1
|
Sel K, Hawkins-Daarud A, Chaudhuri A, Osman D, Bahai A, Paydarfar D, Willcox K, Chung C, Jafari R. Survey and perspective on verification, validation, and uncertainty quantification of digital twins for precision medicine. NPJ Digit Med 2025; 8:40. [PMID: 39825103 PMCID: PMC11742391 DOI: 10.1038/s41746-025-01447-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025] Open
Abstract
Digital twins in precision medicine provide tailored health recommendations by simulating patient-specific trajectories and interventions. We examine the critical role of Verification, Validation, and Uncertainty Quantification (VVUQ) for digital twins in ensuring safety and efficacy, with examples in cardiology and oncology. We highlight challenges and opportunities for developing personalized trial methodologies, validation metrics, and standardizing VVUQ processes. VVUQ frameworks are essential for integrating digital twins into clinical practice.
Collapse
Affiliation(s)
- Kaan Sel
- Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrea Hawkins-Daarud
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Chaudhuri
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Deen Osman
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Ahmad Bahai
- Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Paydarfar
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
- Department of Neurology, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Karen Willcox
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Caroline Chung
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roozbeh Jafari
- Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, USA.
| |
Collapse
|
2
|
Lee MT, Martorana V, Md RI, Sivera R, Cook AC, Menezes L, Burriesci G, Torii R, Bosi GM. On preserving anatomical detail in statistical shape analysis for clustering: focus on left atrial appendage morphology. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1467180. [PMID: 39450419 PMCID: PMC11499088 DOI: 10.3389/fnetp.2024.1467180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Introduction Statistical shape analysis (SSA) with clustering is often used to objectively define and categorise anatomical shape variations. However, studies until now have often focused on simplified anatomical reconstructions, despite the complexity of studied anatomies. This work aims to provide insights on the anatomical detail preservation required for SSA of highly diverse and complex anatomies, with particular focus on the left atrial appendage (LAA). This anatomical region is clinically relevant as the location of almost all left atrial thrombi forming during atrial fibrillation (AF). Moreover, its highly patient-specific complex architecture makes its clinical classification especially subjective. Methods Preliminary LAA meshes were automatically detected after robust image selection and wider left atrial segmentation. Following registration, four additional LAA mesh datasets were created as reductions of the preliminary dataset, with surface reconstruction based on reduced sample point densities. Utilising SSA model parameters determined to optimally represent the preliminary dataset, SSA model performance for the four simplified datasets was calculated. A representative simplified dataset was selected, and clustering analysis and performance were evaluated (compared to clinical labels) between the original trabeculated LAA anatomy and the representative simplification. Results As expected, simplified anatomies have better SSA evaluation scores (compactness, specificity and generalisation), corresponding to simpler LAA shape representation. However, oversimplification of shapes may noticeably affect 3D model output due to differences in geometric correspondence. Furthermore, even minor simplification may affect LAA shape clustering, where the adjusted mutual information (AMI) score of the clustered trabeculated dataset was 0.67, in comparison to 0.12 for the simplified dataset. Discussion This study suggests that greater anatomical preservation for complex and diverse LAA morphologies, currently neglected, may be more useful for shape categorisation via clustering analyses.
Collapse
Affiliation(s)
- Matthew T. Lee
- UCL Mechanical Engineering, University College of London, London, United Kingdom
| | - Vincenzo Martorana
- Department of Economics Management, and Statistics, University of Palermo, Palermo, Italy
| | - Rafizul Islam Md
- UCL Medical Physics and Biomedical Engineering, University College of London, London, United Kingdom
| | - Raphael Sivera
- UCL Institute of Cardiovascular Science, University College of London, London, United Kingdom
| | - Andrew C. Cook
- UCL Institute of Cardiovascular Science, University College of London, London, United Kingdom
| | - Leon Menezes
- Biomedical Research Centre, National Institute for Health and Care Research, University College London Hospitals, London, United Kingdom
| | - Gaetano Burriesci
- UCL Mechanical Engineering, University College of London, London, United Kingdom
- Bioengineering Group, Ri.MED Foundation, Palermo, Italy
| | - Ryo Torii
- UCL Mechanical Engineering, University College of London, London, United Kingdom
| | - Giorgia M. Bosi
- UCL Mechanical Engineering, University College of London, London, United Kingdom
| |
Collapse
|
3
|
Sel K, Osman D, Zare F, Masoumi Shahrbabak S, Brattain L, Hahn J, Inan OT, Mukkamala R, Palmer J, Paydarfar D, Pettigrew RI, Quyyumi AA, Telfer B, Jafari R. Building Digital Twins for Cardiovascular Health: From Principles to Clinical Impact. J Am Heart Assoc 2024; 13:e031981. [PMID: 39087582 PMCID: PMC11681439 DOI: 10.1161/jaha.123.031981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The past several decades have seen rapid advances in diagnosis and treatment of cardiovascular diseases and stroke, enabled by technological breakthroughs in imaging, genomics, and physiological monitoring, coupled with therapeutic interventions. We now face the challenge of how to (1) rapidly process large, complex multimodal and multiscale medical measurements; (2) map all available data streams to the trajectories of disease states over the patient's lifetime; and (3) apply this information for optimal clinical interventions and outcomes. Here we review new advances that may address these challenges using digital twin technology to fulfill the promise of personalized cardiovascular medical practice. Rooted in engineering mechanics and manufacturing, the digital twin is a virtual representation engineered to model and simulate its physical counterpart. Recent breakthroughs in scientific computation, artificial intelligence, and sensor technology have enabled rapid bidirectional interactions between the virtual-physical counterparts with measurements of the physical twin that inform and improve its virtual twin, which in turn provide updated virtual projections of disease trajectories and anticipated clinical outcomes. Verification, validation, and uncertainty quantification builds confidence and trust by clinicians and patients in the digital twin and establishes boundaries for the use of simulations in cardiovascular medicine. Mechanistic physiological models form the fundamental building blocks of the personalized digital twin that continuously forecast optimal management of cardiovascular health using individualized data streams. We present exemplars from the existing body of literature pertaining to mechanistic model development for cardiovascular dynamics and summarize existing technical challenges and opportunities pertaining to the foundation of a digital twin.
Collapse
Affiliation(s)
- Kaan Sel
- Laboratory for Information & Decision Systems (LIDS)Massachusetts Institute of TechnologyCambridgeMAUSA
| | - Deen Osman
- Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationTXUSA
| | - Fatemeh Zare
- Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationTXUSA
| | | | - Laura Brattain
- Lincoln LaboratoryMassachusetts Institute of TechnologyLexingtonMAUSA
| | - Jin‐Oh Hahn
- Department of Mechanical EngineeringUniversity of MarylandCollege ParkMDUSA
| | - Omer T. Inan
- School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Ramakrishna Mukkamala
- Department of Bioengineering and Anesthesiology and Perioperative MedicineUniversity of PittsburghPittsburghPAUSA
| | - Jeffrey Palmer
- Lincoln LaboratoryMassachusetts Institute of TechnologyLexingtonMAUSA
| | - David Paydarfar
- Department of NeurologyThe University of Texas at Austin Dell Medical SchoolAustinTXUSA
| | | | - Arshed A. Quyyumi
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of MedicineEmory University School of MedicineAtlantaGAUSA
| | - Brian Telfer
- Lincoln LaboratoryMassachusetts Institute of TechnologyLexingtonMAUSA
| | - Roozbeh Jafari
- Laboratory for Information & Decision Systems (LIDS)Massachusetts Institute of TechnologyCambridgeMAUSA
- Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationTXUSA
- Lincoln LaboratoryMassachusetts Institute of TechnologyLexingtonMAUSA
- School of Engineering MedicineTexas A&M UniversityHoustonTXUSA
| |
Collapse
|
4
|
Huang L, Ruan S, Xing Y, Feng M. A review of uncertainty quantification in medical image analysis: Probabilistic and non-probabilistic methods. Med Image Anal 2024; 97:103223. [PMID: 38861770 DOI: 10.1016/j.media.2024.103223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/16/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024]
Abstract
The comprehensive integration of machine learning healthcare models within clinical practice remains suboptimal, notwithstanding the proliferation of high-performing solutions reported in the literature. A predominant factor hindering widespread adoption pertains to an insufficiency of evidence affirming the reliability of the aforementioned models. Recently, uncertainty quantification methods have been proposed as a potential solution to quantify the reliability of machine learning models and thus increase the interpretability and acceptability of the results. In this review, we offer a comprehensive overview of the prevailing methods proposed to quantify the uncertainty inherent in machine learning models developed for various medical image tasks. Contrary to earlier reviews that exclusively focused on probabilistic methods, this review also explores non-probabilistic approaches, thereby furnishing a more holistic survey of research pertaining to uncertainty quantification for machine learning models. Analysis of medical images with the summary and discussion on medical applications and the corresponding uncertainty evaluation protocols are presented, which focus on the specific challenges of uncertainty in medical image analysis. We also highlight some potential future research work at the end. Generally, this review aims to allow researchers from both clinical and technical backgrounds to gain a quick and yet in-depth understanding of the research in uncertainty quantification for medical image analysis machine learning models.
Collapse
Affiliation(s)
- Ling Huang
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Su Ruan
- Quantif, LITIS, University of Rouen Normandy, France.
| | - Yucheng Xing
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Mengling Feng
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Institute of Data Science, National University of Singapore, Singapore
| |
Collapse
|
5
|
Seoni S, Jahmunah V, Salvi M, Barua PD, Molinari F, Acharya UR. Application of uncertainty quantification to artificial intelligence in healthcare: A review of last decade (2013-2023). Comput Biol Med 2023; 165:107441. [PMID: 37683529 DOI: 10.1016/j.compbiomed.2023.107441] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Uncertainty estimation in healthcare involves quantifying and understanding the inherent uncertainty or variability associated with medical predictions, diagnoses, and treatment outcomes. In this era of Artificial Intelligence (AI) models, uncertainty estimation becomes vital to ensure safe decision-making in the medical field. Therefore, this review focuses on the application of uncertainty techniques to machine and deep learning models in healthcare. A systematic literature review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Our analysis revealed that Bayesian methods were the predominant technique for uncertainty quantification in machine learning models, with Fuzzy systems being the second most used approach. Regarding deep learning models, Bayesian methods emerged as the most prevalent approach, finding application in nearly all aspects of medical imaging. Most of the studies reported in this paper focused on medical images, highlighting the prevalent application of uncertainty quantification techniques using deep learning models compared to machine learning models. Interestingly, we observed a scarcity of studies applying uncertainty quantification to physiological signals. Thus, future research on uncertainty quantification should prioritize investigating the application of these techniques to physiological signals. Overall, our review highlights the significance of integrating uncertainty techniques in healthcare applications of machine learning and deep learning models. This can provide valuable insights and practical solutions to manage uncertainty in real-world medical data, ultimately improving the accuracy and reliability of medical diagnoses and treatment recommendations.
Collapse
Affiliation(s)
- Silvia Seoni
- Biolab, PolitoBIOMedLab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | | | - Massimo Salvi
- Biolab, PolitoBIOMedLab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Prabal Datta Barua
- School of Business (Information System), University of Southern Queensland, Toowoomba, QLD, 4350, Australia; Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Filippo Molinari
- Biolab, PolitoBIOMedLab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy.
| | - U Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia
| |
Collapse
|
6
|
Azzolin L, Eichenlaub M, Nagel C, Nairn D, Sánchez J, Unger L, Arentz T, Westermann D, Dössel O, Jadidi A, Loewe A. AugmentA: Patient-specific augmented atrial model generation tool. Comput Med Imaging Graph 2023; 108:102265. [PMID: 37392493 DOI: 10.1016/j.compmedimag.2023.102265] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/07/2023] [Accepted: 06/03/2023] [Indexed: 07/03/2023]
Abstract
Digital twins of patients' hearts are a promising tool to assess arrhythmia vulnerability and to personalize therapy. However, the process of building personalized computational models can be challenging and requires a high level of human interaction. We propose a patient-specific Augmented Atria generation pipeline (AugmentA) as a highly automated framework which, starting from clinical geometrical data, provides ready-to-use atrial personalized computational models. AugmentA identifies and labels atrial orifices using only one reference point per atrium. If the user chooses to fit a statistical shape model to the input geometry, it is first rigidly aligned with the given mean shape before a non-rigid fitting procedure is applied. AugmentA automatically generates the fiber orientation and finds local conduction velocities by minimizing the error between the simulated and clinical local activation time (LAT) map. The pipeline was tested on a cohort of 29 patients on both segmented magnetic resonance images (MRI) and electroanatomical maps of the left atrium. Moreover, the pipeline was applied to a bi-atrial volumetric mesh derived from MRI. The pipeline robustly integrated fiber orientation and anatomical region annotations in 38.4 ± 5.7 s. In conclusion, AugmentA offers an automated and comprehensive pipeline delivering atrial digital twins from clinical data in procedural time.
Collapse
Affiliation(s)
- Luca Azzolin
- Institute of Biomedical Engineering at Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | - Martin Eichenlaub
- University Heart Center Freiburg-Bad Krozingen, Bad Krozingen, Germany
| | - Claudia Nagel
- Institute of Biomedical Engineering at Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Deborah Nairn
- Institute of Biomedical Engineering at Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jorge Sánchez
- Institute of Biomedical Engineering at Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Laura Unger
- Institute of Biomedical Engineering at Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Thomas Arentz
- University Heart Center Freiburg-Bad Krozingen, Bad Krozingen, Germany
| | - Dirk Westermann
- University Heart Center Freiburg-Bad Krozingen, Bad Krozingen, Germany
| | - Olaf Dössel
- Institute of Biomedical Engineering at Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Amir Jadidi
- University Heart Center Freiburg-Bad Krozingen, Bad Krozingen, Germany
| | - Axel Loewe
- Institute of Biomedical Engineering at Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
7
|
Corrado C, Roney CH, Razeghi O, Lemus JAS, Coveney S, Sim I, Williams SE, O'Neill MD, Wilkinson RD, Clayton RH, Niederer SA. Quantifying the impact of shape uncertainty on predicted arrhythmias. Comput Biol Med 2023; 153:106528. [PMID: 36634600 DOI: 10.1016/j.compbiomed.2022.106528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/15/2022] [Accepted: 12/31/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Personalised computer models are increasingly used to diagnose cardiac arrhythmias and tailor treatment. Patient-specific models of the left atrium are often derived from pre-procedural imaging of anatomy and fibrosis. These images contain noise that can affect simulation predictions. There are few computationally tractable methods for propagating uncertainties from images to clinical predictions. METHOD We describe the left atrium anatomy using our Bayesian shape model that captures anatomical uncertainty in medical images and has been validated on 63 independent clinical images. This algorithm describes the left atrium anatomy using Nmodes=15 principal components, capturing 95% of the shape variance and calculated from 70 clinical cardiac magnetic resonance (CMR) images. Latent variables encode shape uncertainty: we evaluate their posterior distribution for each new anatomy. We assume a normally distributed prior. We use the unscented transform to sample from the posterior shape distribution. For each sample, we assign the local material properties of the tissue using the projection of late gadolinium enhancement CMR (LGE-CMR) onto the anatomy to estimate local fibrosis. To test which activation patterns an atrium can sustain, we perform an arrhythmia simulation for each sample. We consider 34 possible outcomes (31 macro-re-entries, functional re-entry, atrial fibrillation, and non-sustained arrhythmia). For each sample, we determine the outcome by comparing pre- and post-ablation activation patterns following a cross-field stimulus. RESULTS We create patient-specific atrial electrophysiology models of ten patients. We validate the mean and standard deviation maps from the unscented transform with the same statistics obtained with 12,000 Monte Carlo (ground truth) samples. We found discrepancies <3% and <2% for the mean and standard deviation for fibrosis burden and activation time, respectively. For each patient case, we then compare the predicted outcome from a model built on the clinical data (deterministic approach) with the probability distribution obtained from the simulated samples. We found that the deterministic approach did not predict the most likely outcome in 80% of the cases. Finally, we estimate the influence of each source of uncertainty independently. Fixing the anatomy to the posterior mean and maintaining uncertainty in fibrosis reduced the prediction of self-terminating arrhythmias from ≃14% to ≃7%. Keeping the fibrosis fixed to the sample mean while retaining uncertainty in shape decreased the prediction of substrate-driven arrhythmias from ≃33% to ≃18% and increased the prediction of macro-re-entries from ≃54% to ≃68%. CONCLUSIONS We presented a novel method for propagating shape uncertainty in atrial models through to uncertainty in numerical simulations. The algorithm takes advantage of the unscented transform to compute the output distribution of the outcomes. We validated the unscented transform as a viable sampling strategy to deal with anatomy uncertainty. We then showed that the prediction computed with a deterministic model does not always coincide with the most likely outcome. Finally, we found that shape uncertainty affects the predictions of macro-re-entries, while fibrosis uncertainty affects the predictions of functional re-entries.
Collapse
Affiliation(s)
- Cesare Corrado
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London SE17EH, United Kingdom.
| | - Caroline H Roney
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London SE17EH, United Kingdom; School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Orod Razeghi
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London SE17EH, United Kingdom; UCL Centre for Advanced Research Computing, London, United Kingdom
| | - Josè Alonso Solís Lemus
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London SE17EH, United Kingdom
| | - Sam Coveney
- Insigneo Institute for in-silico Medicine and Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| | - Iain Sim
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London SE17EH, United Kingdom
| | - Steven E Williams
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London SE17EH, United Kingdom
| | - Mark D O'Neill
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London SE17EH, United Kingdom
| | - Richard D Wilkinson
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Richard H Clayton
- Insigneo Institute for in-silico Medicine and Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| | - Steven A Niederer
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London SE17EH, United Kingdom
| |
Collapse
|
8
|
Calibrating cardiac electrophysiology models using latent Gaussian processes on atrial manifolds. Sci Rep 2022; 12:16572. [PMID: 36195766 PMCID: PMC9532401 DOI: 10.1038/s41598-022-20745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Models of electrical excitation and recovery in the heart have become increasingly detailed, but have yet to be used routinely in the clinical setting to guide personalized intervention in patients. One of the main challenges is calibrating models from the limited measurements that can be made in a patient during a standard clinical procedure. In this work, we propose a novel framework for the probabilistic calibration of electrophysiology parameters on the left atrium of the heart using local measurements of cardiac excitability. Parameter fields are represented as Gaussian processes on manifolds and are linked to measurements via surrogate functions that map from local parameter values to measurements. The posterior distribution of parameter fields is then obtained. We show that our method can recover parameter fields used to generate localised synthetic measurements of effective refractory period. Our methodology is applicable to other measurement types collected with clinical protocols, and more generally for calibration where model parameters vary over a manifold.
Collapse
|
9
|
Ryzhii M, Ryzhii E. Pacemaking function of two simplified cell models. PLoS One 2022; 17:e0257935. [PMID: 35404982 PMCID: PMC9000119 DOI: 10.1371/journal.pone.0257935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/29/2022] [Indexed: 12/03/2022] Open
Abstract
Simplified nonlinear models of biological cells are widely used in computational electrophysiology. The models reproduce qualitatively many of the characteristics of various organs, such as the heart, brain, and intestine. In contrast to complex cellular ion-channel models, the simplified models usually contain a small number of variables and parameters, which facilitates nonlinear analysis and reduces computational load. In this paper, we consider pacemaking variants of the Aliev-Panfilov and Corrado two-variable excitable cell models. We conducted a numerical simulation study of these models and investigated the main nonlinear dynamic features of both isolated cells and 1D coupled pacemaker-excitable systems. Simulations of the 2D sinoatrial node and 3D intestine tissue as application examples of combined pacemaker-excitable systems demonstrated results similar to obtained previously. The uniform formulation for the conventional excitable cell models and proposed pacemaker models allows a convenient and easy implementation for the construction of personalized physiological models, inverse tissue modeling, and development of real-time simulation systems for various organs that contain both pacemaker and excitable cells.
Collapse
Affiliation(s)
- Maxim Ryzhii
- Complex Systems Modeling Laboratory, University of Aizu, Aizu-Wakamatsu, Japan
- * E-mail:
| | - Elena Ryzhii
- Department of Anatomy and Histology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
10
|
Gander L, Krause R, Multerer M, Pezzuto S. Space-time shape uncertainties in the forward and inverse problem of electrocardiography. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3522. [PMID: 34410040 PMCID: PMC9285968 DOI: 10.1002/cnm.3522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/27/2021] [Accepted: 08/13/2021] [Indexed: 06/08/2023]
Abstract
In electrocardiography, the "classic" inverse problem is the reconstruction of electric potentials at a surface enclosing the heart from remote recordings at the body surface and an accurate description of the anatomy. The latter being affected by noise and obtained with limited resolution due to clinical constraints, a possibly large uncertainty may be perpetuated in the inverse reconstruction. The purpose of this work is to study the effect of shape uncertainty on the forward and the inverse problem of electrocardiography. To this aim, the problem is first recast into a boundary integral formulation and then discretised with a collocation method to achieve high convergence rates and a fast time to solution. The shape uncertainty of the domain is represented by a random deformation field defined on a reference configuration. We propose a periodic-in-time covariance kernel for the random field and approximate the Karhunen-Loève expansion using low-rank techniques for fast sampling. The space-time uncertainty in the expected potential and its variance is evaluated with an anisotropic sparse quadrature approach and validated by a quasi-Monte Carlo method. We present several numerical experiments on a simplified but physiologically grounded two-dimensional geometry to illustrate the validity of the approach. The tested parametric dimension ranged from 100 up to 600. For the forward problem, the sparse quadrature is very effective. In the inverse problem, the sparse quadrature and the quasi-Monte Carlo method perform as expected, except for the total variation regularisation, where convergence is limited by lack of regularity. We finally investigate an H1/2 regularisation, which naturally stems from the boundary integral formulation, and compare it to more classical approaches.
Collapse
Affiliation(s)
- Lia Gander
- Center for Computational Medicine in CardiologyEuler Institute, Università della Svizzera italianaLuganoSwitzerland
| | - Rolf Krause
- Center for Computational Medicine in CardiologyEuler Institute, Università della Svizzera italianaLuganoSwitzerland
| | - Michael Multerer
- Center for Computational Medicine in CardiologyEuler Institute, Università della Svizzera italianaLuganoSwitzerland
| | - Simone Pezzuto
- Center for Computational Medicine in CardiologyEuler Institute, Università della Svizzera italianaLuganoSwitzerland
| |
Collapse
|
11
|
A bi-atrial statistical shape model for large-scale in silico studies of human atria: Model development and application to ECG simulations. Med Image Anal 2021; 74:102210. [PMID: 34450467 DOI: 10.1016/j.media.2021.102210] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/29/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022]
Abstract
Large-scale electrophysiological simulations to obtain electrocardiograms (ECG) carry the potential to produce extensive datasets for training of machine learning classifiers to, e.g., discriminate between different cardiac pathologies. The adoption of simulations for these purposes is limited due to a lack of ready-to-use models covering atrial anatomical variability. We built a bi-atrial statistical shape model (SSM) of the endocardial wall based on 47 segmented human CT and MRI datasets using Gaussian process morphable models. Generalization, specificity, and compactness metrics were evaluated. The SSM was applied to simulate atrial ECGs in 100 random volumetric instances. The first eigenmode of our SSM reflects a change of the total volume of both atria, the second the asymmetry between left vs. right atrial volume, the third a change in the prominence of the atrial appendages. The SSM is capable of generalizing well to unseen geometries and 95% of the total shape variance is covered by its first 24 eigenvectors. The P waves in the 12-lead ECG of 100 random instances showed a duration of 109.7±12.2 ms in accordance with large cohort studies. The novel bi-atrial SSM itself as well as 100 exemplary instances with rule-based augmentation of atrial wall thickness, fiber orientation, inter-atrial bridges and tags for anatomical structures have been made publicly available. This novel, openly available bi-atrial SSM can in future be employed to generate large sets of realistic atrial geometries as a basis for in silico big data approaches.
Collapse
|
12
|
Unger LA, Azzolin L, Nothstein M, Sánchez J, Luik A, Seemann G, Yeshwant S, Oesterlein T, Dössel O, Schmitt C, Spector P, Loewe A. Cycle length statistics during human atrial fibrillation reveal refractory properties of the underlying substrate: a combined in silico and clinical test of concept study. Europace 2021; 23:i133-i142. [PMID: 33751084 DOI: 10.1093/europace/euaa404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 11/12/2022] Open
Abstract
AIMS The treatment of atrial fibrillation beyond pulmonary vein isolation has remained an unsolved challenge. Targeting regions identified by different substrate mapping approaches for ablation resulted in ambiguous outcomes. With the effective refractory period being a fundamental prerequisite for the maintenance of fibrillatory conduction, this study aims at estimating the effective refractory period with clinically available measurements. METHODS AND RESULTS A set of 240 simulations in a spherical model of the left atrium with varying model initialization, combination of cellular refractory properties, and size of a region of lowered effective refractory period was implemented to analyse the capabilities and limitations of cycle length mapping. The minimum observed cycle length and the 25% quantile were compared to the underlying effective refractory period. The density of phase singularities was used as a measure for the complexity of the excitation pattern. Finally, we employed the method in a clinical test of concept including five patients. Areas of lowered effective refractory period could be distinguished from their surroundings in simulated scenarios with successfully induced multi-wavelet re-entry. Larger areas and higher gradients in effective refractory period as well as complex activation patterns favour the method. The 25% quantile of cycle lengths in patients with persistent atrial fibrillation was found to range from 85 to 190 ms. CONCLUSION Cycle length mapping is capable of highlighting regions of pathologic refractory properties. In combination with complementary substrate mapping approaches, the method fosters confidence to enhance the treatment of atrial fibrillation beyond pulmonary vein isolation particularly in patients with complex activation patterns.
Collapse
Affiliation(s)
- Laura A Unger
- Department of Electrical Engineering and Information Technology, Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Luca Azzolin
- Department of Electrical Engineering and Information Technology, Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Mark Nothstein
- Department of Electrical Engineering and Information Technology, Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Jorge Sánchez
- Department of Electrical Engineering and Information Technology, Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Armin Luik
- Medizinische Klinik IV, Städtisches Klinikum Karlsruhe, Karlsruhe 76133, Germany
| | - Gunnar Seemann
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, Medical Center, University of Freiburg, Freiburg 79110, Germany.,Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany
| | - Srinath Yeshwant
- Division of Cardiovascular Medicine, College of Medicine, University of Vermont, Burlington, Colchester, VT 05446, USA
| | - Tobias Oesterlein
- Department of Electrical Engineering and Information Technology, Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Olaf Dössel
- Department of Electrical Engineering and Information Technology, Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany
| | - Claus Schmitt
- Medizinische Klinik IV, Städtisches Klinikum Karlsruhe, Karlsruhe 76133, Germany
| | - Peter Spector
- Division of Cardiovascular Medicine, College of Medicine, University of Vermont, Burlington, Colchester, VT 05446, USA
| | - Axel Loewe
- Department of Electrical Engineering and Information Technology, Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany
| |
Collapse
|
13
|
Boyle PM, Ochs AR, Ali RL, Paliwal N, Trayanova NA. Characterizing the arrhythmogenic substrate in personalized models of atrial fibrillation: sensitivity to mesh resolution and pacing protocol in AF models. Europace 2021; 23:i3-i11. [PMID: 33751074 DOI: 10.1093/europace/euaa385] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
AIMS Computationally guided persistent atrial fibrillation (PsAF) ablation has emerged as an alternative to conventional treatment planning. To make this approach scalable, computational cost and the time required to conduct simulations must be minimized while maintaining predictive accuracy. Here, we assess the sensitivity of the process to finite-element mesh resolution. We also compare methods for pacing site distribution used to evaluate inducibility arrhythmia sustained by re-entrant drivers (RDs). METHODS AND RESULTS Simulations were conducted in low- and high-resolution models (average edge lengths: 400/350 µm) reconstructed from PsAF patients' late gadolinium enhancement magnetic resonance imaging scans. Pacing was simulated from 80 sites to assess RD inducibility. When pacing from the same site led to different outcomes in low-/high-resolution models, we characterized divergence dynamics by analysing dissimilarity index over time. Pacing site selection schemes prioritizing even spatial distribution and proximity to fibrotic tissue were evaluated. There were no RD sites observed in low-resolution models but not high-resolution models, or vice versa. Dissimilarity index analysis suggested that differences in simulation outcome arising from differences in discretization were the result of isolated conduction block incidents in one model but not the other; this never led to RD sites unique to one mesh resolution. Pacing site selection based on fibrosis proximity led to the best observed trade-off between number of stimulation locations and predictive accuracy. CONCLUSION Simulations conducted in meshes with 400 µm average edge length and ∼40 pacing sites proximal to fibrosis are sufficient to reveal the most comprehensive possible list of RD sites, given feasibility constraints.
Collapse
Affiliation(s)
- Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, Foege N310H UW Mailbox 355061, WA 98195, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA 98195, USA
| | - Alexander R Ochs
- Department of Bioengineering, University of Washington, Seattle, Foege N310H UW Mailbox 355061, WA 98195, USA
| | - Rheeda L Ali
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Hackerman 216, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Nikhil Paliwal
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Hackerman 216, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Natalia A Trayanova
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Hackerman 216, 3400 N Charles St, Baltimore, MD 21218, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
14
|
Abstract
Computer modeling of the electrophysiology of the heart has undergone significant progress. A healthy heart can be modeled starting from the ion channels via the spread of a depolarization wave on a realistic geometry of the human heart up to the potentials on the body surface and the ECG. Research is advancing regarding modeling diseases of the heart. This article reviews progress in calculating and analyzing the corresponding electrocardiogram (ECG) from simulated depolarization and repolarization waves. First, we describe modeling of the P-wave, the QRS complex and the T-wave of a healthy heart. Then, both the modeling and the corresponding ECGs of several important diseases and arrhythmias are delineated: ischemia and infarction, ectopic beats and extrasystoles, ventricular tachycardia, bundle branch blocks, atrial tachycardia, flutter and fibrillation, genetic diseases and channelopathies, imbalance of electrolytes and drug-induced changes. Finally, we outline the potential impact of computer modeling on ECG interpretation. Computer modeling can contribute to a better comprehension of the relation between features in the ECG and the underlying cardiac condition and disease. It can pave the way for a quantitative analysis of the ECG and can support the cardiologist in identifying events or non-invasively localizing diseased areas. Finally, it can deliver very large databases of reliably labeled ECGs as training data for machine learning.
Collapse
|
15
|
Pagani S, Manzoni A. Enabling forward uncertainty quantification and sensitivity analysis in cardiac electrophysiology by reduced order modeling and machine learning. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3450. [PMID: 33599106 PMCID: PMC8244126 DOI: 10.1002/cnm.3450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
We present a new, computationally efficient framework to perform forward uncertainty quantification (UQ) in cardiac electrophysiology. We consider the monodomain model to describe the electrical activity in the cardiac tissue, coupled with the Aliev-Panfilov model to characterize the ionic activity through the cell membrane. We address a complete forward UQ pipeline, including both: (i) a variance-based global sensitivity analysis for the selection of the most relevant input parameters, and (ii) a way to perform uncertainty propagation to investigate the impact of intra-subject variability on outputs of interest depending on the cardiac potential. Both tasks exploit stochastic sampling techniques, thus implying overwhelming computational costs because of the huge amount of queries to the high-fidelity, full-order computational model obtained by approximating the coupled monodomain/Aliev-Panfilov system through the finite element method. To mitigate this computational burden, we replace the full-order model with computationally inexpensive projection-based reduced-order models (ROMs) aimed at reducing the state-space dimensionality. Resulting approximation errors on the outputs of interest are finally taken into account through artificial neural network (ANN)-based models, enhancing the accuracy of the whole UQ pipeline. Numerical results show that the proposed physics-based ROMs outperform regression-based emulators relying on ANNs built with the same amount of training data, in terms of both numerical accuracy and overall computational efficiency.
Collapse
Affiliation(s)
- Stefano Pagani
- MOX, Dipartimento di MatematicaPolitecnico di MilanoMilanItaly
| | - Andrea Manzoni
- MOX, Dipartimento di MatematicaPolitecnico di MilanoMilanItaly
| |
Collapse
|
16
|
Rodero C, Strocchi M, Marciniak M, Longobardi S, Whitaker J, O’Neill MD, Gillette K, Augustin C, Plank G, Vigmond EJ, Lamata P, Niederer SA. Linking statistical shape models and simulated function in the healthy adult human heart. PLoS Comput Biol 2021; 17:e1008851. [PMID: 33857152 PMCID: PMC8049237 DOI: 10.1371/journal.pcbi.1008851] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/03/2021] [Indexed: 01/09/2023] Open
Abstract
Cardiac anatomy plays a crucial role in determining cardiac function. However, there is a poor understanding of how specific and localised anatomical changes affect different cardiac functional outputs. In this work, we test the hypothesis that in a statistical shape model (SSM), the modes that are most relevant for describing anatomy are also most important for determining the output of cardiac electromechanics simulations. We made patient-specific four-chamber heart meshes (n = 20) from cardiac CT images in asymptomatic subjects and created a SSM from 19 cases. Nine modes captured 90% of the anatomical variation in the SSM. Functional simulation outputs correlated best with modes 2, 3 and 9 on average (R = 0.49 ± 0.17, 0.37 ± 0.23 and 0.34 ± 0.17 respectively). We performed a global sensitivity analysis to identify the different modes responsible for different simulated electrical and mechanical measures of cardiac function. Modes 2 and 9 were the most important for determining simulated left ventricular mechanics and pressure-derived phenotypes. Mode 2 explained 28.56 ± 16.48% and 25.5 ± 20.85, and mode 9 explained 12.1 ± 8.74% and 13.54 ± 16.91% of the variances of mechanics and pressure-derived phenotypes, respectively. Electrophysiological biomarkers were explained by the interaction of 3 ± 1 modes. In the healthy adult human heart, shape modes that explain large portions of anatomical variance do not explain equivalent levels of electromechanical functional variation. As a result, in cardiac models, representing patient anatomy using a limited number of modes of anatomical variation can cause a loss in accuracy of simulated electromechanical function.
Collapse
Affiliation(s)
- Cristobal Rodero
- Cardiac Electromechanics Research Group, Biomedical Engineering Department, King´s College London, London, United Kingdom
- Cardiac Modelling and Imaging Biomarkers, Biomedical Engineering Department, King´s College London, London, United Kingdom
- * E-mail:
| | - Marina Strocchi
- Cardiac Electromechanics Research Group, Biomedical Engineering Department, King´s College London, London, United Kingdom
| | - Maciej Marciniak
- Cardiac Modelling and Imaging Biomarkers, Biomedical Engineering Department, King´s College London, London, United Kingdom
| | - Stefano Longobardi
- Cardiac Electromechanics Research Group, Biomedical Engineering Department, King´s College London, London, United Kingdom
| | - John Whitaker
- Cardiovascular Imaging Department, King’s College London, London, United Kingdom
| | - Mark D. O’Neill
- Department of Cardiology, St Thomas’ Hospital, London, United Kingdom
| | - Karli Gillette
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | | | - Gernot Plank
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Edward J. Vigmond
- Institute of Electrophysiology and Heart Modeling, Foundation Bordeaux University, Bordeaux, France
- Bordeaux Institute of Mathematics, University of Bordeaux, Bordeaux, France
| | - Pablo Lamata
- Cardiac Modelling and Imaging Biomarkers, Biomedical Engineering Department, King´s College London, London, United Kingdom
| | - Steven A. Niederer
- Cardiac Electromechanics Research Group, Biomedical Engineering Department, King´s College London, London, United Kingdom
| |
Collapse
|
17
|
Corrado C, Williams S, Roney C, Plank G, O'Neill M, Niederer S. Using machine learning to identify local cellular properties that support re-entrant activation in patient-specific models of atrial fibrillation. Europace 2021; 23:i12-i20. [PMID: 33437987 PMCID: PMC7943361 DOI: 10.1093/europace/euaa386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/15/2020] [Indexed: 11/17/2022] Open
Abstract
AIMS Atrial fibrillation (AF) is sustained by re-entrant activation patterns. Ablation strategies have been proposed that target regions of tissue that may support re-entrant activation patterns. We aimed to characterize the tissue properties associated with regions that tether re-entrant activation patterns in a validated virtual patient cohort. METHODS AND RESULTS Atrial fibrillation patient-specific models (seven paroxysmal and three persistent) were generated and validated against local activation time (LAT) measurements during an S1-S2 pacing protocol from the coronary sinus and high right atrium, respectively. Atrial models were stimulated with burst pacing from three locations in the proximity of each pulmonary vein to initiate re-entrant activation patterns. Five atria exhibited sustained activation patterns for at least 80 s. Models with short maximum action potential durations (APDs) were associated with sustained activation. Phase singularities were mapped across the atria sustained activation patterns. Regions with a low maximum conduction velocity (CV) were associated with tethering of phase singularities. A support vector machine (SVM) was trained on maximum local conduction velocity and action potential duration to identify regions that tether phase singularities. The SVM identified regions of tissue that could support tethering with 91% accuracy. This accuracy increased to 95% when the SVM was also trained on surface area. CONCLUSION In a virtual patient cohort, local tissue properties, that can be measured (CV) or estimated (APD; using effective refractory period as a surrogate) clinically, identified regions of tissue that tether phase singularities. Combing CV and APD with atrial surface area further improved the accuracy in identifying regions that tether phase singularities.
Collapse
Affiliation(s)
- Cesare Corrado
- Department of Biomedical Engineering, King's College London, 4th floor North Wing St Thomas' Hospital, Westminster Bridge Road, London SE17EH, UK
| | - Steven Williams
- Department of Biomedical Engineering, King's College London, 4th floor North Wing St Thomas' Hospital, Westminster Bridge Road, London SE17EH, UK
| | - Caroline Roney
- Department of Biomedical Engineering, King's College London, 4th floor North Wing St Thomas' Hospital, Westminster Bridge Road, London SE17EH, UK
| | - Gernot Plank
- Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Mark O'Neill
- Department of Biomedical Engineering, King's College London, 4th floor North Wing St Thomas' Hospital, Westminster Bridge Road, London SE17EH, UK
| | - Steven Niederer
- Department of Biomedical Engineering, King's College London, 4th floor North Wing St Thomas' Hospital, Westminster Bridge Road, London SE17EH, UK
| |
Collapse
|
18
|
Building Models of Patient-Specific Anatomy and Scar Morphology from Clinical MRI Data. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Bifulco SF, Akoum N, Boyle PM. Translational applications of computational modelling for patients with cardiac arrhythmias. Heart 2020; 107:heartjnl-2020-316854. [PMID: 33303478 PMCID: PMC10896425 DOI: 10.1136/heartjnl-2020-316854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 11/04/2022] Open
Abstract
Cardiac arrhythmia is associated with high morbidity, and its underlying mechanisms are poorly understood. Computational modelling and simulation approaches have the potential to improve standard-of-care therapy for these disorders, offering deeper understanding of complex disease processes and sophisticated translational tools for planning clinical procedures. This review provides a clinician-friendly summary of recent advancements in computational cardiology. Organ-scale models automatically generated from clinical-grade imaging data are used to custom tailor our understanding of arrhythmia drivers, estimate future arrhythmogenic risk and personalise treatment plans. Recent mechanistic insights derived from atrial and ventricular arrhythmia simulations are highlighted, and the potential avenues to patient care (eg, by revealing new antiarrhythmic drug targets) are covered. Computational approaches geared towards improving outcomes in resynchronisation therapy have used simulations to elucidate optimal patient selection and lead location. Technology to personalise catheter ablation procedures are also covered, specifically preliminary outcomes form early-stage or pilot clinical studies. To conclude, future developments in computational cardiology are discussed, including improving the representation of patient-specific fibre orientations and fibrotic remodelling characterisation and how these might improve understanding of arrhythmia mechanisms and provide transformative tools for patient-specific therapy.
Collapse
Affiliation(s)
- Savannah F Bifulco
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Nazem Akoum
- Department of Cardiology, University of Washington, Seattle, Washington, USA
| | - Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
20
|
Clayton RH, Aboelkassem Y, Cantwell CD, Corrado C, Delhaas T, Huberts W, Lei CL, Ni H, Panfilov AV, Roney C, dos Santos RW. An audit of uncertainty in multi-scale cardiac electrophysiology models. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190335. [PMID: 32448070 PMCID: PMC7287340 DOI: 10.1098/rsta.2019.0335] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/16/2020] [Indexed: 05/21/2023]
Abstract
Models of electrical activation and recovery in cardiac cells and tissue have become valuable research tools, and are beginning to be used in safety-critical applications including guidance for clinical procedures and for drug safety assessment. As a consequence, there is an urgent need for a more detailed and quantitative understanding of the ways that uncertainty and variability influence model predictions. In this paper, we review the sources of uncertainty in these models at different spatial scales, discuss how uncertainties are communicated across scales, and begin to assess their relative importance. We conclude by highlighting important challenges that continue to face the cardiac modelling community, identifying open questions, and making recommendations for future studies. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.
Collapse
Affiliation(s)
- Richard H. Clayton
- Insigneo institute for in-silico Medicine and Department of Computer Science, University of Sheffield, Sheffield, UK
- e-mail:
| | - Yasser Aboelkassem
- Department of Bioengineering, University of California, San Diego, CA, USA
| | | | - Cesare Corrado
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Tammo Delhaas
- School of Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Wouter Huberts
- School of Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Chon Lok Lei
- Computational Biology and Health Informatics, Department of Computer Science, University of Oxford, Oxford, UK
| | - Haibo Ni
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Alexander V. Panfilov
- Department of Physics and Astronomy, University of Gent, Gent, Belgium
- Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg, Russia
| | - Caroline Roney
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | | |
Collapse
|
21
|
Niederer SA, Aboelkassem Y, Cantwell CD, Corrado C, Coveney S, Cherry EM, Delhaas T, Fenton FH, Panfilov AV, Pathmanathan P, Plank G, Riabiz M, Roney CH, dos Santos RW, Wang L. Creation and application of virtual patient cohorts of heart models. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190558. [PMID: 32448064 PMCID: PMC7287335 DOI: 10.1098/rsta.2019.0558] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2020] [Indexed: 05/21/2023]
Abstract
Patient-specific cardiac models are now being used to guide therapies. The increased use of patient-specific cardiac simulations in clinical care will give rise to the development of virtual cohorts of cardiac models. These cohorts will allow cardiac simulations to capture and quantify inter-patient variability. However, the development of virtual cohorts of cardiac models will require the transformation of cardiac modelling from small numbers of bespoke models to robust and rapid workflows that can create large numbers of models. In this review, we describe the state of the art in virtual cohorts of cardiac models, the process of creating virtual cohorts of cardiac models, and how to generate the individual cohort member models, followed by a discussion of the potential and future applications of virtual cohorts of cardiac models. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.
Collapse
Affiliation(s)
| | | | | | | | | | - E. M. Cherry
- Georgia Institute of Technology, Atlanta, GA, USA
| | - T. Delhaas
- Maastricht University, Maastricht, the Netherlands
| | - F. H. Fenton
- Georgia Institute of Technology, Atlanta, GA, USA
| | - A. V. Panfilov
- Ghent University, Gent, Belgium
- Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg, Russia
| | - P. Pathmanathan
- Center for Devices and Radiological Health, U.S. Food and Administration, Rockville, MD, USA
| | - G. Plank
- Medical University of Graz, Graz, Austria
| | | | | | | | - L. Wang
- Rochester Institute of Technology, La JollaRochester, NY, USA
| |
Collapse
|
22
|
Abstract
Atrial anisotropy affects electrical propagation patterns, anchor locations of atrial reentrant drivers, and atrial mechanics. However, patient-specific atrial fibre fields and anisotropy measurements are not currently available, and consequently assigning fibre fields to atrial models is challenging. We aimed to construct an atrial fibre atlas from a high-resolution DTMRI dataset that optimally reproduces electrophysiology simulation predictions corresponding to patient-specific fibre fields, and to develop a methodology for automatically assigning fibres to patient-specific anatomies. We extended an atrial coordinate system to map the pulmonary veins, vena cava and appendages to standardised positions in the coordinate system corresponding to the average location across the anatomies. We then expressed each fibre field in this atrial coordinate system and calculated an average fibre field. To assess the effects of fibre field on patient-specific modelling predictions, we calculated paced activation time maps and electrical driver locations during AF. In total, 756 activation time maps were calculated (7 anatomies with 9 fibre maps and 2 pacing locations, for the endocardial, epicardial and bilayer surface models of the LA and RA). Patient-specific fibre fields had a relatively small effect on average paced activation maps (range of mean local activation time difference for LA fields: 2.67-3.60 ms, and for RA fields: 2.29-3.44 ms), but had a larger effect on maximum LAT differences (range for LA 12.7-16.6%; range for RA 11.9-15.0%). A total of 126 phase singularity density maps were calculated (7 anatomies with 9 fibre maps for the LA and RA bilayer models). The fibre field corresponding to anatomy 1 had the highest median PS density map correlation coefficient for LA bilayer simulations (0.44 compared to the other correlations, ranging from 0.14 to 0.39), while the average fibre field had the highest correlation for the RA bilayer simulations (0.61 compared to the other correlations, ranging from 0.37 to 0.56). For sinus rhythm simulations, average activation time is robust to fibre field direction; however, maximum differences can still be significant. Patient specific fibres are more important for arrhythmia simulations, particularly in the left atrium. We propose using the fibre field corresponding to DTMRI dataset 1 for LA simulations, and the average fibre field for RA simulations as these optimally predicted arrhythmia properties.
Collapse
|