1
|
Huang J, Qi X, Cheng X, Wang M, Ju H, Ding W, Zhang D. MMF-NNs: Multi-modal Multi-granularity Fusion Neural Networks for brain networks and its application to epilepsy identification. Artif Intell Med 2024; 157:102990. [PMID: 39369635 DOI: 10.1016/j.artmed.2024.102990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/08/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Structural and functional brain networks are generated from two scan sequences of magnetic resonance imaging data, which can provide different perspectives for describing pathological changes caused by brain diseases. Recent studies found that fusing these two types of brain networks improves performance in brain disease identification. However, traditional fusion models combine these brain networks at a single granularity, ignoring the natural multi-granularity structure of brain networks that can be divided into the edge, node, and graph levels. To this end, this paper proposes a Multi-modal Multi-granularity Fusion Neural Networks (MMF-NNs) framework for brain networks, which integrates the features of the multi-modal brain network from global (i.e., graph-level) and local (i.e., edge-level and node-level) granularities to take full advantage of the topological information. Specifically, we design an interactive feature learning module at the local granularity to learn feature maps of structural and functional brain networks at the edge-level and the node-level, respectively. In that way, these two types of brain networks are fused during the feature learning process. At the global granularity, a multi-modal decomposition bilinear pooling module is designed to learn the graph-level joint representation of these brain networks. Experiments on real epilepsy datasets demonstrate that MMF-NNs are superior to several state-of-the-art methods in epilepsy identification.
Collapse
Affiliation(s)
- Jiashuang Huang
- School of Artificial Intelligence and Computer Science, Nantong University, Nantong, 226019, China
| | - Xiaoyu Qi
- School of Artificial Intelligence and Computer Science, Nantong University, Nantong, 226019, China
| | - Xueyun Cheng
- School of Artificial Intelligence and Computer Science, Nantong University, Nantong, 226019, China
| | - Mingliang Wang
- School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hengrong Ju
- School of Artificial Intelligence and Computer Science, Nantong University, Nantong, 226019, China
| | - Weiping Ding
- School of Artificial Intelligence and Computer Science, Nantong University, Nantong, 226019, China
| | - Daoqiang Zhang
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| |
Collapse
|
2
|
He P, Shi Z, Cui Y, Wang R, Wu D. A spatiotemporal graph transformer approach for Alzheimer's disease diagnosis with rs-fMRI. Comput Biol Med 2024; 178:108762. [PMID: 38908359 DOI: 10.1016/j.compbiomed.2024.108762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease accompanied by cognitive impairment. Early diagnosis is crucial for the timely treatment and intervention of AD. Resting-state functional magnetic resonance imaging (rs-fMRI) records the temporal dynamics and spatial dependency in the brain, which have been utilized for automatically diagnosis of AD in the community. Existing approaches of AD diagnosis using rs-fMRI only assess functional connectivity, ignoring the spatiotemporal dependency mining of rs-fMRI. In addition, it is difficult to increase diagnosis accuracy due to the shortage of rs-fMRI sample and the poor anti-noise ability of model. To deal with these problems, this paper proposes a novel approach for the automatic diagnosis of AD, namely spatiotemporal graph transformer network (STGTN). The proposed STGTN can effectively extract spatiotemporal features of rs-fMRI. Furthermore, to solve the sample-limited problem and to improve the anti-noise ability of the proposed model, an adversarial training strategy is adopted for the proposed STGTN to generate adversarial examples (AEs) and augment training samples with AEs. Experimental results indicate that the proposed model achieves the classification accuracy of 92.58%, and 85.27% with the adversarial training strategy for AD vs. normal control (NC), early mild cognitive impairment (eMCI) vs. late mild cognitive impairment (lMCI) respectively, outperforming the state-of-the-art methods. Besides, the spatial attention coefficients reflected from the designed model reveal the importance of brain connections under different classification tasks.
Collapse
Affiliation(s)
- Peng He
- School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China; Advanced Network and Intelligent Connection Technology Key Laboratory of Chongqing Education Commission of China, Chongqing, 400065, China; Chongqing Key Laboratory of Ubiquitous Sensing and Networking, Chongqing, 400065, China.
| | - Zhan Shi
- School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China; Advanced Network and Intelligent Connection Technology Key Laboratory of Chongqing Education Commission of China, Chongqing, 400065, China; Chongqing Key Laboratory of Ubiquitous Sensing and Networking, Chongqing, 400065, China
| | - Yaping Cui
- School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China; Advanced Network and Intelligent Connection Technology Key Laboratory of Chongqing Education Commission of China, Chongqing, 400065, China; Chongqing Key Laboratory of Ubiquitous Sensing and Networking, Chongqing, 400065, China
| | - Ruyan Wang
- School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China; Advanced Network and Intelligent Connection Technology Key Laboratory of Chongqing Education Commission of China, Chongqing, 400065, China; Chongqing Key Laboratory of Ubiquitous Sensing and Networking, Chongqing, 400065, China
| | - Dapeng Wu
- School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China; Advanced Network and Intelligent Connection Technology Key Laboratory of Chongqing Education Commission of China, Chongqing, 400065, China; Chongqing Key Laboratory of Ubiquitous Sensing and Networking, Chongqing, 400065, China
| |
Collapse
|
3
|
Gou Y, Liu Y, He F, Hunyadi B, Zhu C. Tensor Completion for Alzheimer's Disease Prediction From Diffusion Tensor Imaging. IEEE Trans Biomed Eng 2024; 71:2211-2223. [PMID: 38349831 DOI: 10.1109/tbme.2024.3365131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a slowly progressive neurodegenerative disorder with insidious onset. Accurate prediction of the disease progression has received increasing attention. Cognitive scores that reflect patients' cognitive status have become important criteria for predicting AD. Most existing methods consider the relationship between neuroimages and cognitive scores to improve prediction results. However, the inherent structure information in interrelated cognitive scores is rarely considered. METHOD In this article, we propose a relation-aware tensor completion multitask learning method (RATC-MTL), in which the cognitive scores are represented as a third-order tensor to preserve the global structure information in clinical scores. We combine both tensor completion and linear regression into a unified framework, which allows us to capture both inter and intra modes correlations in cognitive tensor with a low-rank constraint, as well as incorporate the relationship between biological features and cognitive status by imposing a regression model on multiple cognitive scores. RESULT Compared to the single-task and state-of-the-art multi-task algorithms, our proposed method obtains the best results for predicting cognitive scores in terms of four commonly used metrics. Furthermore, the overall performance of our method in classifying AD progress is also the best. CONCLUSION Our results demonstrate the effectiveness of the proposed framework in fully exploring the global structure information in cognitive scores. SIGNIFICANCE This study introduces a novel concept of leveraging tensor completion to assist in disease diagnoses, potentially offering a solution to the issue of data scarcity encountered in prolonged monitoring scenarios.
Collapse
|
4
|
Zuo Q, Wu H, Chen CLP, Lei B, Wang S. Prior-Guided Adversarial Learning With Hypergraph for Predicting Abnormal Connections in Alzheimer's Disease. IEEE TRANSACTIONS ON CYBERNETICS 2024; 54:3652-3665. [PMID: 38236677 DOI: 10.1109/tcyb.2023.3344641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Alzheimer's disease (AD) is characterized by alterations of the brain's structural and functional connectivity during its progressive degenerative processes. Existing auxiliary diagnostic methods have accomplished the classification task, but few of them can accurately evaluate the changing characteristics of brain connectivity. In this work, a prior-guided adversarial learning with hypergraph (PALH) model is proposed to predict abnormal brain connections using triple-modality medical images. Concretely, a prior distribution from anatomical knowledge is estimated to guide multimodal representation learning using an adversarial strategy. Also, the pairwise collaborative discriminator structure is further utilized to narrow the difference in representation distribution. Moreover, the hypergraph perceptual network is developed to effectively fuse the learned representations while establishing high-order relations within and between multimodal images. Experimental results demonstrate that the proposed model outperforms other related methods in analyzing and predicting AD progression. More importantly, the identified abnormal connections are partly consistent with previous neuroscience discoveries. The proposed model can evaluate the characteristics of abnormal brain connections at different stages of AD, which is helpful for cognitive disease study and early treatment.
Collapse
|
5
|
Odusami M, Maskeliūnas R, Damaševičius R, Misra S. Machine learning with multimodal neuroimaging data to classify stages of Alzheimer's disease: a systematic review and meta-analysis. Cogn Neurodyn 2024; 18:775-794. [PMID: 38826669 PMCID: PMC11143094 DOI: 10.1007/s11571-023-09993-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/23/2023] [Accepted: 07/17/2023] [Indexed: 06/04/2024] Open
Abstract
In recent years, Alzheimer's disease (AD) has been a serious threat to human health. Researchers and clinicians alike encounter a significant obstacle when trying to accurately identify and classify AD stages. Several studies have shown that multimodal neuroimaging input can assist in providing valuable insights into the structural and functional changes in the brain related to AD. Machine learning (ML) algorithms can accurately categorize AD phases by identifying patterns and linkages in multimodal neuroimaging data using powerful computational methods. This study aims to assess the contribution of ML methods to the accurate classification of the stages of AD using multimodal neuroimaging data. A systematic search is carried out in IEEE Xplore, Science Direct/Elsevier, ACM DigitalLibrary, and PubMed databases with forward snowballing performed on Google Scholar. The quantitative analysis used 47 studies. The explainable analysis was performed on the classification algorithm and fusion methods used in the selected studies. The pooled sensitivity and specificity, including diagnostic efficiency, were evaluated by conducting a meta-analysis based on a bivariate model with the hierarchical summary receiver operating characteristics (ROC) curve of multimodal neuroimaging data and ML methods in the classification of AD stages. Wilcoxon signed-rank test is further used to statistically compare the accuracy scores of the existing models. With a 95% confidence interval of 78.87-87.71%, the combined sensitivity for separating participants with mild cognitive impairment (MCI) from healthy control (NC) participants was 83.77%; for separating participants with AD from NC, it was 94.60% (90.76%, 96.89%); for separating participants with progressive MCI (pMCI) from stable MCI (sMCI), it was 80.41% (74.73%, 85.06%). With a 95% confidence interval (78.87%, 87.71%), the Pooled sensitivity for distinguishing mild cognitive impairment (MCI) from healthy control (NC) participants was 83.77%, with a 95% confidence interval (90.76%, 96.89%), the Pooled sensitivity for distinguishing AD from NC was 94.60%, likewise (MCI) from healthy control (NC) participants was 83.77% progressive MCI (pMCI) from stable MCI (sMCI) was 80.41% (74.73%, 85.06%), and early MCI (EMCI) from NC was 86.63% (82.43%, 89.95%). Pooled specificity for differentiating MCI from NC was 79.16% (70.97%, 87.71%), AD from NC was 93.49% (91.60%, 94.90%), pMCI from sMCI was 81.44% (76.32%, 85.66%), and EMCI from NC was 85.68% (81.62%, 88.96%). The Wilcoxon signed rank test showed a low P-value across all the classification tasks. Multimodal neuroimaging data with ML is a promising future in classifying the stages of AD but more research is required to increase the validity of its application in clinical practice.
Collapse
Affiliation(s)
- Modupe Odusami
- Department of Multimedia Engineering, Kaunas University of Technology, Kaunas, Lithuania
| | - Rytis Maskeliūnas
- Department of Multimedia Engineering, Kaunas University of Technology, Kaunas, Lithuania
| | | | - Sanjay Misra
- Department of Applied Data Science, Institute for Energy Technology, Halden, Norway
| |
Collapse
|
6
|
Han K, Li G, Fang Z, Yang F. Multi-Template Meta-Information Regularized Network for Alzheimer's Disease Diagnosis Using Structural MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1664-1676. [PMID: 38109240 DOI: 10.1109/tmi.2023.3344384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Structural magnetic resonance imaging (sMRI) has been widely applied in computer-aided Alzheimer's disease (AD) diagnosis, owing to its capabilities in providing detailed brain morphometric patterns and anatomical features in vivo. Although previous works have validated the effectiveness of incorporating metadata (e.g., age, gender, and educational years) for sMRI-based AD diagnosis, existing methods solely paid attention to metadata-associated correlation to AD (e.g., gender bias in AD prevalence) or confounding effects (e.g., the issue of normal aging and metadata-related heterogeneity). Hence, it is difficult to fully excavate the influence of metadata on AD diagnosis. To address these issues, we constructed a novel Multi-template Meta-information Regularized Network (MMRN) for AD diagnosis. Specifically, considering diagnostic variation resulting from different spatial transformations onto different brain templates, we first regarded different transformations as data augmentation for self-supervised learning after template selection. Since the confounding effects may arise from excessive attention to meta-information owing to its correlation with AD, we then designed the modules of weakly supervised meta-information learning and mutual information minimization to learn and disentangle meta-information from learned class-related representations, which accounts for meta-information regularization for disease diagnosis. We have evaluated our proposed MMRN on two public multi-center cohorts, including the Alzheimer's Disease Neuroimaging Initiative (ADNI) with 1,950 subjects and the National Alzheimer's Coordinating Center (NACC) with 1,163 subjects. The experimental results have shown that our proposed method outperformed the state-of-the-art approaches in both tasks of AD diagnosis, mild cognitive impairment (MCI) conversion prediction, and normal control (NC) vs. MCI vs. AD classification.
Collapse
|
7
|
Wang H, Zhu Z, Bi H, Jiang Z, Cao Y, Wang S, Zou L. Changes in Community Structure of Brain Dynamic Functional Connectivity States in Mild Cognitive Impairment. Neuroscience 2024; 544:1-11. [PMID: 38423166 DOI: 10.1016/j.neuroscience.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/22/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
Recent researches have noted many changes of short-term dynamic modalities in mild cognitive impairment (MCI) patients' brain functional networks. In this study, the dynamic functional brain networks of 82 MCI patients and 85 individuals in the normal control (NC) group were constructed using the sliding window method and Pearson correlation. The window size was determined using single-scale time-dependent (SSTD) method. Subsequently, k-means was applied to cluster all window samples, identifying three dynamic functional connectivity (DFC) states. Collective sparse symmetric non-negative matrix factorization (cssNMF) was then used to perform community detection on these states and quantify differences in brain regions. Finally, metrics such as within-community connectivity strength, community strength, and node diversity were calculated for further analysis. The results indicated high similarity between the two groups in state 2, with no significant differences in optimal community quantity and functional segregation (p < 0.05). However, for state 1 and state 3, the optimal community quantity was smaller in MCI patients compared to the NC group. In state 1, MCI patients had lower within-community connectivity strength and overall strength than the NC group, whereas state 3 showed results opposite to state 1. Brain regions with statistical difference included MFG.L, ORBinf.R, STG.R, IFGtriang.L, CUN.L, CUN.R, LING.R, SOG.L, and PCUN.R. This study on DFC states explores changes in the brain functional networks of patients with MCI from the perspective of alterations in the community structures of DFC states. The findings could provide new insights into the pathological changes in the brains of MCI patients.
Collapse
Affiliation(s)
- Hongwei Wang
- School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, School of Software, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Zhihao Zhu
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Hui Bi
- School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, School of Software, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Zhongyi Jiang
- School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, School of Software, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yin Cao
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213164, China
| | - Suhong Wang
- Clinical Psychology, The Third Affiliated Hospital of Soochow University, Juqian Road No. 185, Changzhou, Jiangsu 213164, China
| | - Ling Zou
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, Jiangsu 213164, China; The Key Laboratory of Brain Machine Collaborative Intelligence Foundation of Zhejiang Province, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
8
|
Huang Y, Li Y, Yuan Y, Zhang X, Yan W, Li T, Niu Y, Xu M, Yan T, Li X, Li D, Xiang J, Wang B, Yan T. Beta-informativeness-diffusion multilayer graph embedding for brain network analysis. Front Neurosci 2024; 18:1303741. [PMID: 38525375 PMCID: PMC10957763 DOI: 10.3389/fnins.2024.1303741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/07/2024] [Indexed: 03/26/2024] Open
Abstract
Brain network analysis provides essential insights into the diagnosis of brain disease. Integrating multiple neuroimaging modalities has been demonstrated to be more effective than using a single modality for brain network analysis. However, a majority of existing brain network analysis methods based on multiple modalities often overlook both complementary information and unique characteristics from various modalities. To tackle this issue, we propose the Beta-Informativeness-Diffusion Multilayer Graph Embedding (BID-MGE) method. The proposed method seamlessly integrates structural connectivity (SC) and functional connectivity (FC) to learn more comprehensive information for diagnosing neuropsychiatric disorders. Specifically, a novel beta distribution mapping function (beta mapping) is utilized to increase vital information and weaken insignificant connections. The refined information helps the diffusion process concentrate on crucial brain regions to capture more discriminative features. To maximize the preservation of the unique characteristics of each modality, we design an optimal scale multilayer brain network, the inter-layer connections of which depend on node informativeness. Then, a multilayer informativeness diffusion is proposed to capture complementary information and unique characteristics from various modalities and generate node representations by incorporating the features of each node with those of their connected nodes. Finally, the node representations are reconfigured using principal component analysis (PCA), and cosine distances are calculated with reference to multiple templates for statistical analysis and classification. We implement the proposed method for brain network analysis of neuropsychiatric disorders. The results indicate that our method effectively identifies crucial brain regions associated with diseases, providing valuable insights into the pathology of the disease, and surpasses other advanced methods in classification performance.
Collapse
Affiliation(s)
- Yin Huang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Ying Li
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Yuting Yuan
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Xingyu Zhang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Wenjie Yan
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Ting Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yan Niu
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Mengzhou Xu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Ting Yan
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, China
| | - Xiaowen Li
- Computer Information Engineering Institute, Shanxi Technology and Business College, Taiyuan, China
| | - Dandan Li
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Jie Xiang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Bin Wang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Tianyi Yan
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
9
|
Hao X, Li J, Ma M, Qin J, Zhang D, Liu F. Hypergraph convolutional network for longitudinal data analysis in Alzheimer's disease. Comput Biol Med 2024; 168:107765. [PMID: 38042101 DOI: 10.1016/j.compbiomed.2023.107765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
Alzheimer's disease (AD) is an irreversible and progressive neurodegenerative disease. Longitudinal structural magnetic resonance imaging (sMRI) data have been widely used for tracking AD pathogenesis and diagnosis. However, existing methods tend to treat each time point equally without considering the temporal characteristics of longitudinal data. In this paper, we propose a weighted hypergraph convolution network (WHGCN) to use the internal correlations among different time points and leverage high-order relationships between subjects for AD detection. Specifically, we construct hypergraphs for sMRI data at each time point using the K-nearest neighbor (KNN) method to represent relationships between subjects, and then fuse the hypergraphs according to the importance of the data at each time point to obtain the final hypergraph. Subsequently, we use hypergraph convolution to learn high-order information between subjects while performing feature dimensionality reduction. Finally, we conduct experiments on 518 subjects selected from the Alzheimer's disease neuroimaging initiative (ADNI) database, and the results show that the WHGCN can get higher AD detection performance and has the potential to improve our understanding of the pathogenesis of AD.
Collapse
Affiliation(s)
- Xiaoke Hao
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, 300401, China.
| | - Jiawang Li
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, 300401, China
| | - Mingming Ma
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, 300401, China
| | - Jing Qin
- Centre for Smart Health, School of Nursing, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
10
|
Xia J, Chen N, Qiu A. Multi-level and joint attention networks on brain functional connectivity for cross-cognitive prediction. Med Image Anal 2023; 90:102921. [PMID: 37666116 DOI: 10.1016/j.media.2023.102921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/15/2023] [Accepted: 07/31/2023] [Indexed: 09/06/2023]
Abstract
Deep learning on resting-state functional MRI (rs-fMRI) has shown great success in predicting a single cognition or mental disease. Nevertheless, cognitive functions or mental diseases may share neural mechanisms that can benefit their prediction/classification. We propose a multi-level and joint attention (ML-Joint-Att) network to learn high-order representations of brain functional connectivities that are specific and shared across multiple tasks. We design the ML-Joint-Att network with edge and node convolutional operators, an adaptive inception module, and three attention modules, including network-wise, region-wise, and region-wise joint attention modules. The adaptive inception learns brain functional connectivity at multiple spatial scales. The network-wise and region-wise attention modules take the multi-scale functional connectivities as input and learn features at the network and regional levels for individual tasks. Moreover, the joint attention module is designed as region-wise joint attention to learn shared brain features that contribute to and compensate for the prediction of multiple tasks. We employed the Adolescent Brain Cognitive Development (ABCD) dataset (n =9092) to evaluate the ML-Joint-Att network for the prediction of cognitive flexibility and inhibition. Our experiments demonstrated the usefulness of the three attention modules and identified brain functional connectivities and regions specific and common between cognitive flexibility and inhibition. In particular, the joint attention module can significantly improve the prediction of both cognitive functions. Moreover, leave-one-site cross-validation showed that the ML-Joint-Att network is robust to independent samples obtained from different sites of the ABCD study. Our network outperformed existing machine learning techniques, including Brain Bias Set (BBS), spatio-temporal graph convolution network (ST-GCN), and BrainNetCNN. We demonstrated the generalization of our method to other applications, such as the prediction of fluid intelligence and crystallized intelligence, which also outperformed the ST-GCN and BrainNetCNN.
Collapse
Affiliation(s)
- Jing Xia
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Nanguang Chen
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore; NUS (Suzhou) Research Institute, National University of Singapore, China; Institute of Data Science, National University of Singapore, Singapore; Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong; Department of Biomedical Engineering, the Johns Hopkins University, USA.
| |
Collapse
|
11
|
Zuo Q, Zhong N, Pan Y, Wu H, Lei B, Wang S. Brain Structure-Function Fusing Representation Learning Using Adversarial Decomposed-VAE for Analyzing MCI. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4017-4028. [PMID: 37815971 DOI: 10.1109/tnsre.2023.3323432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Integrating the brain structural and functional connectivity features is of great significance in both exploring brain science and analyzing cognitive impairment clinically. However, it remains a challenge to effectively fuse structural and functional features in exploring the complex brain network. In this paper, a novel brain structure-function fusing-representation learning (BSFL) model is proposed to effectively learn fused representation from diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (fMRI) for mild cognitive impairment (MCI) analysis. Specifically, the decomposition-fusion framework is developed to first decompose the feature space into the union of the uniform and unique spaces for each modality, and then adaptively fuse the decomposed features to learn MCI-related representation. Moreover, a knowledge-aware transformer module is designed to automatically capture local and global connectivity features throughout the brain. Also, a uniform-unique contrastive loss is further devised to make the decomposition more effective and enhance the complementarity of structural and functional features. The extensive experiments demonstrate that the proposed model achieves better performance than other competitive methods in predicting and analyzing MCI. More importantly, the proposed model could be a potential tool for reconstructing unified brain networks and predicting abnormal connections during the degenerative processes in MCI.
Collapse
|
12
|
Fu X, Song C, Zhang R, Shi H, Jiao Z. Multimodal Classification Framework Based on Hypergraph Latent Relation for End-Stage Renal Disease Associated with Mild Cognitive Impairment. Bioengineering (Basel) 2023; 10:958. [PMID: 37627843 PMCID: PMC10451373 DOI: 10.3390/bioengineering10080958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Combined arterial spin labeling (ASL) and functional magnetic resonance imaging (fMRI) can reveal more comprehensive properties of the spatiotemporal and quantitative properties of brain networks. Imaging markers of end-stage renal disease associated with mild cognitive impairment (ESRDaMCI) will be sought from these properties. The current multimodal classification methods often neglect to collect high-order relationships of brain regions and remove noise from the feature matrix. A multimodal classification framework is proposed to address this issue using hypergraph latent relation (HLR). A brain functional network with hypergraph structural information is constructed by fMRI data. The feature matrix is obtained through graph theory (GT). The cerebral blood flow (CBF) from ASL is selected as the second modal feature matrix. Then, the adaptive similarity matrix is constructed by learning the latent relation between feature matrices. Latent relation adaptive similarity learning (LRAS) is introduced to multi-task feature learning to construct a multimodal feature selection method based on latent relation (LRMFS). The experimental results show that the best classification accuracy (ACC) reaches 88.67%, at least 2.84% better than the state-of-the-art methods. The proposed framework preserves more valuable information between brain regions and reduces noise among feature matrixes. It provides an essential reference value for ESRDaMCI recognition.
Collapse
Affiliation(s)
- Xidong Fu
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| | - Chaofan Song
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| | - Rupu Zhang
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| | - Haifeng Shi
- Department of Radiology, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Zhuqing Jiao
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| |
Collapse
|
13
|
Chen N, Guo M, Li Y, Hu X, Yao Z, Hu B. Estimation of Discriminative Multimodal Brain Network Connectivity Using Message-Passing-Based Nonlinear Network Fusion. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2398-2406. [PMID: 34941518 DOI: 10.1109/tcbb.2021.3137498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Effective estimation of brain network connectivity enables better unraveling of the extraordinary complexity interactions of brain regions and helps in auxiliary diagnosis of psychiatric disorders. Considering different modalities can provide comprehensive characterizations of brain connectivity, we propose the message-passing-based nonlinear network fusion (MP-NNF) algorithm to estimate multimodal brain network connectivity. In the proposed method, the initial functional and structural networks were computed from fMRI and DTI separately. Then, we update every unimodal network iteratively, making it more similar to the others in every iteration, and finally converge to one unified network. The estimated brain connectivities integrate complementary information from multiple modalities while preserving their original structure, by adding the strong connectivities present in unimodal brain networks and eliminating the weak connectivities. The effectiveness of the method was evaluated by applying the learned brain connectivity for the classification of major depressive disorder (MDD). Specifically, 82.18% classification accuracy was achieved even with the simple feature selection and classification pipeline, which significantly outperforms the competing methods. Exploration of brain connectivity contributed to MDD identification suggests that the proposed method not only improves the classification performance but also was sensitive to critical disease-related neuroimaging biomarkers.
Collapse
|
14
|
Gao J, Liu J, Xu Y, Peng D, Wang Z. Brain age prediction using the graph neural network based on resting-state functional MRI in Alzheimer's disease. Front Neurosci 2023; 17:1222751. [PMID: 37457008 PMCID: PMC10347411 DOI: 10.3389/fnins.2023.1222751] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is a neurodegenerative disease that significantly impacts the quality of life of patients and their families. Neuroimaging-driven brain age prediction has been proposed as a potential biomarker to detect mental disorders, such as AD, aiding in studying its effects on functional brain networks. Previous studies have shown that individuals with AD display impaired resting-state functional connections. However, most studies on brain age prediction have used structural magnetic resonance imaging (MRI), with limited studies based on resting-state functional MRI (rs-fMRI). Methods In this study, we applied a graph neural network (GNN) model on controls to predict brain ages using rs-fMRI in patients with AD. We compared the performance of the GNN model with traditional machine learning models. Finally, the post hoc model was also used to identify the critical brain regions in AD. Results The experimental results demonstrate that our GNN model can predict brain ages of normal controls using rs-fMRI data from the ADNI database. Moreover the differences between brain ages and chronological ages were more significant in AD patients than in normal controls. Our results also suggest that AD is associated with accelerated brain aging and that the GNN model based on resting-state functional connectivity is an effective tool for predicting brain age. Discussion Our study provides evidence that rs-fMRI is a promising modality for brain age prediction in AD research, and the GNN model proves to be effective in predicting brain age. Furthermore, the effects of the hippocampus, parahippocampal gyrus, and amygdala on brain age prediction are verified.
Collapse
Affiliation(s)
| | | | | | | | - Zhengning Wang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
15
|
El-Sappagh S, Alonso-Moral JM, Abuhmed T, Ali F, Bugarín-Diz A. Trustworthy artificial intelligence in Alzheimer’s disease: state of the art, opportunities, and challenges. Artif Intell Rev 2023. [DOI: 10.1007/s10462-023-10415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
16
|
Li J, Xu F, Gao N, Zhu Y, Hao Y, Qiao C. Sparse non-convex regularization based explainable DBN in the analysis of brain abnormalities in schizophrenia. Comput Biol Med 2023; 155:106664. [PMID: 36803794 DOI: 10.1016/j.compbiomed.2023.106664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Deep belief networks have been widely used in medical image analysis. However, the high-dimensional but small-sample-size characteristic of medical image data makes the model prone to dimensional disaster and overfitting. Meanwhile, the traditional DBN is driven by performance and ignores the explainability which is important for medical image analysis. In this paper, a sparse non-convex based explainable deep belief network is proposed by combining DBN with non-convex sparsity learning. For sparsity, the non-convex regularization and Kullback-Leibler divergence penalty are embedded into DBN to obtain the sparse connection and sparse response representation of the network. It effectively reduces the complexity of the model and improves the generalization ability of the model. Considering explainability, the crucial features for decision-making are selected through the feature back-selection based on the row norm of each layer's weight after network training. We apply the model to schizophrenia data and demonstrate it achieves the best performance among several typical feature selection models. It reveals 28 functional connections highly correlated with schizophrenia, which provides an effective foundation for the treatment and prevention of schizophrenia and methodological assurance for similar brain disorders.
Collapse
Affiliation(s)
- Jiajia Li
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Faming Xu
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Na Gao
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Yuanqiang Zhu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Yuewen Hao
- Xi'an Jiaotong University Affiliated Children's Hospital, Xi'an, 710003, China.
| | - Chen Qiao
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
17
|
Song X, Zhou F, Frangi AF, Cao J, Xiao X, Lei Y, Wang T, Lei B. Multicenter and Multichannel Pooling GCN for Early AD Diagnosis Based on Dual-Modality Fused Brain Network. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:354-367. [PMID: 35767511 DOI: 10.1109/tmi.2022.3187141] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For significant memory concern (SMC) and mild cognitive impairment (MCI), their classification performance is limited by confounding features, diverse imaging protocols, and limited sample size. To address the above limitations, we introduce a dual-modality fused brain connectivity network combining resting-state functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), and propose three mechanisms in the current graph convolutional network (GCN) to improve classifier performance. First, we introduce a DTI-strength penalty term for constructing functional connectivity networks. Stronger structural connectivity and bigger structural strength diversity between groups provide a higher opportunity for retaining connectivity information. Second, a multi-center attention graph with each node representing a subject is proposed to consider the influence of data source, gender, acquisition equipment, and disease status of those training samples in GCN. The attention mechanism captures their different impacts on edge weights. Third, we propose a multi-channel mechanism to improve filter performance, assigning different filters to features based on feature statistics. Applying those nodes with low-quality features to perform convolution would also deteriorate filter performance. Therefore, we further propose a pooling mechanism, which introduces the disease status information of those training samples to evaluate the quality of nodes. Finally, we obtain the final classification results by inputting the multi-center attention graph into the multi-channel pooling GCN. The proposed method is tested on three datasets (i.e., an ADNI 2 dataset, an ADNI 3 dataset, and an in-house dataset). Experimental results indicate that the proposed method is effective and superior to other related algorithms, with a mean classification accuracy of 93.05% in our binary classification tasks. Our code is available at: https://github.com/Xuegang-S.
Collapse
|
18
|
Du J, Huang M, Liu L. AI-Aided Disease Prediction in Visualized Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1199:107-126. [PMID: 37460729 DOI: 10.1007/978-981-32-9902-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Artificial intelligence (AI) is playing a vitally important role in promoting the revolution of future technology. Healthcare is one of the promising applications in AI, which covers medical imaging, diagnosis, robotics, disease prediction, pharmacy, health management, and hospital management. Numbers of achievements that made in these fields overturn every aspect in traditional healthcare system. Therefore, to understand the state-of-art AI in healthcare, as well as the chances and obstacles in its development, the applications of AI in disease detection and outlook and the future trends of AI-aided disease prediction were discussed in this chapter.
Collapse
Affiliation(s)
- Juan Du
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
| | - Mengen Huang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Lin Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
19
|
Wu F, Ma H, Guan Y, Tian L. Manifold-based unsupervised metric Learning, with applications in individualized predictions based on functional connectivity. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
20
|
Huang J, Wang M, Ju H, Shi Z, Ding W, Zhang D. SD-CNN: A static-dynamic convolutional neural network for functional brain networks. Med Image Anal 2023; 83:102679. [PMID: 36423466 DOI: 10.1016/j.media.2022.102679] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2022] [Accepted: 10/29/2022] [Indexed: 11/13/2022]
Abstract
Static functional connections (sFCs) and dynamic functional connections (dFCs) have been widely used in the resting-state functional MRI (rs-fMRI) analysis. sFCs, calculated based on entire rs-fMRI scans, can accurately describe the static topology of the brain network. dFCs, estimated by dividing rs-fMRI scans into a series of short sliding windows, are used to reveal time-varying changes in FC patterns. Currently, how to jointly use sFCs and dFCs to identify brain diseases under the framework of deep learning is still a hot issue. To this end, we propose a static-dynamic convolutional neural network for functional brain networks, which involves a static pathway and a dynamic pathway for taking full advantages of sFCs and dFCs. Specifically, the static pathway, using high-resolution convolution filters (i.e., convolution filters with a high number of channels) at a single adjacency matrix of sFCs, is performed to capture static FC patterns. The dynamic pathway, using low-resolution convolution filters at each adjacency matrix of dFCs, is performed to capture time-varying FC patterns. Two types of diffusion connections are used in this model for encouraging the transfer of information between the static pathway and the dynamic pathway, which can make the learned features more discriminative. Furthermore, a static and dynamic combination classifier is introduced to combine features from two pathways for identifying brain diseases. Experiments on two real datasets demonstrate the effectiveness and advantages of our proposed method.
Collapse
Affiliation(s)
- Jiashuang Huang
- School of Information Science and Technology, Nantong University, Nantong, 226019, China; MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Mingliang Wang
- School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, 210044, China; MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Hengrong Ju
- School of Information Science and Technology, Nantong University, Nantong, 226019, China
| | - Zhenquan Shi
- School of Information Science and Technology, Nantong University, Nantong, 226019, China
| | - Weiping Ding
- School of Information Science and Technology, Nantong University, Nantong, 226019, China.
| | - Daoqiang Zhang
- Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| |
Collapse
|
21
|
Lei B, Zhang Y, Liu D, Xu Y, Yue G, Cao J, Hu H, Yu S, Yang P, Wang T, Qiu Y, Xiao X, Wang S. Longitudinal study of early mild cognitive impairment via similarity-constrained group learning and self-attention based SBi-LSTM. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.109466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Jin L, Zhao K, Zhao Y, Che T, Li S. A Hybrid Deep Learning Method for Early and Late Mild Cognitive Impairment Diagnosis With Incomplete Multimodal Data. Front Neuroinform 2022; 16:843566. [PMID: 35370588 PMCID: PMC8965366 DOI: 10.3389/fninf.2022.843566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Multimodality neuroimages have been widely applied to diagnose mild cognitive impairment (MCI). However, the missing data problem is unavoidable. Most previously developed methods first train a generative adversarial network (GAN) to synthesize missing data and then train a classification network with the completed data. These methods independently train two networks with no information communication. Thus, the resulting GAN cannot focus on the crucial regions that are helpful for classification. To overcome this issue, we propose a hybrid deep learning method. First, a classification network is pretrained with paired MRI and PET images. Afterward, we use the pretrained classification network to guide a GAN by focusing on the features that are helpful for classification. Finally, we synthesize the missing PET images and use them with real MR images to fine-tune the classification model to make it better adapt to the synthesized images. We evaluate our proposed method on the ADNI dataset, and the results show that our method improves the accuracies obtained on the validation and testing sets by 3.84 and 5.82%, respectively. Moreover, our method increases the accuracies for the validation and testing sets by 7.7 and 9.09%, respectively, when we synthesize the missing PET images via our method. An ablation experiment shows that the last two stages are essential for our method. We also compare our method with other state-of-the-art methods, and our method achieves better classification performance.
Collapse
Affiliation(s)
- Leiming Jin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Kun Zhao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yan Zhao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Tongtong Che
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shuyu Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- State Key Lab of Cognition Neuroscience and Learning, Beijing Normal University, Beijing, China
- *Correspondence: Shuyu Li,
| |
Collapse
|
23
|
Cui W, Yan C, Yan Z, Peng Y, Leng Y, Liu C, Chen S, Jiang X, Zheng J, Yang X. BMNet: A New Region-Based Metric Learning Method for Early Alzheimer's Disease Identification With FDG-PET Images. Front Neurosci 2022; 16:831533. [PMID: 35281501 PMCID: PMC8908419 DOI: 10.3389/fnins.2022.831533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/11/2022] [Indexed: 12/21/2022] Open
Abstract
18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) reveals altered brain metabolism in individuals with mild cognitive impairment (MCI) and Alzheimer's disease (AD). Some biomarkers derived from FDG-PET by computer-aided-diagnosis (CAD) technologies have been proved that they can accurately diagnosis normal control (NC), MCI, and AD. However, existing FDG-PET-based researches are still insufficient for the identification of early MCI (EMCI) and late MCI (LMCI). Compared with methods based other modalities, current methods with FDG-PET are also inadequate in using the inter-region-based features for the diagnosis of early AD. Moreover, considering the variability in different individuals, some hard samples which are very similar with both two classes limit the classification performance. To tackle these problems, in this paper, we propose a novel bilinear pooling and metric learning network (BMNet), which can extract the inter-region representation features and distinguish hard samples by constructing the embedding space. To validate the proposed method, we collect 898 FDG-PET images from Alzheimer's disease neuroimaging initiative (ADNI) including 263 normal control (NC) patients, 290 EMCI patients, 147 LMCI patients, and 198 AD patients. Following the common preprocessing steps, 90 features are extracted from each FDG-PET image according to the automatic anatomical landmark (AAL) template and then sent into the proposed network. Extensive fivefold cross-validation experiments are performed for multiple two-class classifications. Experiments show that most metrics are improved after adding the bilinear pooling module and metric losses to the Baseline model respectively. Specifically, in the classification task between EMCI and LMCI, the specificity improves 6.38% after adding the triple metric loss, and the negative predictive value (NPV) improves 3.45% after using the bilinear pooling module. In addition, the accuracy of classification between EMCI and LMCI achieves 79.64% using imbalanced FDG-PET images, which illustrates that the proposed method yields a state-of-the-art result of the classification accuracy between EMCI and LMCI based on PET images.
Collapse
Affiliation(s)
- Wenju Cui
- Institute of Biomedical Engineering, School of Communication and Information Engineering, Shanghai University, Shanghai, China
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Caiying Yan
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zhuangzhi Yan
- Institute of Biomedical Engineering, School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Yunsong Peng
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yilin Leng
- Institute of Biomedical Engineering, School of Communication and Information Engineering, Shanghai University, Shanghai, China
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Chenlu Liu
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Shuangqing Chen
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xi Jiang
- School of Life Sciences and Technology, The University of Electronic Science and Technology of China, Chengdu, China
| | - Jian Zheng
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Xiaodong Yang
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
24
|
Bi XA, Xing Z, Zhou W, Li L, Xu L. Pathogeny Detection for Mild Cognitive Impairment via Weighted Evolutionary Random Forest with Brain Imaging and Genetic Data. IEEE J Biomed Health Inform 2022; 26:3068-3079. [PMID: 35157601 DOI: 10.1109/jbhi.2022.3151084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Medical imaging technology and gene sequencing technology have long been widely used to analyze the pathogenesis and make precise diagnoses of mild cognitive impairment (MCI). However, few studies involve the fusion of radiomics data with genomics data to make full use of the complementarity between different omics to detect pathogenic factors of MCI. This paper performs multimodal fusion analysis based on functional magnetic resonance imaging (fMRI) data and single nucleotide polymorphism (SNP) data of MCI patients. In specific, first, using correlation analysis methods on sequence information of regions of interests (ROIs) and digitalized gene sequences, the fusion features of samples are constructed. Then, introducing weighted evolution strategy into ensemble learning, a novel weighted evolutionary random forest (WERF) model is built to eliminate the inefficient features. Consequently, with the help of WERF, an overall multimodal data analysis framework is established to effectively identify MCI patients and extract pathogenic factors. Based on the data of MCI patients from the ADNI database and compared with some existing popular methods, the superiority in performance of the framework is verified. Our study has great potential to be an effective tool for pathogenic factors detection of MCI.
Collapse
|
25
|
Jiao Z, Chen S, Shi H, Xu J. Multi-Modal Feature Selection with Feature Correlation and Feature Structure Fusion for MCI and AD Classification. Brain Sci 2022; 12:80. [PMID: 35053823 PMCID: PMC8773824 DOI: 10.3390/brainsci12010080] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Feature selection for multiple types of data has been widely applied in mild cognitive impairment (MCI) and Alzheimer's disease (AD) classification research. Combining multi-modal data for classification can better realize the complementarity of valuable information. In order to improve the classification performance of feature selection on multi-modal data, we propose a multi-modal feature selection algorithm using feature correlation and feature structure fusion (FC2FS). First, we construct feature correlation regularization by fusing a similarity matrix between multi-modal feature nodes. Then, based on manifold learning, we employ feature matrix fusion to construct feature structure regularization, and learn the local geometric structure of the feature nodes. Finally, the two regularizations are embedded in a multi-task learning model that introduces low-rank constraint, the multi-modal features are selected, and the final features are linearly fused and input into a support vector machine (SVM) for classification. Different controlled experiments were set to verify the validity of the proposed method, which was applied to MCI and AD classification. The accuracy of normal controls versus Alzheimer's disease, normal controls versus late mild cognitive impairment, normal controls versus early mild cognitive impairment, and early mild cognitive impairment versus late mild cognitive impairment achieve 91.85 ± 1.42%, 85.33 ± 2.22%, 78.29 ± 2.20%, and 77.67 ± 1.65%, respectively. This method makes up for the shortcomings of the traditional multi-modal feature selection based on subjects and fully considers the relationship between feature nodes and the local geometric structure of feature space. Our study not only enhances the interpretation of feature selection but also improves the classification performance, which has certain reference values for the identification of MCI and AD.
Collapse
Affiliation(s)
- Zhuqing Jiao
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China; (Z.J.); (S.C.)
| | - Siwei Chen
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China; (Z.J.); (S.C.)
| | - Haifeng Shi
- Department of Radiology, Changzhou Second People’s Hospital, Nanjing Medical University, Changzhou 213003, China
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China
| | - Jia Xu
- School of Medicine, Ningbo University, Ningbo 315211, China
| |
Collapse
|
26
|
Li Y, Liu J, Jiang Y, Liu Y, Lei B. Virtual Adversarial Training-Based Deep Feature Aggregation Network From Dynamic Effective Connectivity for MCI Identification. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:237-251. [PMID: 34491896 DOI: 10.1109/tmi.2021.3110829] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dynamic functional connectivity (dFC) network inferred from resting-state fMRI reveals macroscopic dynamic neural activity patterns for brain disease identification. However, dFC methods ignore the causal influence between the brain regions. Furthermore, due to the complex non-Euclidean structure of brain networks, advanced deep neural networks are difficult to be applied for learning high-dimensional representations from brain networks. In this paper, a group constrained Kalman filter (gKF) algorithm is proposed to construct dynamic effective connectivity (dEC), where the gKF provides a more comprehensive understanding of the directional interaction within the dynamic brain networks than the dFC methods. Then, a novel virtual adversarial training convolutional neural network (VAT-CNN) is employed to extract the local features of dEC. The VAT strategy improves the robustness of the model to adversarial perturbations, and therefore avoids the overfitting problem effectively. Finally, we propose the high-order connectivity weight-guided graph attention networks (cwGAT) to aggregate features of dEC. By injecting the weight information of high-order connectivity into the attention mechanism, the cwGAT provides more effective high-level feature representations than the conventional GAT. The high-level features generated from the cwGAT are applied for binary classification and multiclass classification tasks of mild cognitive impairment (MCI). Experimental results indicate that the proposed framework achieves the classification accuracy of 90.9%, 89.8%, and 82.7% for normal control (NC) vs. early MCI (EMCI), EMCI vs. late MCI (LMCI), and NC vs. EMCI vs. LMCI classification respectively, outperforming the state-of-the-art methods significantly.
Collapse
|
27
|
Sorkhi AG, Abbasi Z, Mobarakeh MI, Pirgazi J. Drug-target interaction prediction using unifying of graph regularized nuclear norm with bilinear factorization. BMC Bioinformatics 2021; 22:555. [PMID: 34789169 PMCID: PMC8597250 DOI: 10.1186/s12859-021-04464-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/29/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Wet-lab experiments for identification of interactions between drugs and target proteins are time-consuming, costly and labor-intensive. The use of computational prediction of drug-target interactions (DTIs), which is one of the significant points in drug discovery, has been considered by many researchers in recent years. It also reduces the search space of interactions by proposing potential interaction candidates. RESULTS In this paper, a new approach based on unifying matrix factorization and nuclear norm minimization is proposed to find a low-rank interaction. In this combined method, to solve the low-rank matrix approximation, the terms in the DTI problem are used in such a way that the nuclear norm regularized problem is optimized by a bilinear factorization based on Rank-Restricted Soft Singular Value Decomposition (RRSSVD). In the proposed method, adjacencies between drugs and targets are encoded by graphs. Drug-target interaction, drug-drug similarity, target-target, and combination of similarities have also been used as input. CONCLUSIONS The proposed method is evaluated on four benchmark datasets known as Enzymes (E), Ion channels (ICs), G protein-coupled receptors (GPCRs) and nuclear receptors (NRs) based on AUC, AUPR, and time measure. The results show an improvement in the performance of the proposed method compared to the state-of-the-art techniques.
Collapse
Affiliation(s)
- Ali Ghanbari Sorkhi
- Faculty of Electrical and Computer Engineering, University of Science and Technology of Mazandaran, P.O. Box, 48518-78195 Behshahr, Iran
| | - Zahra Abbasi
- School of Medicine, Faculty of Medical Biotechnology, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Jamshid Pirgazi
- Faculty of Electrical and Computer Engineering, University of Science and Technology of Mazandaran, P.O. Box, 48518-78195 Behshahr, Iran
| |
Collapse
|
28
|
Lei B, Cheng N, Frangi AF, Wei Y, Yu B, Liang L, Mai W, Duan G, Nong X, Li C, Su J, Wang T, Zhao L, Deng D, Zhang Z. Auto-weighted centralised multi-task learning via integrating functional and structural connectivity for subjective cognitive decline diagnosis. Med Image Anal 2021; 74:102248. [PMID: 34597938 DOI: 10.1016/j.media.2021.102248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 08/21/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022]
Abstract
Early diagnosis and intervention of mild cognitive impairment (MCI) and its early stage (i.e., subjective cognitive decline (SCD)) is able to delay or reverse the disease progression. However, discrimination between SCD, MCI and healthy subjects accurately remains challenging. This paper proposes an auto-weighted centralised multi-task (AWCMT) learning framework for differential diagnosis of SCD and MCI. AWCMT is based on structural and functional connectivity information inferred from magnetic resonance imaging (MRI). To be specific, we devise a novel multi-task learning algorithm to combine neuroimaging functional and structural connective information. We construct a functional brain network through a sparse and low-rank machine learning method, and also a structural brain network via fibre bundle tracking. Those two networks are constructed separately and independently. Multi-task learning is then used to identify features integration of functional and structural connectivity. Hence, we can learn each task's significance automatically in a balanced way. By combining the functional and structural information, the most informative features of SCD and MCI are obtained for diagnosis. The extensive experiments on the public and self-collected datasets demonstrate that the proposed algorithm obtains better performance in classifying SCD, MCI and healthy people than traditional algorithms. The newly proposed method has good interpretability as it is able to discover the most disease-related brain regions and their connectivity. The results agree well with current clinical findings and provide new insights into early AD detection based on the multi-modal neuroimaging technique.
Collapse
Affiliation(s)
- Baiying Lei
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, China
| | - Nina Cheng
- CISTIB, School of Computing and LICAMM, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Alejandro F Frangi
- CISTIB, School of Computing and LICAMM, School of Medicine, University of Leeds, Leeds, United Kingdom; Department of Cardiovascular Sciences, and Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium; Medical Imaging Research Center, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium; Alan Turing Institute, London, United Kingdom
| | - Yichen Wei
- Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, 530023 Nanning, China
| | - Bihan Yu
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, 530023 Nanning, China
| | - Lingyan Liang
- Department of Radiology, the People's Hospital of Guangxi Zhuang Autonomous Region, 530021 Guangxi, China
| | - Wei Mai
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, 530023 Nanning, China
| | - Gaoxiong Duan
- Department of Radiology, the People's Hospital of Guangxi Zhuang Autonomous Region, 530021 Guangxi, China
| | - Xiucheng Nong
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, 530023 Nanning, China
| | - Chong Li
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, 530023 Nanning, China
| | - Jiahui Su
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, 530023 Nanning, China
| | - Tianfu Wang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, China
| | - Lihua Zhao
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, 530023 Nanning, China.
| | - Demao Deng
- Department of Radiology, the People's Hospital of Guangxi Zhuang Autonomous Region, 530021 Guangxi, China.
| | - Zhiguo Zhang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, China.
| |
Collapse
|
29
|
Liang Z, Wu L, Gong S, Liu X. The cognitive dysfunction related to Alzheimer disease or cerebral small vessel disease: What's the differences. Medicine (Baltimore) 2021; 100:e26967. [PMID: 34449462 PMCID: PMC8389965 DOI: 10.1097/md.0000000000026967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 06/14/2021] [Accepted: 08/01/2021] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT Alzheimer disease (AD) and sporadic cerebral small vessel disease (CSVD) are common cognitive disorders. Both AD and CSVD have mental symptoms including chronic progressive cognitive impairment, dysfunction, and behavioral abnormalities. However, the differences on the cognitive dysfunction of AD and CSVD remain unclear. It is necessary to elucidate the cognitive dysfunction differences of AD and CSVD, and to identify the potential risk factors.AD or sporadic CSVD patients treated in our hospital from December 1, 2018 to May 31, 2019 were included. And we selected healthy participants as controls. The mini-mental state examination and Montreal Cognitive Assessment Scale were used for neuropsychological assessment, and related medical information were collected and compared.A total of 190 patients were included. The total mini-mental state examination scores in AD, CSVD group were significantly less than that of control group, there were significant differences in the domains of directional ability, attention and computing ability, delayed recall, and visual perception (all P < .05); the total Montreal Cognitive Assessment Scale scores in AD, CSVD group were significantly less than that of control group. There were significant differences in the domains of visual space and execution, immediate remember, attention and computing ability, language, delayed recall, and directional ability (all P < .05); diabetes was a risk factor both for AD (hazard ratio = 1.63, 95% confidence interval: 1.35-1.97) and CSVD (hazard ratio = 1.15, 95% confidence interval: 1.08-1.27).The cognitive dysfunctions of AD are difference to that of CSVD patients, and diabetes is the risk factor both for AD and CSVD, future studies are needed to further identify the prevention and treatment of AD and CSVD.
Collapse
Affiliation(s)
- Zhenhong Liang
- School of Medicine, Taizhou University, Zhejiang Province, Taizhou 318000, China
| | - Lijuan Wu
- School of Medicine, Taizhou University, Zhejiang Province, Taizhou 318000, China
| | - Shumei Gong
- School of Nursing, The second Military Medical Universtiy, Shanghaihai 2000433, China
| | - Xiaohong Liu
- School of Nursing, The second Military Medical Universtiy, Shanghaihai 2000433, China
| |
Collapse
|
30
|
Bi XA, Li L, Xu R, Xing Z. Pathogenic Factors Identification of Brain Imaging and Gene in Late Mild Cognitive Impairment. Interdiscip Sci 2021; 13:511-520. [PMID: 34106420 DOI: 10.1007/s12539-021-00449-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 11/28/2022]
Abstract
Mild cognitive impairment (MCI) is a dangerous signal of severe cognitive decline. It can be separated into two steps: early MCI (EMCI) and late MCI (LMCI). As the post-state of MCI and pre-state of Alzheimer's disease (AD), LMCI receives insufficient attention in the field of brain science, causing the internal mechanism of LMCI has not been well understood. To better explore the focus and pathological mechanism of LMCI, a method called genetic evolved random forest (GERF) is applied. Resting functional magnetic resonance imaging (rfMRI) and gene data are obtained from 62 subjects (36 LMCI and 26 normal controls), and Pearson correlation analysis is adopted to perform the multimodal fusion of two types of data to construct fusion features. We identified pathogenic brain regions and genes that are highly related to LMCI using GERF and achieves a good effect. Compared with the normal control (NC) group, the abnormal brain regions of LMCI are PUT.L, PreCG.L, IFGtriang.R, REC.R, DCG.R, PoCG.L, and HES.L, and the pathogenic genes are FHIT, RF00019, FRMD4A, PTPRD, and RBFOX1. More importantly, most of these risk genes and abnormal brain regions have been confirmed to be related to AD and MCI in previous studies. In this study, we mapped them to LMCI with higher accuracies, so as to provide a more robust understanding of the physiological mechanism of MCI.
Collapse
Affiliation(s)
- Xia-An Bi
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, People's Republic of China. .,College of Information Science and Engineering, Hunan Normal University, Changsha, People's Republic of China.
| | - Lou Li
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, People's Republic of China.,College of Information Science and Engineering, Hunan Normal University, Changsha, People's Republic of China
| | - Ruihui Xu
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, People's Republic of China.,College of Information Science and Engineering, Hunan Normal University, Changsha, People's Republic of China
| | - Zhaoxu Xing
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, People's Republic of China.,College of Information Science and Engineering, Hunan Normal University, Changsha, People's Republic of China
| |
Collapse
|
31
|
Song X, Zhou F, Frangi AF, Cao J, Xiao X, Lei Y, Wang T, Lei B. Graph convolution network with similarity awareness and adaptive calibration for disease-induced deterioration prediction. Med Image Anal 2020; 69:101947. [PMID: 33388456 DOI: 10.1016/j.media.2020.101947] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/23/2020] [Accepted: 12/12/2020] [Indexed: 01/04/2023]
Abstract
Graph convolution networks (GCN) have been successfully applied in disease prediction tasks as they capture interactions (i.e., edges and edge weights on the graph) between individual elements. The interactions in existing works are constructed by fusing similarity between imaging information and distance between non-imaging information, whereas disregarding the disease status of those individuals in the training set. Besides, the similarity is being evaluated by computing the correlation distance between feature vectors, which limits prediction performance, especially for predicting significant memory concern (SMC) and mild cognitive impairment (MCI). In this paper, we propose three mechanisms to improve GCN, namely similarity-aware adaptive calibrated GCN (SAC-GCN), for predicting SMC and MCI. First, we design a similarity-aware graph using different receptive fields to consider disease status. The labelled subjects on the graph are only connected with those labelled subjects with the same status. Second, we propose an adaptive mechanism to evaluate similarity. Specifically, we construct initial GCN with evaluating similarity by using traditional correlation distance, then pre-train the initial GCN by using training samples and use it to score all subjects. Then, the difference between these scores replaces correlation distance to update similarity. Last, we devise a calibration mechanism to fuse functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) information into edges. The proposed method is tested on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Experimental results demonstrate that our proposed method is useful to predict disease-induced deterioration and superior to other related algorithms, with a mean classification accuracy of 86.83% in our prediction tasks.
Collapse
Affiliation(s)
- Xuegang Song
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, 518060, China
| | - Feng Zhou
- Department of Industrial and Manufacturing, Systems Engineering, The University of Michigan, Dearborn, MI 42185, USA
| | - Alejandro F Frangi
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, 518060, China; CISTIB Centre for Computational Imaging & Simulation Technologies in Biomedicine, School of Computing, University of Leeds, Leeds LS2 9LU, United Kingdom; LICAMM Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, Leeds LS2 9LU, United Kingdom; Medical Imaging Research Center (MIRC) - University Hospital Gasthuisberg, KU Leuven, Herestraat 49, 3000 Leuven. Belgium
| | - Jiuwen Cao
- Artificial Intelligence Institute, Hangzhou Dianzi University, Zhejiang, 310010, China
| | - Xiaohua Xiao
- First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen, 518050, China
| | - Yi Lei
- First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen, 518050, China
| | - Tianfu Wang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, 518060, China
| | - Baiying Lei
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
32
|
Kang L, Jiang J, Huang J, Zhang T. Identifying Early Mild Cognitive Impairment by Multi-Modality MRI-Based Deep Learning. Front Aging Neurosci 2020; 12:206. [PMID: 33101003 PMCID: PMC7498722 DOI: 10.3389/fnagi.2020.00206] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022] Open
Abstract
Mild cognitive impairment (MCI) is a clinical state with a high risk of conversion to Alzheimer's Disease (AD). Since there is no effective treatment for AD, it is extremely important to diagnose MCI as early as possible, as this makes it possible to delay its progression toward AD. However, it's challenging to identify early MCI (EMCI) because there are only mild changes in the brain structures of patients compared with a normal control (NC). To extract remarkable features for these mild changes, in this paper, a multi-modality diagnosis approach based on deep learning is presented. Firstly, we propose to use structure MRI and diffusion tensor imaging (DTI) images as the multi-modality data to identify EMCI. Then, a convolutional neural network based on transfer learning technique is developed to extract features of the multi-modality data, where an L1-norm is introduced to reduce the feature dimensionality and retrieve essential features for the identification. At last, the classifier produces 94.2% accuracy for EMCI vs. NC on an ADNI dataset. Experimental results show that multi-modality data can provide more useful information to distinguish EMCI from NC compared with single modality data, and the proposed method can improve classification performance, which is beneficial to early intervention of AD. In addition, it is found that DTI image can act as an important biomarker for EMCI from the point of view of a clinical diagnosis.
Collapse
Affiliation(s)
- Li Kang
- College of Information Engineering, Shenzhen University, Shenzhen, China
| | - Jingwan Jiang
- College of Information Engineering, Shenzhen University, Shenzhen, China
| | - Jianjun Huang
- College of Information Engineering, Shenzhen University, Shenzhen, China
| | - Tijiang Zhang
- Department of Radiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
33
|
Dong Z, Du X, Liu Y. Automatic segmentation of left ventricle using parallel end–end deep convolutional neural networks framework. Knowl Based Syst 2020. [DOI: 10.1016/j.knosys.2020.106210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|