022.e10872] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/23/2022] [Accepted: 09/27/2022] [Indexed: 12/16/2022] Open
Abstract
Technical advances in artificial intelligence (AI) in cardiac imaging are rapidly improving the reproducibility of this approach and the possibility to reduce time necessary to generate a report. In cardiac computed tomography angiography (CCTA) the main application of AI in clinical practice is focused on detection of stenosis, characterization of coronary plaques, and detection of myocardial ischemia. In cardiac magnetic resonance (CMR) the application of AI is focused on post-processing and particularly on the segmentation of cardiac chambers during late gadolinium enhancement. In echocardiography, the application of AI is focused on segmentation of cardiac chambers and is helpful for valvular function and wall motion abnormalities. The common thread represented by all of these techniques aims to shorten the time of interpretation without loss of information compared to the standard approach. In this review we provide an overview of AI applications in multimodality cardiac imaging.
Collapse
Affiliation(s)
- Giuseppe Muscogiuri
- Department of Radiology, Istituto Auxologico Italiano IRCCS, San Luca Hospital, Italy,School of Medicine, University of Milano-Bicocca, Milan, Italy,Corresponding author.
| | - Valentina Volpato
- Department of Cardiac, Neurological and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano IRCCS, Milan, Italy,IRCCS Ospedale Galeazzi - Sant'Ambrogio, University Cardiology Department, Milan, Italy
| | - Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari, Polo di Monserrato, Cagliari, Italy
| | | | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari, Polo di Monserrato, Cagliari, Italy
| | - Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Utrecht University, Utrecht University Medical Center, Utrecht, the Netherlands
| | | | | | | | - Serena Dell’Aversana
- Department of Radiology, Ospedale S. Maria Delle Grazie - ASL Napoli 2 Nord, Pozzuoli, Italy
| | - U. Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Dr., Charleston, SC, USA
| | - Mason G. Andrews
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Dr., Charleston, SC, USA
| | - Paolo Basile
- University Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Paolo Marra
- Department of Radiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Denisa Muraru
- School of Medicine, University of Milano-Bicocca, Milan, Italy,Department of Cardiac, Neurological and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Luigi P. Badano
- School of Medicine, University of Milano-Bicocca, Milan, Italy,Department of Cardiac, Neurological and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Sandro Sironi
- School of Medicine, University of Milano-Bicocca, Milan, Italy,Department of Radiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| |
Collapse
|
12
|
Li L, Zimmer VA, Schnabel JA, Zhuang X. Medical image analysis on left atrial LGE MRI for atrial fibrillation studies: A review. Med Image Anal 2022; 77:102360. [PMID: 35124370 PMCID: PMC7614005 DOI: 10.1016/j.media.2022.102360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/04/2021] [Accepted: 01/10/2022] [Indexed: 02/08/2023]
Abstract
Late gadolinium enhancement magnetic resonance imaging (LGE MRI) is commonly used to visualize and quantify left atrial (LA) scars. The position and extent of LA scars provide important information on the pathophysiology and progression of atrial fibrillation (AF). Hence, LA LGE MRI computing and analysis are essential for computer-assisted diagnosis and treatment stratification of AF patients. Since manual delineations can be time-consuming and subject to intra- and inter-expert variability, automating this computing is highly desired, which nevertheless is still challenging and under-researched. This paper aims to provide a systematic review on computing methods for LA cavity, wall, scar, and ablation gap segmentation and quantification from LGE MRI, and the related literature for AF studies. Specifically, we first summarize AF-related imaging techniques, particularly LGE MRI. Then, we review the methodologies of the four computing tasks in detail and summarize the validation strategies applied in each task as well as state-of-the-art results on public datasets. Finally, the possible future developments are outlined, with a brief survey on the potential clinical applications of the aforementioned methods. The review indicates that the research into this topic is still in the early stages. Although several methods have been proposed, especially for the LA cavity segmentation, there is still a large scope for further algorithmic developments due to performance issues related to the high variability of enhancement appearance and differences in image acquisition.
Collapse
Affiliation(s)
- Lei Li
- School of Data Science, Fudan University, Shanghai, China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Veronika A Zimmer
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Department of Informatics, Technical University of Munich, Germany
| | - Julia A Schnabel
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Department of Informatics, Technical University of Munich, Germany; Helmholtz Center Munich, Germany
| | - Xiahai Zhuang
- School of Data Science, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Ding W, Li L, Zhuang X, Huang L. Cross-Modality Multi-Atlas Segmentation Using Deep Neural Networks. IEEE J Biomed Health Inform 2022; 26:3104-3115. [PMID: 35130178 DOI: 10.1109/jbhi.2022.3149114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation. Generally, MAS methods register multiple atlases, i.e., medical images with corresponding labels, to a target image; and the transformed atlas labels can be combined to generate target segmentation via label fusion schemes. Many conventional MAS methods employed the atlases from the same modality as the target image. However, the number of atlases with the same modality may be limited or even missing in many clinical applications. Besides, conventional MAS methods suffer from the computational burden of registration or label fusion procedures. In this work, we design a novel cross-modality MAS framework, which uses available atlases from a certain modality to segment a target image from another modality. To boost the computational efficiency of the framework, both the image registration and label fusion are achieved by well-designed deep neural networks. For the atlas-to-target image registration, we propose a bi-directional registration network (BiRegNet), which can efficiently align images from different modalities. For the label fusion, we design a similarity estimation network (SimNet), which estimates the fusion weight of each atlas by measuring its similarity to the target image. SimNet can learn multi-scale information for similarity estimation to improve the performance of label fusion. The proposed framework was evaluated by the left ventricle and liver segmentation tasks on the MM-WHS and CHAOS datasets, respectively. Results have shown that the framework is effective for cross-modality MAS in both registration and label fusion. The code will be released publicly on https://github.com/NanYoMy/cmmas once the manuscript is accepted.
Collapse
|
14
|
Li L, Zimmer VA, Schnabel JA, Zhuang X. AtrialJSQnet: A New framework for joint segmentation and quantification of left atrium and scars incorporating spatial and shape information. Med Image Anal 2022; 76:102303. [PMID: 34875581 DOI: 10.1016/j.media.2021.102303] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/08/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Left atrial (LA) and atrial scar segmentation from late gadolinium enhanced magnetic resonance imaging (LGE MRI) is an important task in clinical practice. The automatic segmentation is however still challenging due to the poor image quality, the various LA shapes, the thin wall, and the surrounding enhanced regions. Previous methods normally solved the two tasks independently and ignored the intrinsic spatial relationship between LA and scars. In this work, we develop a new framework, namely AtrialJSQnet, where LA segmentation, scar projection onto the LA surface, and scar quantification are performed simultaneously in an end-to-end style. We propose a mechanism of shape attention (SA) via an implicit surface projection to utilize the inherent correlation between LA cavity and scars. In specific, the SA scheme is embedded into a multi-task architecture to perform joint LA segmentation and scar quantification. Besides, a spatial encoding (SE) loss is introduced to incorporate continuous spatial information of the target in order to reduce noisy patches in the predicted segmentation. We evaluated the proposed framework on 60 post-ablation LGE MRIs from the MICCAI2018 Atrial Segmentation Challenge. Moreover, we explored the domain generalization ability of the proposed AtrialJSQnet on 40 pre-ablation LGE MRIs from this challenge and 30 post-ablation multi-center LGE MRIs from another challenge (ISBI2012 Left Atrium Fibrosis and Scar Segmentation Challenge). Extensive experiments on public datasets demonstrated the effect of the proposed AtrialJSQnet, which achieved competitive performance over the state-of-the-art. The relatedness between LA segmentation and scar quantification was explicitly explored and has shown significant performance improvements for both tasks. The code has been released via https://zmiclab.github.io/projects.html.
Collapse
Affiliation(s)
- Lei Li
- School of Data Science, Fudan University, Shanghai, China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
| | - Veronika A Zimmer
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK; Technical University Munich, Munich, Germany
| | - Julia A Schnabel
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK; Technical University Munich, Munich, Germany; Helmholtz Center Munich, Germany
| | - Xiahai Zhuang
- School of Data Science, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Kar J, Cohen MV, McQuiston SA, Poorsala T, Malozzi CM. Direct left-ventricular global longitudinal strain (GLS) computation with a fully convolutional network. J Biomech 2022; 130:110878. [PMID: 34871894 PMCID: PMC8896910 DOI: 10.1016/j.jbiomech.2021.110878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
This study's purpose was to develop a direct MRI-based, deep-learning semantic segmentation approach for computing global longitudinal strain (GLS), a known metric for detecting left-ventricular (LV) cardiotoxicity in breast cancer. Displacement Encoding with Stimulated Echoes cardiac image phases acquired from 30 breast cancer patients and 30 healthy females were unwrapped via a DeepLabV3 + fully convolutional network (FCN). Myocardial strains were directly computed from the unwrapped phases with the Radial Point Interpolation Method. FCN-unwrapped phases of a phantom's rotating gel were validated against quality-guided phase-unwrapping (QGPU) and robust transport of intensity equation (RTIE) phase-unwrapping. FCN performance on unwrapping human LV data was measured with F1 and Dice scores versus QGPU ground-truth. The reliability of FCN-based strains was assessed against RTIE-based strains with Cronbach's alpha (C-α) intraclass correlation coefficient. Mean squared error (MSE) of unwrapping the phantom experiment data at 0 dB signal-to-noise ratio were 1.6, 2.7 and 6.1 with FCN, QGPU and RTIE techniques. Human data classification accuracies were F1 = 0.95 (Dice = 0.96) with FCN and F1 = 0.94 (Dice = 0.95) with RTIE. GLS results from FCN and RTIE were -16 ± 3% vs. -16 ± 3% (C-α = 0.9) for patients and -20 ± 3% vs. -20 ± 3% (C-α = 0.9) for healthy subjects. The low MSE from the phantom validation demonstrates accuracy of phase-unwrapping with the FCN and comparable human subject results versus RTIE demonstrate GLS analysis accuracy. A deep-learning methodology for phase-unwrapping in medical images and GLS computation was developed and validated in a heterogeneous cohort.
Collapse
Affiliation(s)
- Julia Kar
- Departments of Mechanical Engineering and Pharmacology, University of South Alabama, 150 Jaguar Drive, Mobile, AL 36688, United States.
| | - Michael V Cohen
- Department of Cardiology, College of Medicine, University of South Alabama, 1700 Center Street, Mobile, AL 36604, United States
| | - Samuel A McQuiston
- Department of Radiology, University of South Alabama, 2451 USA Medical Center Drive, Mobile, AL 36617, United States
| | - Teja Poorsala
- Departments of Oncology and Hematology, University of South Alabama, 101 Memorial Hospital Drive, Building 3, Mobile, AL 36608, United States
| | - Christopher M Malozzi
- Department of Cardiology, College of Medicine, University of South Alabama, 1700 Center Street, Mobile, AL 36604, United States
| |
Collapse
|
16
|
Yang G, Ye Q, Xia J. Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond. AN INTERNATIONAL JOURNAL ON INFORMATION FUSION 2022; 77:29-52. [PMID: 34980946 PMCID: PMC8459787 DOI: 10.1016/j.inffus.2021.07.016] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/25/2021] [Accepted: 07/25/2021] [Indexed: 05/04/2023]
Abstract
Explainable Artificial Intelligence (XAI) is an emerging research topic of machine learning aimed at unboxing how AI systems' black-box choices are made. This research field inspects the measures and models involved in decision-making and seeks solutions to explain them explicitly. Many of the machine learning algorithms cannot manifest how and why a decision has been cast. This is particularly true of the most popular deep neural network approaches currently in use. Consequently, our confidence in AI systems can be hindered by the lack of explainability in these black-box models. The XAI becomes more and more crucial for deep learning powered applications, especially for medical and healthcare studies, although in general these deep neural networks can return an arresting dividend in performance. The insufficient explainability and transparency in most existing AI systems can be one of the major reasons that successful implementation and integration of AI tools into routine clinical practice are uncommon. In this study, we first surveyed the current progress of XAI and in particular its advances in healthcare applications. We then introduced our solutions for XAI leveraging multi-modal and multi-centre data fusion, and subsequently validated in two showcases following real clinical scenarios. Comprehensive quantitative and qualitative analyses can prove the efficacy of our proposed XAI solutions, from which we can envisage successful applications in a broader range of clinical questions.
Collapse
Affiliation(s)
- Guang Yang
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton Hospital, London, UK
- Imperial Institute of Advanced Technology, Hangzhou, China
| | - Qinghao Ye
- Hangzhou Ocean’s Smart Boya Co., Ltd, China
- University of California, San Diego, La Jolla, CA, USA
| | - Jun Xia
- Radiology Department, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
17
|
Wang KN, Yang X, Miao J, Li L, Yao J, Zhou P, Xue W, Zhou GQ, Zhuang X, Ni D. AWSnet: An Auto-weighted Supervision Attention Network for Myocardial Scar and Edema Segmentation in Multi-sequence Cardiac Magnetic Resonance Images. Med Image Anal 2022; 77:102362. [DOI: 10.1016/j.media.2022.102362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 10/26/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
|
18
|
Anatomical knowledge based level set segmentation of cardiac ventricles from MRI. Magn Reson Imaging 2021; 86:135-148. [PMID: 34710558 DOI: 10.1016/j.mri.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/02/2021] [Accepted: 10/10/2021] [Indexed: 11/23/2022]
Abstract
This paper represents a novel level set framework for segmentation of cardiac left ventricle (LV) and right ventricle (RV) from magnetic resonance images based on anatomical structures of the heart. We first propose a level set approach to recover the endocardium and epicardium of LV by using a bi-layer level set (BILLS) formulation, in which the endocardium and epicardium are represented by the 0-level set and k-level set of a level set function. Furthermore, the recovery of LV endocardium and epicardium is achieved by a level set evolution process, called convexity preserving bi-layer level set (CP-BILLS). During the CP-BILLS evolution, the 0-level set and k-level set simultaneously evolve and move toward the true endocardium and epicardium under the guidance of image information and the impact of the convexity preserving mechanism as well. To eliminate the manual selection of the k-level, we develop an algorithm for automatic selection of an optimal k-level. As a result, the obtained endocardial and epicardial contours are convex and consistent with the anatomy of cardiac ventricles. For segmentation of the whole ventricle, we extend this method to the segmentation of RV and myocardium of both left and right ventricles by using a convex shape decomposition (CSD) structure of cardiac ventricles based on anatomical knowledge. Experimental results demonstrate promising performance of our method. Compared with some traditional methods, our method exhibits superior performance in terms of segmentation accuracy and algorithm stability. Our method is comparable with the state-of-the-art deep learning-based method in terms of segmentation accuracy and algorithm stability, but our method has no need for training and the manual segmentation of the training data.
Collapse
|
19
|
Wu Y, Tang Z, Li B, Firmin D, Yang G. Recent Advances in Fibrosis and Scar Segmentation From Cardiac MRI: A State-of-the-Art Review and Future Perspectives. Front Physiol 2021; 12:709230. [PMID: 34413789 PMCID: PMC8369509 DOI: 10.3389/fphys.2021.709230] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/28/2021] [Indexed: 12/03/2022] Open
Abstract
Segmentation of cardiac fibrosis and scars is essential for clinical diagnosis and can provide invaluable guidance for the treatment of cardiac diseases. Late Gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) has been successful in guiding the clinical diagnosis and treatment reliably. For LGE CMR, many methods have demonstrated success in accurately segmenting scarring regions. Co-registration with other non-contrast-agent (non-CA) modalities [e.g., balanced steady-state free precession (bSSFP) cine magnetic resonance imaging (MRI)] can further enhance the efficacy of automated segmentation of cardiac anatomies. Many conventional methods have been proposed to provide automated or semi-automated segmentation of scars. With the development of deep learning in recent years, we can also see more advanced methods that are more efficient in providing more accurate segmentations. This paper conducts a state-of-the-art review of conventional and current state-of-the-art approaches utilizing different modalities for accurate cardiac fibrosis and scar segmentation.
Collapse
Affiliation(s)
- Yinzhe Wu
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom.,Department of Bioengineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Zeyu Tang
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom.,Department of Bioengineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Binghuan Li
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - David Firmin
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom.,Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| | - Guang Yang
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom.,Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| |
Collapse
|
20
|
Saiz-Vivó M, Colomer A, Fonfría C, Martí-Bonmatí L, Naranjo V. Supervised Domain Adaptation for Automated Semantic Segmentation of the Atrial Cavity. ENTROPY (BASEL, SWITZERLAND) 2021; 23:898. [PMID: 34356439 PMCID: PMC8304895 DOI: 10.3390/e23070898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/29/2021] [Accepted: 07/10/2021] [Indexed: 11/17/2022]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. At present, cardiac ablation is the main treatment procedure for AF. To guide and plan this procedure, it is essential for clinicians to obtain patient-specific 3D geometrical models of the atria. For this, there is an interest in automatic image segmentation algorithms, such as deep learning (DL) methods, as opposed to manual segmentation, an error-prone and time-consuming method. However, to optimize DL algorithms, many annotated examples are required, increasing acquisition costs. The aim of this work is to develop automatic and high-performance computational models for left and right atrium (LA and RA) segmentation from a few labelled MRI volumetric images with a 3D Dual U-Net algorithm. For this, a supervised domain adaptation (SDA) method is introduced to infer knowledge from late gadolinium enhanced (LGE) MRI volumetric training samples (80 LA annotated samples) to a network trained with balanced steady-state free precession (bSSFP) MR images of limited number of annotations (19 RA and LA annotated samples). The resulting knowledge-transferred model SDA outperformed the same network trained from scratch in both RA (Dice equals 0.9160) and LA (Dice equals 0.8813) segmentation tasks.
Collapse
Affiliation(s)
- Marta Saiz-Vivó
- Instituto de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain; (M.S.-V.); (V.N.)
| | - Adrián Colomer
- Instituto de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain; (M.S.-V.); (V.N.)
| | - Carles Fonfría
- Radiology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (C.F.); (L.M.-B.)
| | - Luis Martí-Bonmatí
- Radiology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (C.F.); (L.M.-B.)
- Biomedical Imaging Research Group (GIBI230-PREBI), La Fe Health Research Institute, 46026 Valencia, Spain
| | - Valery Naranjo
- Instituto de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain; (M.S.-V.); (V.N.)
| |
Collapse
|
21
|
Morales Ferez X, Mill J, Juhl KA, Acebes C, Iriart X, Legghe B, Cochet H, De Backer O, Paulsen RR, Camara O. Deep Learning Framework for Real-Time Estimation of in-silico Thrombotic Risk Indices in the Left Atrial Appendage. Front Physiol 2021; 12:694945. [PMID: 34262482 PMCID: PMC8274486 DOI: 10.3389/fphys.2021.694945] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/13/2021] [Indexed: 11/30/2022] Open
Abstract
Patient-specific computational fluid dynamics (CFD) simulations can provide invaluable insight into the interaction of left atrial appendage (LAA) morphology, hemodynamics, and the formation of thrombi in atrial fibrillation (AF) patients. Nonetheless, CFD solvers are notoriously time-consuming and computationally demanding, which has sparked an ever-growing body of literature aiming to develop surrogate models of fluid simulations based on neural networks. The present study aims at developing a deep learning (DL) framework capable of predicting the endothelial cell activation potential (ECAP), an in-silico index linked to the risk of thrombosis, typically derived from CFD simulations, solely from the patient-specific LAA morphology. To this end, a set of popular DL approaches were evaluated, including fully connected networks (FCN), convolutional neural networks (CNN), and geometric deep learning. While the latter directly operated over non-Euclidean domains, the FCN and CNN approaches required previous registration or 2D mapping of the input LAA mesh. First, the superior performance of the graph-based DL model was demonstrated in a dataset consisting of 256 synthetic and real LAA, where CFD simulations with simplified boundary conditions were run. Subsequently, the adaptability of the geometric DL model was further proven in a more realistic dataset of 114 cases, which included the complete patient-specific LA and CFD simulations with more complex boundary conditions. The resulting DL framework successfully predicted the overall distribution of the ECAP in both datasets, based solely on anatomical features, while reducing computational times by orders of magnitude compared to conventional CFD solvers.
Collapse
Affiliation(s)
- Xabier Morales Ferez
- Physense, BCN Medtech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jordi Mill
- Physense, BCN Medtech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Cesar Acebes
- Physense, BCN Medtech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Xavier Iriart
- IHU Liryc, University Hospital of Bordeaux, Bordeaux, France
| | - Benoit Legghe
- IHU Liryc, University Hospital of Bordeaux, Bordeaux, France
| | - Hubert Cochet
- IHU Liryc, University Hospital of Bordeaux, Bordeaux, France
| | - Ole De Backer
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus R Paulsen
- DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Oscar Camara
- Physense, BCN Medtech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
22
|
Yang G, Zhang H, Firmin D, Li S. Recent advances in artificial intelligence for cardiac imaging. Comput Med Imaging Graph 2021; 90:101928. [PMID: 33965746 DOI: 10.1016/j.compmedimag.2021.101928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Guang Yang
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK; Cardiovascular Research Centre, Royal Brompton Hospital, SW3 6NP, London, UK.
| | - Heye Zhang
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 510006, China.
| | - David Firmin
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK; Cardiovascular Research Centre, Royal Brompton Hospital, SW3 6NP, London, UK
| | - Shuo Li
- Department of Medical Imaging, Western University, London, ON, Canada; Digital Imaging Group, London, ON, Canada
| |
Collapse
|
23
|
Shi X, Li C. Convexity preserving level set for left ventricle segmentation. Magn Reson Imaging 2021; 78:109-118. [PMID: 33592247 DOI: 10.1016/j.mri.2021.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/14/2021] [Accepted: 02/03/2021] [Indexed: 11/28/2022]
Abstract
In clinical applications of cardiac left ventricle (LV) segmentation, the segmented LV is desired to include the cavity, trabeculae, and papillary muscles, which form a convex shape. However, the intensities of trabeculae and papillary muscles are similar to myocardium. Consequently, segmentation algorithms may easily misclassify trabeculae and papillary muscles as myocardium. In this paper, we propose a level set method with a convexity preserving mechanism to ensure the convexity of the segmented LV. In the proposed level set method, the curvature of the level set contours is used to control their convexity, such that the level set contour is finally deformed as a convex shape. The experimental results and the comparison with other level set methods show the advantage of our method in terms of segmentation accuracy. Compared with the state-of-the-art methods using deep-learning, our method is able to achieve comparable segmentation accuracy without the need for training, while the deep-learning based method requires a large set of training data and high-quality manual segmentation. Therefore, our method can be conveniently used in situation where training data and their manual segmentation are not available.
Collapse
Affiliation(s)
- Xue Shi
- University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chunming Li
- University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
24
|
Xiong Z, Xia Q, Hu Z, Huang N, Bian C, Zheng Y, Vesal S, Ravikumar N, Maier A, Yang X, Heng PA, Ni D, Li C, Tong Q, Si W, Puybareau E, Khoudli Y, Géraud T, Chen C, Bai W, Rueckert D, Xu L, Zhuang X, Luo X, Jia S, Sermesant M, Liu Y, Wang K, Borra D, Masci A, Corsi C, de Vente C, Veta M, Karim R, Preetha CJ, Engelhardt S, Qiao M, Wang Y, Tao Q, Nuñez-Garcia M, Camara O, Savioli N, Lamata P, Zhao J. A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging. Med Image Anal 2021; 67:101832. [PMID: 33166776 DOI: 10.1016/j.media.2020.101832] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/29/2022]
Abstract
Segmentation of medical images, particularly late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) used for visualizing diseased atrial structures, is a crucial first step for ablation treatment of atrial fibrillation. However, direct segmentation of LGE-MRIs is challenging due to the varying intensities caused by contrast agents. Since most clinical studies have relied on manual, labor-intensive approaches, automatic methods are of high interest, particularly optimized machine learning approaches. To address this, we organized the 2018 Left Atrium Segmentation Challenge using 154 3D LGE-MRIs, currently the world's largest atrial LGE-MRI dataset, and associated labels of the left atrium segmented by three medical experts, ultimately attracting the participation of 27 international teams. In this paper, extensive analysis of the submitted algorithms using technical and biological metrics was performed by undergoing subgroup analysis and conducting hyper-parameter analysis, offering an overall picture of the major design choices of convolutional neural networks (CNNs) and practical considerations for achieving state-of-the-art left atrium segmentation. Results show that the top method achieved a Dice score of 93.2% and a mean surface to surface distance of 0.7 mm, significantly outperforming prior state-of-the-art. Particularly, our analysis demonstrated that double sequentially used CNNs, in which a first CNN is used for automatic region-of-interest localization and a subsequent CNN is used for refined regional segmentation, achieved superior results than traditional methods and machine learning approaches containing single CNNs. This large-scale benchmarking study makes a significant step towards much-improved segmentation methods for atrial LGE-MRIs, and will serve as an important benchmark for evaluating and comparing the future works in the field. Furthermore, the findings from this study can potentially be extended to other imaging datasets and modalities, having an impact on the wider medical imaging community.
Collapse
Affiliation(s)
- Zhaohan Xiong
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Qing Xia
- State Key Lab of Virtual Reality Technology and Systems, Beihang University, Beijing, China
| | - Zhiqiang Hu
- School of Electronics Engineering and Computer Science, Peking University, Beijing, China
| | | | - Cheng Bian
- Tencent Jarvis Laboratory, Shenzhen, China
| | | | - Sulaiman Vesal
- Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nishant Ravikumar
- Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Maier
- Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Xin Yang
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Pheng-Ann Heng
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Dong Ni
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Caizi Li
- School of Computer Science, Wuhan University, Wuhan, China
| | - Qianqian Tong
- School of Computer Science, Wuhan University, Wuhan, China
| | - Weixin Si
- Shenzhen Key Laboratory of Virtual Reality and Human Interaction Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | - Younes Khoudli
- EPITA Research and Development Laboratory, Paris, France
| | - Thierry Géraud
- EPITA Research and Development Laboratory, Paris, France
| | - Chen Chen
- Department of Computing, Imperial College London, London, United Kingdom
| | - Wenjia Bai
- Department of Computing, Imperial College London, London, United Kingdom
| | - Daniel Rueckert
- Department of Computing, Imperial College London, London, United Kingdom
| | - Lingchao Xu
- School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiahai Zhuang
- School of Data Science, Fudan University, Shanghai, China
| | - Xinzhe Luo
- School of Data Science, Fudan University, Shanghai, China
| | - Shuman Jia
- Inria, Université Côte d'Azur, Epione team, Sophia Antipolis, France
| | - Maxime Sermesant
- Inria, Université Côte d'Azur, Epione team, Sophia Antipolis, France
| | - Yashu Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Davide Borra
- Department of Electric, Electronic and Information Engineering, University of Bologna, Cesena, Italy
| | - Alessandro Masci
- Department of Electric, Electronic and Information Engineering, University of Bologna, Cesena, Italy
| | - Cristiana Corsi
- Department of Electric, Electronic and Information Engineering, University of Bologna, Cesena, Italy
| | - Coen de Vente
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Mitko Veta
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Rashed Karim
- School of Biomedical Engineering & Imaging Sciences, Kings College London, London, United Kingdom
| | | | - Sandy Engelhardt
- Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Menyun Qiao
- Biomedical Engineering Center, Fudan University, Shanghai, China
| | - Yuanyuan Wang
- Biomedical Engineering Center, Fudan University, Shanghai, China
| | - Qian Tao
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marta Nuñez-Garcia
- Physense, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Oscar Camara
- Physense, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nicolo Savioli
- Department of Bioengineering, Kings College London, London, United Kingdom
| | - Pablo Lamata
- Department of Bioengineering, Kings College London, London, United Kingdom
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
25
|
Nikan S, Van Osch K, Bartling M, Allen DG, Rohani SA, Connors B, Agrawal SK, Ladak HM. PWD-3DNet: A Deep Learning-Based Fully-Automated Segmentation of Multiple Structures on Temporal Bone CT Scans. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2020; 30:739-753. [PMID: 33226942 DOI: 10.1109/tip.2020.3038363] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The temporal bone is a part of the lateral skull surface that contains organs responsible for hearing and balance. Mastering surgery of the temporal bone is challenging because of this complex and microscopic three-dimensional anatomy. Segmentation of intra-temporal anatomy based on computed tomography (CT) images is necessary for applications such as surgical training and rehearsal, amongst others. However, temporal bone segmentation is challenging due to the similar intensities and complicated anatomical relationships among critical structures, undetectable small structures on standard clinical CT, and the amount of time required for manual segmentation. This paper describes a single multi-class deep learning-based pipeline as the first fully automated algorithm for segmenting multiple temporal bone structures from CT volumes, including the sigmoid sinus, facial nerve, inner ear, malleus, incus, stapes, internal carotid artery and internal auditory canal. The proposed fully convolutional network, PWD-3DNet, is a patch-wise densely connected (PWD) three-dimensional (3D) network. The accuracy and speed of the proposed algorithm was shown to surpass current manual and semi-automated segmentation techniques. The experimental results yielded significantly high Dice similarity scores and low Hausdorff distances for all temporal bone structures with an average of 86% and 0.755 millimeter (mm), respectively. We illustrated that overlapping in the inference sub-volumes improves the segmentation performance. Moreover, we proposed augmentation layers by using samples with various transformations and image artefacts to increase the robustness of PWD-3DNet against image acquisition protocols, such as smoothing caused by soft tissue scanner settings and larger voxel sizes used for radiation reduction. The proposed algorithm was tested on low-resolution CTs acquired by another center with different scanner parameters than the ones used to create the algorithm and shows potential for application beyond the particular training data used in the study.
Collapse
|
26
|
Liu D, Peng X, Liu X, Li Y, Bao Y, Xu J, Bian X, Xue W, Qian D. A real-time system using deep learning to detect and track ureteral orifices during urinary endoscopy. Comput Biol Med 2020; 128:104104. [PMID: 33220590 DOI: 10.1016/j.compbiomed.2020.104104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 10/31/2020] [Accepted: 10/31/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND OBJECTIVE To automatically identify and locate various types and states of the ureteral orifice (UO) in real endoscopy scenarios, we developed and verified a real-time computer-aided UO detection and tracking system using an improved real-time deep convolutional neural network and a robust tracking algorithm. METHODS The single-shot multibox detector (SSD) was refined to perform the detection task. We trained both the SSD and Refined-SSD using 447 resectoscopy images with UO and tested them on 818 ureteroscopy images. We also evaluated the detection performance on endoscopy video frames, which comprised 892 resectoscopy frames and 1366 ureteroscopy frames. UOs could not be identified with certainty because sometimes they appeared on the screen in a closed state of peristaltic contraction. To mitigate this problem and mimic the inspection behavior of urologists, we integrated the SSD and Refined-SSD with five different tracking algorithms. RESULTS When tested on 818 ureteroscopy images, our proposed UO detection network, Refined-SSD, achieved an accuracy of 0.902. In the video sequence analysis, our detection model yielded test sensitivities of 0.840 and 0.922 on resectoscopy and ureteroscopy video frames, respectively. In addition, by testing Refined-SSD on 1366 ureteroscopy video frames, the sensitivity achieved a value of 0.922, and a lowest false positive per image of 0.049 was obtained. For UO tracking performance, our proposed UO detection and tracking system (Refined-SSD integrated with CSRT) performed the best overall. At an overlap threshold of 0.5, the success rate of our proposed UO detection and tracking system was greater than 0.95 on 17 resectoscopy video clips and achieved nearly 0.95 on 40 ureteroscopy video clips. CONCLUSIONS We developed a deep learning system that could be used for detecting and tracking UOs in endoscopy scenarios in real time. This system can simultaneously maintain high accuracy. This approach has great potential to serve as an excellent learning and feedback system for trainees and new urologists in clinical settings.
Collapse
Affiliation(s)
- Dingyi Liu
- Department of Urology, Shanghai Punan Hospital of Pudong New District, Shanghai, 200215, China
| | - Xin Peng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoqing Liu
- Deepwise Artificial Intelligence Laboratory, Beijing, 100080, China
| | - Yiming Li
- Deepwise Artificial Intelligence Laboratory, Beijing, 100080, China
| | - Yiming Bao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianwei Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xianzhang Bian
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Xue
- Department of Urology, Ren Ji Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Dahong Qian
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
27
|
Habijan M, Babin D, Galić I, Leventić H, Romić K, Velicki L, Pižurica A. Overview of the Whole Heart and Heart Chamber Segmentation Methods. Cardiovasc Eng Technol 2020; 11:725-747. [DOI: 10.1007/s13239-020-00494-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022]
|
28
|
Gao K, Su J, Jiang Z, Zeng LL, Feng Z, Shen H, Rong P, Xu X, Qin J, Yang Y, Wang W, Hu D. Dual-branch combination network (DCN): Towards accurate diagnosis and lesion segmentation of COVID-19 using CT images. Med Image Anal 2020; 67:101836. [PMID: 33129141 PMCID: PMC7543739 DOI: 10.1016/j.media.2020.101836] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/09/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
The recent global outbreak and spread of coronavirus disease (COVID-19) makes it an imperative to develop accurate and efficient diagnostic tools for the disease as medical resources are getting increasingly constrained. Artificial intelligence (AI)-aided tools have exhibited desirable potential; for example, chest computed tomography (CT) has been demonstrated to play a major role in the diagnosis and evaluation of COVID-19. However, developing a CT-based AI diagnostic system for the disease detection has faced considerable challenges, which is mainly due to the lack of adequate manually-delineated samples for training, as well as the requirement of sufficient sensitivity to subtle lesions in the early infection stages. In this study, we developed a dual-branch combination network (DCN) for COVID-19 diagnosis that can simultaneously achieve individual-level classification and lesion segmentation. To focus the classification branch more intensively on the lesion areas, a novel lesion attention module was developed to integrate the intermediate segmentation results. Furthermore, to manage the potential influence of different imaging parameters from individual facilities, a slice probability mapping method was proposed to learn the transformation from slice-level to individual-level classification. We conducted experiments on a large dataset of 1202 subjects from ten institutes in China. The results demonstrated that 1) the proposed DCN attained a classification accuracy of 96.74% on the internal dataset and 92.87% on the external validation dataset, thereby outperforming other models; 2) DCN obtained comparable performance with fewer samples and exhibited higher sensitivity, especially in subtle lesion detection; and 3) DCN provided good interpretability on the loci of infection compared to other deep models due to its classification guided by high-level semantic information. An online CT-based diagnostic platform for COVID-19 derived from our proposed framework is now available.
Collapse
Affiliation(s)
- Kai Gao
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China
| | - Jianpo Su
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China
| | - Zhongbiao Jiang
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling-Li Zeng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China
| | - Zhichao Feng
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Shen
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China.
| | - Pengfei Rong
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Xin Xu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China
| | - Jian Qin
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China
| | - Yuexiang Yang
- College of Computer Science and Technology, National University of Defense Technology, Changsha, Hunan, China
| | - Wei Wang
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China
| |
Collapse
|
29
|
Kuang Z, Deng X, Yu L, Wang H, Li T, Wang S. Ψ-Net: Focusing on the border areas of intracerebral hemorrhage on CT images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 194:105546. [PMID: 32474252 DOI: 10.1016/j.cmpb.2020.105546] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE The volume of the intracerebral hemorrhage (ICH) obtained from CT scans is essential for quantification and treatment planning. However,a fast and accurate volume acquisition brings great challenges. On the one hand, it is both time consuming and operator dependent for manual segmentation, which is the gold standard for volume estimation. On the other hand, low contrast to normal tissues, irregular shapes and distributions of the hemorrhage make the existing automatic segmentation methods hard to achieve satisfactory performance. METHOD To solve above problems, a CNN-based architecture is proposed in this work, consisting of a novel model, which is named as Ψ-Net and a multi-level training strategy. In the structure of Ψ-Net, a self-attention block and a contextual-attention block is designed to suppresses the irrelevant information and segment border areas of the hemorrhage more finely. Further, an multi-level training strategy is put forward to facilitate the training process. By adding the slice-level learning and a weighted loss, the multi-level training strategy effectively alleviates the problems of vanishing gradient and the class imbalance. The proposed training strategy could be applied to most of the segmentation networks, especially for complex models and on small datasets. RESULTS The proposed architecture is evaluated on a spontaneous ICH dataset and a traumatic ICH dataset. Compared to the previous works on the ICH sementation, the proposed architecture obtains the state-of-the-art performance(Dice of 0.950) on the spontaneous ICH, and comparable results(Dice of 0.895) with the best method on the traumatic ICH. On the other hand, the time consumption of the proposed architecture is much less than the previous methods on both training and inference. Morever, experiment results on various of models prove the universality of the multi-level training strategy. CONCLUSIONS This study proposed a novel CNN-based architecture, Ψ-Net with multi-level training strategy. It takes less time for training and achives superior performance than previous ICH segmentaion methods.
Collapse
Affiliation(s)
- Zhuo Kuang
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xianbo Deng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Yu
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Hongkui Wang
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tiansong Li
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shengwei Wang
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
30
|
Abstract
Artificial intelligence (AI) is entering the clinical arena, and in the early stage, its implementation will be focused on the automatization tasks, improving diagnostic accuracy and reducing reading time. Many studies investigate the potential role of AI to support cardiac radiologist in their day-to-day tasks, assisting in segmentation, quantification, and reporting tasks. In addition, AI algorithms can be also utilized to optimize image reconstruction and image quality. Since these algorithms will play an important role in the field of cardiac radiology, it is increasingly important for radiologists to be familiar with the potential applications of AI. The main focus of this article is to provide an overview of cardiac-related AI applications for CT and MRI studies, as well as non-imaging-based applications for reporting and image optimization.
Collapse
|
31
|
Jamart K, Xiong Z, Maso Talou GD, Stiles MK, Zhao J. Mini Review: Deep Learning for Atrial Segmentation From Late Gadolinium-Enhanced MRIs. Front Cardiovasc Med 2020; 7:86. [PMID: 32528977 PMCID: PMC7266934 DOI: 10.3389/fcvm.2020.00086] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Segmentation and 3D reconstruction of the human atria is of crucial importance for precise diagnosis and treatment of atrial fibrillation, the most common cardiac arrhythmia. However, the current manual segmentation of the atria from medical images is a time-consuming, labor-intensive, and error-prone process. The recent emergence of artificial intelligence, particularly deep learning, provides an alternative solution to the traditional methods that fail to accurately segment atrial structures from clinical images. This has been illustrated during the recent 2018 Atrial Segmentation Challenge for which most of the challengers developed deep learning approaches for atrial segmentation, reaching high accuracy (>90% Dice score). However, as significant discrepancies exist between the approaches developed, many important questions remain unanswered, such as which deep learning architectures and methods to ensure reliability while achieving the best performance. In this paper, we conduct an in-depth review of the current state-of-the-art of deep learning approaches for atrial segmentation from late gadolinium-enhanced MRIs, and provide critical insights for overcoming the main hindrances faced in this task.
Collapse
Affiliation(s)
- Kevin Jamart
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Zhaohan Xiong
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Gonzalo D. Maso Talou
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Martin K. Stiles
- Waikato Clinical School, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
32
|
Guo F, Ng M, Goubran M, Petersen SE, Piechnik SK, Neubauer S, Wright G. Improving cardiac MRI convolutional neural network segmentation on small training datasets and dataset shift: A continuous kernel cut approach. Med Image Anal 2020; 61:101636. [DOI: 10.1016/j.media.2020.101636] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
|