1
|
Hezi H, Gelber M, Balabanov A, Maruvka YE, Freiman M. CIMIL-CRC: A clinically-informed multiple instance learning framework for patient-level colorectal cancer molecular subtypes classification from H&E stained images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 259:108513. [PMID: 39581068 DOI: 10.1016/j.cmpb.2024.108513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/02/2024] [Accepted: 11/09/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND AND OBJECTIVE Treatment approaches for colorectal cancer (CRC) are highly dependent on the molecular subtype, as immunotherapy has shown efficacy in cases with microsatellite instability (MSI) but is ineffective for the microsatellite stable (MSS) subtype. There is promising potential in utilizing deep neural networks (DNNs) to automate the differentiation of CRC subtypes by analyzing hematoxylin and eosin (H&E) stained whole-slide images (WSIs). Due to the extensive size of WSIs, multiple instance learning (MIL) techniques are typically explored. However, existing MIL methods focus on identifying the most representative image patches for classification, which may result in the loss of critical information. Additionally, these methods often overlook clinically relevant information, like the tendency for MSI class tumors to predominantly occur on the proximal (right side) colon. METHODS We introduce 'CIMIL-CRC', a DNN framework that: (1) solves the MSI/MSS MIL problem by efficiently combining a pre-trained feature extraction model with principal component analysis (PCA) to aggregate information from all patches, and (2) integrates clinical priors, particularly the tumor location within the colon, into the model to enhance patient-level classification accuracy. We assessed our CIMIL-CRC method using the average area under the receiver operating characteristic curve (AUROC) from a 5-fold cross-validation experimental setup for model development on the TCGA-CRC-DX cohort, contrasting it with a baseline patch-level classification, a MIL-only approach, and a clinically-informed patch-level classification approach. RESULTS Our CIMIL-CRC outperformed all methods (AUROC: 0.92±0.002 (95% CI 0.91-0.92), vs. 0.79±0.02 (95% CI 0.76-0.82), 0.86±0.01 (95% CI 0.85-0.88), and 0.87±0.01 (95% CI 0.86-0.88), respectively). The improvement was statistically significant. To the best of our knowledge, this is the best result achieved for MSI/MSS classification on this dataset. CONCLUSION Our CIMIL-CRC method holds promise for offering insights into the key representations of histopathological images and suggests a straightforward implementation.
Collapse
Affiliation(s)
- Hadar Hezi
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Matan Gelber
- Faculty of Electrical and Computer Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alexander Balabanov
- Faculty of Electrical and Computer Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yosef E Maruvka
- Faculty of Food Engineering and Biotechnology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Moti Freiman
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
2
|
Ou Z, Wang H, Zhang B, Liang H, Hu B, Ren L, Liu Y, Zhang Y, Dai C, Wu H, Li W, Li X. Early identification of stroke through deep learning with multi-modal human speech and movement data. Neural Regen Res 2025; 20:234-241. [PMID: 38767488 PMCID: PMC11246124 DOI: 10.4103/1673-5374.393103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/09/2023] [Accepted: 11/21/2023] [Indexed: 05/22/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202501000-00031/figure1/v/2024-05-14T021156Z/r/image-tiff Early identification and treatment of stroke can greatly improve patient outcomes and quality of life. Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale (CPSS) and the Face Arm Speech Test (FAST) are commonly used for stroke screening, accurate administration is dependent on specialized training. In this study, we proposed a novel multimodal deep learning approach, based on the FAST, for assessing suspected stroke patients exhibiting symptoms such as limb weakness, facial paresis, and speech disorders in acute settings. We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements, facial expressions, and speech tests based on the FAST. We compared the constructed deep learning model, which was designed to process multi-modal datasets, with six prior models that achieved good action classification performance, including the I3D, SlowFast, X3D, TPN, TimeSformer, and MViT. We found that the findings of our deep learning model had a higher clinical value compared with the other approaches. Moreover, the multi-modal model outperformed its single-module variants, highlighting the benefit of utilizing multiple types of patient data, such as action videos and speech audio. These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke, thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting.
Collapse
Affiliation(s)
- Zijun Ou
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Haitao Wang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Bin Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Haobang Liang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Bei Hu
- Department of Emergency Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Longlong Ren
- Department of Emergency Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yanjuan Liu
- Department of Emergency Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chengbo Dai
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Hejun Wu
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Weifeng Li
- Department of Emergency Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
3
|
Elforaici MEA, Montagnon E, Romero FP, Le WT, Azzi F, Trudel D, Nguyen B, Turcotte S, Tang A, Kadoury S. Semi-supervised ViT knowledge distillation network with style transfer normalization for colorectal liver metastases survival prediction. Med Image Anal 2025; 99:103346. [PMID: 39423564 DOI: 10.1016/j.media.2024.103346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/21/2024]
Abstract
Colorectal liver metastases (CLM) affect almost half of all colon cancer patients and the response to systemic chemotherapy plays a crucial role in patient survival. While oncologists typically use tumor grading scores, such as tumor regression grade (TRG), to establish an accurate prognosis on patient outcomes, including overall survival (OS) and time-to-recurrence (TTR), these traditional methods have several limitations. They are subjective, time-consuming, and require extensive expertise, which limits their scalability and reliability. Additionally, existing approaches for prognosis prediction using machine learning mostly rely on radiological imaging data, but recently histological images have been shown to be relevant for survival predictions by allowing to fully capture the complex microenvironmental and cellular characteristics of the tumor. To address these limitations, we propose an end-to-end approach for automated prognosis prediction using histology slides stained with Hematoxylin and Eosin (H&E) and Hematoxylin Phloxine Saffron (HPS). We first employ a Generative Adversarial Network (GAN) for slide normalization to reduce staining variations and improve the overall quality of the images that are used as input to our prediction pipeline. We propose a semi-supervised model to perform tissue classification from sparse annotations, producing segmentation and feature maps. Specifically, we use an attention-based approach that weighs the importance of different slide regions in producing the final classification results. Finally, we exploit the extracted features for the metastatic nodules and surrounding tissue to train a prognosis model. In parallel, we train a vision Transformer model in a knowledge distillation framework to replicate and enhance the performance of the prognosis prediction. We evaluate our approach on an in-house clinical dataset of 258 CLM patients, achieving superior performance compared to other comparative models with a c-index of 0.804 (0.014) for OS and 0.735 (0.016) for TTR, as well as on two public datasets. The proposed approach achieves an accuracy of 86.9% to 90.3% in predicting TRG dichotomization. For the 3-class TRG classification task, the proposed approach yields an accuracy of 78.5% to 82.1%, outperforming the comparative methods. Our proposed pipeline can provide automated prognosis for pathologists and oncologists, and can greatly promote precision medicine progress in managing CLM patients.
Collapse
Affiliation(s)
- Mohamed El Amine Elforaici
- MedICAL Laboratory, Polytechnique Montréal, Montreal, Canada; Centre de recherche du CHUM (CRCHUM), Montreal, Canada.
| | | | - Francisco Perdigón Romero
- MedICAL Laboratory, Polytechnique Montréal, Montreal, Canada; Centre de recherche du CHUM (CRCHUM), Montreal, Canada
| | - William Trung Le
- MedICAL Laboratory, Polytechnique Montréal, Montreal, Canada; Centre de recherche du CHUM (CRCHUM), Montreal, Canada
| | - Feryel Azzi
- Centre de recherche du CHUM (CRCHUM), Montreal, Canada
| | - Dominique Trudel
- Centre de recherche du CHUM (CRCHUM), Montreal, Canada; Université de Montréal, Montreal, Canada
| | | | - Simon Turcotte
- Centre de recherche du CHUM (CRCHUM), Montreal, Canada; Department of surgery, Université de Montréal, Montreal, Canada
| | - An Tang
- Centre de recherche du CHUM (CRCHUM), Montreal, Canada; Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montreal, Canada
| | - Samuel Kadoury
- MedICAL Laboratory, Polytechnique Montréal, Montreal, Canada; Centre de recherche du CHUM (CRCHUM), Montreal, Canada; Université de Montréal, Montreal, Canada
| |
Collapse
|
4
|
Zhao W, Guo Z, Fan Y, Jiang Y, Yeung MCF, Yu L. Aligning knowledge concepts to whole slide images for precise histopathology image analysis. NPJ Digit Med 2024; 7:383. [PMID: 39738468 DOI: 10.1038/s41746-024-01411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025] Open
Abstract
Due to the large size and lack of fine-grained annotation, Whole Slide Images (WSIs) analysis is commonly approached as a Multiple Instance Learning (MIL) problem. However, previous studies only learn from training data, posing a stark contrast to how human clinicians teach each other and reason about histopathologic entities and factors. Here, we present a novel knowledge concept-based MIL framework, named ConcepPath, to fill this gap. Specifically, ConcepPath utilizes GPT-4 to induce reliable disease-specific human expert concepts from medical literature and incorporate them with a group of purely learnable concepts to extract complementary knowledge from training data. In ConcepPath, WSIs are aligned to these linguistic knowledge concepts by utilizing the pathology vision-language model as the basic building component. In the application of lung cancer subtyping, breast cancer HER2 scoring, and gastric cancer immunotherapy-sensitive subtyping tasks, ConcepPath significantly outperformed previous SOTA methods, which lacked the guidance of human expert knowledge.
Collapse
Affiliation(s)
- Weiqin Zhao
- School of Computing and Data Science, The University of Hong Kong, Hong Kong SAR, China
| | - Ziyu Guo
- School of Computing and Data Science, The University of Hong Kong, Hong Kong SAR, China
| | - Yinshuang Fan
- School of Computing and Data Science, The University of Hong Kong, Hong Kong SAR, China
| | - Yuming Jiang
- School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Maximus C F Yeung
- Department of Pathology, The University of Hong Kong, Hong Kong SAR, China.
| | - Lequan Yu
- School of Computing and Data Science, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
5
|
Zhou X, Dai J, Lu Y, Zhao Q, Liu Y, Wang C, Zhao Z, Wang C, Gao Z, Yu Y, Zhao Y, Cao W. Whole slide image based prognosis prediction in rectal cancer using unsupervised artificial intelligence. BMC Cancer 2024; 24:1523. [PMID: 39696090 DOI: 10.1186/s12885-024-13292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Rectal cancer is a common cancer worldwide and lacks effective prognostic markers. The development of prognostic markers by computational pathology methods has attracted increasing attention. This paper aims to construct a prognostic signature from whole slide images for predicting progression-free survival (PFS) of rectal cancer through an unsupervised artificial intelligence algorithm. METHODS A total of 238 patients with rectal cancer from two datasets were collected for the development and validation of the prognostic signature. A tumor detection model was built by transfer learning. Then, on the basis of the tumor patches recognized by the tumor detection model, a convolutional autoencoder model was built for decoding the tumor patches into deep latent features. Next, on the basis of the deep latent features, the tumor patches were divided into different clusters. The cluster number and other hyperparameters were optimized by a nested cross-validation method. The percentage of each cluster from the patient's tumor patches, which is hereafter called PCF, was calculated for prognostic signature construction. The prognostic signature was constructed by Cox proportional hazard regression with L2 regularization. Finally, bioinformatic analysis was performed to explore the underlying biological mechanisms of the PCFs. RESULTS The accuracy of the tumor detection model in distinguishing tumor patches from non-tumor patches achieved 99.3%. The optimal cluster number was determined to be 9. Therfore, 9 PCFs were calculated to construct the prognostic signature. The prognostic signature achieved a concordance index of 0.701 in the validation cohort. The Kaplan-Meier survival curves showed the prognostic signature had good risk stratification ability. Through the bioinformatic analysis, several PCF-associated genes were identified. These genes were enriched in various gene ontology terms. CONCLUSION The developed prognostic signature can effectively predict PFS in patients with rectal cancer and exploration of the underlying biological mechanisms may help to promote its clinical translation.
Collapse
Affiliation(s)
- Xuezhi Zhou
- College of Medical Engineering, Xinxiang Medical University, No. 601, Jinsui Road, Xinxiang, Henan, 453003, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Jing Dai
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26, Yuancunerheng Road, Guangzhou, Guangdong, 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yizhan Lu
- College of Medical Engineering, Xinxiang Medical University, No. 601, Jinsui Road, Xinxiang, Henan, 453003, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Qingqing Zhao
- College of Medical Engineering, Xinxiang Medical University, No. 601, Jinsui Road, Xinxiang, Henan, 453003, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Yong Liu
- College of Medical Engineering, Xinxiang Medical University, No. 601, Jinsui Road, Xinxiang, Henan, 453003, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Chang Wang
- College of Medical Engineering, Xinxiang Medical University, No. 601, Jinsui Road, Xinxiang, Henan, 453003, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Zongya Zhao
- College of Medical Engineering, Xinxiang Medical University, No. 601, Jinsui Road, Xinxiang, Henan, 453003, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Chong Wang
- College of Medical Engineering, Xinxiang Medical University, No. 601, Jinsui Road, Xinxiang, Henan, 453003, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Zhixian Gao
- College of Medical Engineering, Xinxiang Medical University, No. 601, Jinsui Road, Xinxiang, Henan, 453003, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Yi Yu
- College of Medical Engineering, Xinxiang Medical University, No. 601, Jinsui Road, Xinxiang, Henan, 453003, China.
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China.
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China.
| | - Yandong Zhao
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26, Yuancunerheng Road, Guangzhou, Guangdong, 510655, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Wuteng Cao
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26, Yuancunerheng Road, Guangzhou, Guangdong, 510655, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Jiang S, Hondelink L, Suriawinata AA, Hassanpour S. Masked pre-training of transformers for histology image analysis. J Pathol Inform 2024; 15:100386. [PMID: 39006998 PMCID: PMC11246055 DOI: 10.1016/j.jpi.2024.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/02/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024] Open
Abstract
In digital pathology, whole-slide images (WSIs) are widely used for applications such as cancer diagnosis and prognosis prediction. Vision transformer (ViT) models have recently emerged as a promising method for encoding large regions of WSIs while preserving spatial relationships among patches. However, due to the large number of model parameters and limited labeled data, applying transformer models to WSIs remains challenging. In this study, we propose a pretext task to train the transformer model in a self-supervised manner. Our model, MaskHIT, uses the transformer output to reconstruct masked patches, measured by contrastive loss. We pre-trained MaskHIT model using over 7000 WSIs from TCGA and extensively evaluated its performance in multiple experiments, covering survival prediction, cancer subtype classification, and grade prediction tasks. Our experiments demonstrate that the pre-training procedure enables context-aware understanding of WSIs, facilitates the learning of representative histological features based on patch positions and visual patterns, and is essential for the ViT model to achieve optimal results on WSI-level tasks. The pre-trained MaskHIT surpasses various multiple instance learning approaches by 3% and 2% on survival prediction and cancer subtype classification tasks, and also outperforms recent state-of-the-art transformer-based methods. Finally, a comparison between the attention maps generated by the MaskHIT model with pathologist's annotations indicates that the model can accurately identify clinically relevant histological structures on the whole slide for each task.
Collapse
Affiliation(s)
- Shuai Jiang
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Liesbeth Hondelink
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Arief A. Suriawinata
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Saeed Hassanpour
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Department of Epidemiology, Geisel School of Medicine at Dartmouth and the Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
7
|
Hosseini MS, Bejnordi BE, Trinh VQH, Chan L, Hasan D, Li X, Yang S, Kim T, Zhang H, Wu T, Chinniah K, Maghsoudlou S, Zhang R, Zhu J, Khaki S, Buin A, Chaji F, Salehi A, Nguyen BN, Samaras D, Plataniotis KN. Computational pathology: A survey review and the way forward. J Pathol Inform 2024; 15:100357. [PMID: 38420608 PMCID: PMC10900832 DOI: 10.1016/j.jpi.2023.100357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 03/02/2024] Open
Abstract
Computational Pathology (CPath) is an interdisciplinary science that augments developments of computational approaches to analyze and model medical histopathology images. The main objective for CPath is to develop infrastructure and workflows of digital diagnostics as an assistive CAD system for clinical pathology, facilitating transformational changes in the diagnosis and treatment of cancer that are mainly address by CPath tools. With evergrowing developments in deep learning and computer vision algorithms, and the ease of the data flow from digital pathology, currently CPath is witnessing a paradigm shift. Despite the sheer volume of engineering and scientific works being introduced for cancer image analysis, there is still a considerable gap of adopting and integrating these algorithms in clinical practice. This raises a significant question regarding the direction and trends that are undertaken in CPath. In this article we provide a comprehensive review of more than 800 papers to address the challenges faced in problem design all-the-way to the application and implementation viewpoints. We have catalogued each paper into a model-card by examining the key works and challenges faced to layout the current landscape in CPath. We hope this helps the community to locate relevant works and facilitate understanding of the field's future directions. In a nutshell, we oversee the CPath developments in cycle of stages which are required to be cohesively linked together to address the challenges associated with such multidisciplinary science. We overview this cycle from different perspectives of data-centric, model-centric, and application-centric problems. We finally sketch remaining challenges and provide directions for future technical developments and clinical integration of CPath. For updated information on this survey review paper and accessing to the original model cards repository, please refer to GitHub. Updated version of this draft can also be found from arXiv.
Collapse
Affiliation(s)
- Mahdi S. Hosseini
- Department of Computer Science and Software Engineering (CSSE), Concordia Univeristy, Montreal, QC H3H 2R9, Canada
| | | | - Vincent Quoc-Huy Trinh
- Institute for Research in Immunology and Cancer of the University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Lyndon Chan
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Danial Hasan
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Xingwen Li
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Stephen Yang
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Taehyo Kim
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Haochen Zhang
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Theodore Wu
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Kajanan Chinniah
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Sina Maghsoudlou
- Department of Computer Science and Software Engineering (CSSE), Concordia Univeristy, Montreal, QC H3H 2R9, Canada
| | - Ryan Zhang
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Jiadai Zhu
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Samir Khaki
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Andrei Buin
- Huron Digitial Pathology, St. Jacobs, ON N0B 2N0, Canada
| | - Fatemeh Chaji
- Department of Computer Science and Software Engineering (CSSE), Concordia Univeristy, Montreal, QC H3H 2R9, Canada
| | - Ala Salehi
- Department of Electrical and Computer Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Bich Ngoc Nguyen
- University of Montreal Hospital Center, Montreal, QC H2X 0C2, Canada
| | - Dimitris Samaras
- Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, United States
| | - Konstantinos N. Plataniotis
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE), University of Toronto, Toronto, ON M5S 3G4, Canada
| |
Collapse
|
8
|
Katayama A, Aoki Y, Watanabe Y, Horiguchi J, Rakha EA, Oyama T. Current status and prospects of artificial intelligence in breast cancer pathology: convolutional neural networks to prospective Vision Transformers. Int J Clin Oncol 2024; 29:1648-1668. [PMID: 38619651 DOI: 10.1007/s10147-024-02513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
Breast cancer is the most prevalent cancer among women, and its diagnosis requires the accurate identification and classification of histological features for effective patient management. Artificial intelligence, particularly through deep learning, represents the next frontier in cancer diagnosis and management. Notably, the use of convolutional neural networks and emerging Vision Transformers (ViT) has been reported to automate pathologists' tasks, including tumor detection and classification, in addition to improving the efficiency of pathology services. Deep learning applications have also been extended to the prediction of protein expression, molecular subtype, mutation status, therapeutic efficacy, and outcome prediction directly from hematoxylin and eosin-stained slides, bypassing the need for immunohistochemistry or genetic testing. This review explores the current status and prospects of deep learning in breast cancer diagnosis with a focus on whole-slide image analysis. Artificial intelligence applications are increasingly applied to many tasks in breast pathology ranging from disease diagnosis to outcome prediction, thus serving as valuable tools for assisting pathologists and supporting breast cancer management.
Collapse
Affiliation(s)
- Ayaka Katayama
- Diagnostic Pathology, Gunma University Graduate School of Medicine, 3-39-22 Showamachi, Maebashi, Gunma, 371-8511, Japan.
| | - Yuki Aoki
- Center for Mathematics and Data Science, Gunma University, Maebashi, Japan
| | - Yukako Watanabe
- Clinical Training Center, Gunma University Hospital, Maebashi, Japan
| | - Jun Horiguchi
- Department of Breast Surgery, International University of Health and Welfare, Narita, Japan
| | - Emad A Rakha
- Department of Histopathology School of Medicine, University of Nottingham, University Park, Nottingham, UK
- Department of Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Tetsunari Oyama
- Diagnostic Pathology, Gunma University Graduate School of Medicine, 3-39-22 Showamachi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
9
|
Li Y, Xiong X, Liu X, Wu Y, Li X, Liu B, Lin B, Li Y, Xu B. An interpretable deep learning model for detecting BRCA pathogenic variants of breast cancer from hematoxylin and eosin-stained pathological images. PeerJ 2024; 12:e18098. [PMID: 39484212 PMCID: PMC11526788 DOI: 10.7717/peerj.18098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/26/2024] [Indexed: 11/03/2024] Open
Abstract
Background Determining the status of breast cancer susceptibility genes (BRCA) is crucial for guiding breast cancer treatment. Nevertheless, the need for BRCA genetic testing among breast cancer patients remains unmet due to high costs and limited resources. This study aimed to develop a Bi-directional Self-Attention Multiple Instance Learning (BiAMIL) algorithm to detect BRCA status from hematoxylin and eosin (H&E) pathological images. Methods A total of 319 histopathological slides from 254 breast cancer patients were included, comprising two dependent cohorts. Following image pre-processing, 633,484 tumor tiles from the training dataset were employed to train the self-developed deep-learning model. The performance of the network was evaluated in the internal and external test sets. Results BiAMIL achieved AUC values of 0.819 (95% CI [0.673-0.965]) in the internal test set, and 0.817 (95% CI [0.712-0.923]) in the external test set. To explore the relationship between BRCA status and interpretable morphological features in pathological images, we utilized Class Activation Mapping (CAM) technique and cluster analysis to investigate the connections between BRCA gene mutation status and tissue and cell features. Significantly, we observed that tumor-infiltrating lymphocytes and the morphological characteristics of tumor cells appeared to be potential features associated with BRCA status. Conclusions An interpretable deep neural network model based on the attention mechanism was developed to predict the BRCA status in breast cancer. Keywords: Breast cancer, BRCA, deep learning, self-attention, interpretability.
Collapse
Affiliation(s)
- Yi Li
- School of Medicine, Chongqing University, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaomin Xiong
- School of Medicine, Chongqing University, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaohua Liu
- Bioengineering College of Chongqing University, Chongqing, China
| | - Yihan Wu
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaoju Li
- Department of Pathology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Bo Liu
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| | - Bo Lin
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| | - Yu Li
- Department of Pathology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Bo Xu
- School of Medicine, Chongqing University, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
10
|
Wagner VM. Is Histopathology Deep Learning Artificial Intelligence the Future of Precision Oncology? J Clin Oncol 2024; 42:3513-3516. [PMID: 39259925 PMCID: PMC11556860 DOI: 10.1200/jco-24-01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/18/2024] [Indexed: 09/13/2024] Open
Abstract
In the article that accompanies this editorial, Bergstrom et al. present DeepHRD, a deep learning algorithm that predicts homologous recombination deficiency (HRD) and clinical outcomes directly from digital histopathology slides, demonstrating its accuracy and generalizability across multiple independent cohorts of breast and ovarian cancer patients. This deep learning approach has the potential to be the next wave of precision medicine in oncology care but there are many challenges to overcome before wide clinical adoption including robust validation, prospective evaluation and regulatory approval.
Collapse
Affiliation(s)
- Vincent M Wagner
- The University of Iowa, Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Iowa City, IA
| |
Collapse
|
11
|
Qin J, He Y, Liang Y, Kang L, Zhao J, Ding B. Cell comparative learning: A cervical cytopathology whole slide image classification method using normal and abnormal cells. Comput Med Imaging Graph 2024; 117:102427. [PMID: 39216344 DOI: 10.1016/j.compmedimag.2024.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 06/14/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Automated cervical cancer screening through computer-assisted diagnosis has shown considerable potential to improve screening accessibility and reduce associated costs and errors. However, classification performance on whole slide images (WSIs) remains suboptimal due to patient-specific variations. To improve the precision of the screening, pathologists not only analyze the characteristics of suspected abnormal cells, but also compare them with normal cells. Motivated by this practice, we propose a novel cervical cell comparative learning method that leverages pathologist knowledge to learn the differences between normal and suspected abnormal cells within the same WSI. Our method employs two pre-trained YOLOX models to detect suspected abnormal and normal cells in a given WSI. A self-supervised model then extracts features for the detected cells. Subsequently, a tailored Transformer encoder fuses the cell features to obtain WSI instance embeddings. Finally, attention-based multi-instance learning is applied to achieve classification. The experimental results show an AUC of 0.9319 for our proposed method. Moreover, the method achieved professional pathologist-level performance, indicating its potential for clinical applications.
Collapse
Affiliation(s)
- Jian Qin
- School of Computer Science and Technology, Anhui University of Technology, Maanshan, China.
| | - Yongjun He
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.
| | - Yiqin Liang
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
| | - Lanlan Kang
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
| | - Jing Zhao
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, China
| | - Bo Ding
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
| |
Collapse
|
12
|
Su Z, Afzaal U, Niu S, de Toro MM, Xing F, Ruiz J, Gurcan MN, Li W, Niazi MKK. Deep Learning Model for Predicting Lung Adenocarcinoma Recurrence from Whole Slide Images. Cancers (Basel) 2024; 16:3097. [PMID: 39272955 PMCID: PMC11394488 DOI: 10.3390/cancers16173097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related death in the United States. Lung adenocarcinoma (LUAD) is one of the most common subtypes of lung cancer that can be treated with resection. While resection can be curative, there is a significant risk of recurrence, which necessitates close monitoring and additional treatment planning. Traditionally, microscopic evaluation of tumor grading in resected specimens is a standard pathologic practice that informs subsequent therapy and patient management. However, this approach is labor-intensive and subject to inter-observer variability. To address the challenge of accurately predicting recurrence, we propose a deep learning-based model to predict the 5-year recurrence of LUAD in patients following surgical resection. In our model, we introduce an innovative dual-attention architecture that significantly enhances computational efficiency. Our model demonstrates excellent performance in recurrent risk stratification, achieving a hazard ratio of 2.29 (95% CI: 1.69-3.09, p < 0.005), which outperforms several existing deep learning methods. This study contributes to ongoing efforts to use deep learning models for automatically learning histologic patterns from whole slide images (WSIs) and predicting LUAD recurrence risk, thereby improving the accuracy and efficiency of treatment decision making.
Collapse
Affiliation(s)
- Ziyu Su
- Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Usman Afzaal
- Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Shuo Niu
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | | | - Fei Xing
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Jimmy Ruiz
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Metin N Gurcan
- Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Wencheng Li
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - M Khalid Khan Niazi
- Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
13
|
Zheng Y, Conrad RD, Green EJ, Burks EJ, Betke M, Beane JE, Kolachalama VB. Graph Attention-Based Fusion of Pathology Images and Gene Expression for Prediction of Cancer Survival. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3085-3097. [PMID: 38587959 PMCID: PMC11374469 DOI: 10.1109/tmi.2024.3386108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Multimodal machine learning models are being developed to analyze pathology images and other modalities, such as gene expression, to gain clinical and biological insights. However, most frameworks for multimodal data fusion do not fully account for the interactions between different modalities. Here, we present an attention-based fusion architecture that integrates a graph representation of pathology images with gene expression data and concomitantly learns from the fused information to predict patient-specific survival. In our approach, pathology images are represented as undirected graphs, and their embeddings are combined with embeddings of gene expression signatures using an attention mechanism to stratify tumors by patient survival. We show that our framework improves the survival prediction of human non-small cell lung cancers, outperforming existing state-of-the-art approaches that leverage multimodal data. Our framework can facilitate spatial molecular profiling to identify tumor heterogeneity using pathology images and gene expression data, complementing results obtained from more expensive spatial transcriptomic and proteomic technologies.
Collapse
|
14
|
Aftab R, Yan Q, Zhao J, Yong G, Huajie Y, Urrehman Z, Mohammad Khalid F. Neighborhood attention transformer multiple instance learning for whole slide image classification. Front Oncol 2024; 14:1389396. [PMID: 39267847 PMCID: PMC11390382 DOI: 10.3389/fonc.2024.1389396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/20/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Pathologists rely on whole slide images (WSIs) to diagnose cancer by identifying tumor cells and subtypes. Deep learning models, particularly weakly supervised ones, classify WSIs using image tiles but may overlook false positives and negatives due to the heterogeneous nature of tumors. Both cancerous and healthy cells can proliferate in patterns that extend beyond individual tiles, leading to errors at the tile level that result in inaccurate tumor-level classifications. Methods To address this limitation, we introduce NATMIL (Neighborhood Attention Transformer Multiple Instance Learning), which utilizes the Neighborhood Attention Transformer to incorporate contextual dependencies among WSI tiles. NATMIL enhances multiple instance learning by integrating a broader tissue context into the model. Our approach enhances the accuracy of tumor classification by considering the broader tissue context, thus reducing errors associated with isolated tile analysis. Results We conducted a quantitative analysis to evaluate NATMIL's performance against other weakly supervised algorithms. When applied to subtyping non-small cell lung cancer (NSCLC) and lymph node (LN) tumors, NATMIL demonstrated superior accuracy. Specifically, NATMIL achieved accuracy values of 89.6% on the Camelyon dataset and 88.1% on the TCGA-LUSC dataset, outperforming existing methods. These results underscore NATMIL's potential as a robust tool for improving the precision of cancer diagnosis using WSIs. Discussion Our findings demonstrate that NATMIL significantly improves tumor classification accuracy by reducing errors associated with isolated tile analysis. The integration of contextual dependencies enhances the precision of cancer diagnosis using WSIs, highlighting NATMILs´ potential as a robust tool in pathology.
Collapse
Affiliation(s)
- Rukhma Aftab
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Qiang Yan
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, Shanxi, China
- School of Software, North University of China, Taiyuan, Shanxi, China
| | - Juanjuan Zhao
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Gao Yong
- Department of Respiratory and Critical Care Medicine, Sinopharm Tongmei General Hospital, Datong, Shanxi, China
| | - Yue Huajie
- First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zia Urrehman
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Faizi Mohammad Khalid
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, Shanxi, China
| |
Collapse
|
15
|
Neagu AI, Poalelungi DG, Fulga A, Neagu M, Fulga I, Nechita A. Enhanced Immunohistochemistry Interpretation with a Machine Learning-Based Expert System. Diagnostics (Basel) 2024; 14:1853. [PMID: 39272638 PMCID: PMC11394116 DOI: 10.3390/diagnostics14171853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND In recent decades, machine-learning (ML) technologies have advanced the management of high-dimensional and complex cancer data by developing reliable and user-friendly automated diagnostic tools for clinical applications. Immunohistochemistry (IHC) is an essential staining method that enables the identification of cellular origins by analyzing the expression of specific antigens within tissue samples. The aim of this study was to identify a model that could predict histopathological diagnoses based on specific immunohistochemical markers. METHODS The XGBoost learning model was applied, where the input variable (target variable) was the histopathological diagnosis and the predictors (independent variables influencing the target variable) were the immunohistochemical markers. RESULTS Our study demonstrated a precision rate of 85.97% within the dataset, indicating a high level of performance and suggesting that the model is generally reliable in producing accurate predictions. CONCLUSIONS This study demonstrated the feasibility and clinical efficacy of utilizing the probabilistic decision tree algorithm to differentiate tumor diagnoses according to immunohistochemistry profiles.
Collapse
Affiliation(s)
- Anca Iulia Neagu
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AI Cuza St., 800010 Galati, Romania
- Saint John Clinical Emergency Hospital for Children, 800487 Galati, Romania
| | - Diana Gina Poalelungi
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AI Cuza St., 800010 Galati, Romania
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei St., 800578 Galati, Romania
| | - Ana Fulga
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AI Cuza St., 800010 Galati, Romania
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei St., 800578 Galati, Romania
| | - Marius Neagu
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AI Cuza St., 800010 Galati, Romania
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei St., 800578 Galati, Romania
| | - Iuliu Fulga
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AI Cuza St., 800010 Galati, Romania
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei St., 800578 Galati, Romania
| | - Aurel Nechita
- Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 35 AI Cuza St., 800010 Galati, Romania
- Saint John Clinical Emergency Hospital for Children, 800487 Galati, Romania
| |
Collapse
|
16
|
Hölscher DL, Bülow RD. Decoding pathology: the role of computational pathology in research and diagnostics. Pflugers Arch 2024:10.1007/s00424-024-03002-2. [PMID: 39095655 DOI: 10.1007/s00424-024-03002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
Traditional histopathology, characterized by manual quantifications and assessments, faces challenges such as low-throughput and inter-observer variability that hinder the introduction of precision medicine in pathology diagnostics and research. The advent of digital pathology allowed the introduction of computational pathology, a discipline that leverages computational methods, especially based on deep learning (DL) techniques, to analyze histopathology specimens. A growing body of research shows impressive performances of DL-based models in pathology for a multitude of tasks, such as mutation prediction, large-scale pathomics analyses, or prognosis prediction. New approaches integrate multimodal data sources and increasingly rely on multi-purpose foundation models. This review provides an introductory overview of advancements in computational pathology and discusses their implications for the future of histopathology in research and diagnostics.
Collapse
Affiliation(s)
- David L Hölscher
- Department for Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
- Institute for Pathology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Roman D Bülow
- Institute for Pathology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
17
|
Bazargani R, Fazli L, Gleave M, Goldenberg L, Bashashati A, Salcudean S. Multi-scale relational graph convolutional network for multiple instance learning in histopathology images. Med Image Anal 2024; 96:103197. [PMID: 38805765 DOI: 10.1016/j.media.2024.103197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
Graph convolutional neural networks have shown significant potential in natural and histopathology images. However, their use has only been studied in a single magnification or multi-magnification with either homogeneous graphs or only different node types. In order to leverage the multi-magnification information and improve message passing with graph convolutional networks, we handle different embedding spaces at each magnification by introducing the Multi-Scale Relational Graph Convolutional Network (MS-RGCN) as a multiple instance learning method. We model histopathology image patches and their relation with neighboring patches and patches at other scales (i.e., magnifications) as a graph. We define separate message-passing neural networks based on node and edge types to pass the information between different magnification embedding spaces. We experiment on prostate cancer histopathology images to predict the grade groups based on the extracted features from patches. We also compare our MS-RGCN with multiple state-of-the-art methods with evaluations on several source and held-out datasets. Our method outperforms the state-of-the-art on all of the datasets and image types consisting of tissue microarrays, whole-mount slide regions, and whole-slide images. Through an ablation study, we test and show the value of the pertinent design features of the MS-RGCN.
Collapse
Affiliation(s)
- Roozbeh Bazargani
- Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Ladan Fazli
- The Vancouver Prostate Centre, 2660 Oak St, Vancouver, BC V6H 3Z6, Canada; Department of Urologic Sciences, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada
| | - Martin Gleave
- The Vancouver Prostate Centre, 2660 Oak St, Vancouver, BC V6H 3Z6, Canada; Department of Urologic Sciences, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada
| | - Larry Goldenberg
- The Vancouver Prostate Centre, 2660 Oak St, Vancouver, BC V6H 3Z6, Canada; Department of Urologic Sciences, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada
| | - Ali Bashashati
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Department of Pathology & Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 1Z7, Canada.
| | - Septimiu Salcudean
- Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada; School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
18
|
Parvaiz A, Nasir ES, Fraz MM. From Pixels to Prognosis: A Survey on AI-Driven Cancer Patient Survival Prediction Using Digital Histology Images. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1728-1751. [PMID: 38429563 PMCID: PMC11300721 DOI: 10.1007/s10278-024-01049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/30/2023] [Accepted: 12/20/2023] [Indexed: 03/03/2024]
Abstract
Survival analysis is an integral part of medical statistics that is extensively utilized to establish prognostic indices for mortality or disease recurrence, assess treatment efficacy, and tailor effective treatment plans. The identification of prognostic biomarkers capable of predicting patient survival is a primary objective in the field of cancer research. With the recent integration of digital histology images into routine clinical practice, a plethora of Artificial Intelligence (AI)-based methods for digital pathology has emerged in scholarly literature, facilitating patient survival prediction. These methods have demonstrated remarkable proficiency in analyzing and interpreting whole slide images, yielding results comparable to those of expert pathologists. The complexity of AI-driven techniques is magnified by the distinctive characteristics of digital histology images, including their gigapixel size and diverse tissue appearances. Consequently, advanced patch-based methods are employed to effectively extract features that correlate with patient survival. These computational methods significantly enhance survival prediction accuracy and augment prognostic capabilities in cancer patients. The review discusses the methodologies employed in the literature, their performance metrics, ongoing challenges, and potential solutions for future advancements. This paper explains survival analysis and feature extraction methods for analyzing cancer patients. It also compiles essential acronyms related to cancer precision medicine. Furthermore, it is noteworthy that this is the inaugural review paper in the field. The target audience for this interdisciplinary review comprises AI practitioners, medical statisticians, and progressive oncologists who are enthusiastic about translating AI-driven solutions into clinical practice. We expect this comprehensive review article to guide future research directions in the field of cancer research.
Collapse
Affiliation(s)
- Arshi Parvaiz
- National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Esha Sadia Nasir
- National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | | |
Collapse
|
19
|
Tang L, Diao S, Li C, He M, Ru K, Qin W. Global contextual representation via graph-transformer fusion for hepatocellular carcinoma prognosis in whole-slide images. Comput Med Imaging Graph 2024; 115:102378. [PMID: 38640621 DOI: 10.1016/j.compmedimag.2024.102378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/21/2024]
Abstract
Current methods of digital pathological images typically employ small image patches to learn local representative features to overcome the issues of computationally heavy and memory limitations. However, the global contextual features are not fully considered in whole-slide images (WSIs). Here, we designed a hybrid model that utilizes Graph Neural Network (GNN) module and Transformer module for the representation of global contextual features, called TransGNN. GNN module built a WSI-Graph for the foreground area of a WSI for explicitly capturing structural features, and the Transformer module through the self-attention mechanism implicitly learned the global context information. The prognostic markers of hepatocellular carcinoma (HCC) prognostic biomarkers were used to illustrate the importance of global contextual information in cancer histopathological analysis. Our model was validated using 362 WSIs from 355 HCC patients diagnosed from The Cancer Genome Atlas (TCGA). It showed impressive performance with a Concordance Index (C-Index) of 0.7308 (95% Confidence Interval (CI): (0.6283-0.8333)) for overall survival prediction and achieved the best performance among all models. Additionally, our model achieved an area under curve of 0.7904, 0.8087, and 0.8004 for 1-year, 3-year, and 5-year survival predictions, respectively. We further verified the superior performance of our model in HCC risk stratification and its clinical value through Kaplan-Meier curve and univariate and multivariate COX regression analysis. Our research demonstrated that TransGNN effectively utilized the context information of WSIs and contributed to the clinical prognostic evaluation of HCC.
Collapse
Affiliation(s)
- Luyu Tang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Songhui Diao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chao Li
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK; School of Medicine, University of Dundee, Scotland, UK
| | - Miaoxia He
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Kun Ru
- Department of Pathology and Lab Medicine, Shandong Cancer Hospital, Jinan 250117, China
| | - Wenjian Qin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
20
|
Dominguez-Morales JP, Duran-Lopez L, Marini N, Vicente-Diaz S, Linares-Barranco A, Atzori M, Müller H. A systematic comparison of deep learning methods for Gleason grading and scoring. Med Image Anal 2024; 95:103191. [PMID: 38728903 DOI: 10.1016/j.media.2024.103191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/16/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Prostate cancer is the second most frequent cancer in men worldwide after lung cancer. Its diagnosis is based on the identification of the Gleason score that evaluates the abnormality of cells in glands through the analysis of the different Gleason patterns within tissue samples. The recent advancements in computational pathology, a domain aiming at developing algorithms to automatically analyze digitized histopathology images, lead to a large variety and availability of datasets and algorithms for Gleason grading and scoring. However, there is no clear consensus on which methods are best suited for each problem in relation to the characteristics of data and labels. This paper provides a systematic comparison on nine datasets with state-of-the-art training approaches for deep neural networks (including fully-supervised learning, weakly-supervised learning, semi-supervised learning, Additive-MIL, Attention-Based MIL, Dual-Stream MIL, TransMIL and CLAM) applied to Gleason grading and scoring tasks. The nine datasets are collected from pathology institutes and openly accessible repositories. The results show that the best methods for Gleason grading and Gleason scoring tasks are fully supervised learning and CLAM, respectively, guiding researchers to the best practice to adopt depending on the task to solve and the labels that are available.
Collapse
Affiliation(s)
- Juan P Dominguez-Morales
- Robotics and Technology of Computers Lab., ETSII-EPS, Universidad de Sevilla, Sevilla 41012, Spain; SCORE Lab, I3US. Universidad de Sevilla, Spain.
| | - Lourdes Duran-Lopez
- Robotics and Technology of Computers Lab., ETSII-EPS, Universidad de Sevilla, Sevilla 41012, Spain; SCORE Lab, I3US. Universidad de Sevilla, Spain
| | - Niccolò Marini
- Information Systems Institute, University of Applied Sciences Western Switzerland (HES-SO Valais), Technopôle 3, Sierre 3960, Switzerland; Centre Universitaire d'Informatique, University of Geneva, Carouge 1227, Switzerland
| | - Saturnino Vicente-Diaz
- Robotics and Technology of Computers Lab., ETSII-EPS, Universidad de Sevilla, Sevilla 41012, Spain; SCORE Lab, I3US. Universidad de Sevilla, Spain
| | - Alejandro Linares-Barranco
- Robotics and Technology of Computers Lab., ETSII-EPS, Universidad de Sevilla, Sevilla 41012, Spain; SCORE Lab, I3US. Universidad de Sevilla, Spain
| | - Manfredo Atzori
- Information Systems Institute, University of Applied Sciences Western Switzerland (HES-SO Valais), Technopôle 3, Sierre 3960, Switzerland; Department of Neuroscience, University of Padua, Via Giustiniani 2, Padua, 35128, Italy
| | - Henning Müller
- Information Systems Institute, University of Applied Sciences Western Switzerland (HES-SO Valais), Technopôle 3, Sierre 3960, Switzerland; Medical faculty, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
21
|
Hermoza R, Nascimento JC, Carneiro G. Weakly-supervised preclinical tumor localization associated with survival prediction from lung cancer screening Chest X-ray images. Comput Med Imaging Graph 2024; 115:102395. [PMID: 38729092 DOI: 10.1016/j.compmedimag.2024.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 04/13/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
In this paper, we hypothesize that it is possible to localize image regions of preclinical tumors in a Chest X-ray (CXR) image by a weakly-supervised training of a survival prediction model using a dataset containing CXR images of healthy patients and their time-to-death label. These visual explanations can empower clinicians in early lung cancer detection and increase patient awareness of their susceptibility to the disease. To test this hypothesis, we train a censor-aware multi-class survival prediction deep learning classifier that is robust to imbalanced training, where classes represent quantized number of days for time-to-death prediction. Such multi-class model allows us to use post-hoc interpretability methods, such as Grad-CAM, to localize image regions of preclinical tumors. For the experiments, we propose a new benchmark based on the National Lung Cancer Screening Trial (NLST) dataset to test weakly-supervised preclinical tumor localization and survival prediction models, and results suggest that our proposed method shows state-of-the-art C-index survival prediction and weakly-supervised preclinical tumor localization results. To our knowledge, this constitutes a pioneer approach in the field that is able to produce visual explanations of preclinical events associated with survival prediction results.
Collapse
Affiliation(s)
- Renato Hermoza
- Australian Institute for Machine Learning, The University of Adelaide, Australia.
| | - Jacinto C Nascimento
- Institute for Systems and Robotics (ISR/IST), LARSyS, Instituto Superior Técnico, Universidade de Lisboa, Portugal.
| | - Gustavo Carneiro
- Centre for Vision, Speech and Signal Processing (CVSSP), The University of Surrey, UK.
| |
Collapse
|
22
|
Volinsky-Fremond S, Horeweg N, Andani S, Barkey Wolf J, Lafarge MW, de Kroon CD, Ørtoft G, Høgdall E, Dijkstra J, Jobsen JJ, Lutgens LCHW, Powell ME, Mileshkin LR, Mackay H, Leary A, Katsaros D, Nijman HW, de Boer SM, Nout RA, de Bruyn M, Church D, Smit VTHBM, Creutzberg CL, Koelzer VH, Bosse T. Prediction of recurrence risk in endometrial cancer with multimodal deep learning. Nat Med 2024; 30:1962-1973. [PMID: 38789645 PMCID: PMC11271412 DOI: 10.1038/s41591-024-02993-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/11/2024] [Indexed: 05/26/2024]
Abstract
Predicting distant recurrence of endometrial cancer (EC) is crucial for personalized adjuvant treatment. The current gold standard of combined pathological and molecular profiling is costly, hampering implementation. Here we developed HECTOR (histopathology-based endometrial cancer tailored outcome risk), a multimodal deep learning prognostic model using hematoxylin and eosin-stained, whole-slide images and tumor stage as input, on 2,072 patients from eight EC cohorts including the PORTEC-1/-2/-3 randomized trials. HECTOR demonstrated C-indices in internal (n = 353) and two external (n = 160 and n = 151) test sets of 0.789, 0.828 and 0.815, respectively, outperforming the current gold standard, and identified patients with markedly different outcomes (10-year distant recurrence-free probabilities of 97.0%, 77.7% and 58.1% for HECTOR low-, intermediate- and high-risk groups, respectively, by Kaplan-Meier analysis). HECTOR also predicted adjuvant chemotherapy benefit better than current methods. Morphological and genomic feature extraction identified correlates of HECTOR risk groups, some with therapeutic potential. HECTOR improves on the current gold standard and may help delivery of personalized treatment in EC.
Collapse
Affiliation(s)
| | - Nanda Horeweg
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sonali Andani
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
- Department of Pathology and Molecular Pathology, University Hospital, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jurriaan Barkey Wolf
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maxime W Lafarge
- Department of Pathology and Molecular Pathology, University Hospital, University of Zurich, Zurich, Switzerland
| | - Cor D de Kroon
- Department of Gynecology and Obstetrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gitte Ørtoft
- Department of Gynecology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Estrid Høgdall
- Department of Pathology, Herlev University Hospital, Herlev, Denmark
| | - Jouke Dijkstra
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan J Jobsen
- Department of Radiation Oncology, Medisch Spectrum Twente, Enschede, The Netherlands
| | | | - Melanie E Powell
- Department of Clinical Oncology, Barts Health NHS Trust, London, UK
| | - Linda R Mileshkin
- Department of Medical Oncology, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
| | - Helen Mackay
- Department of Medical Oncology and Hematology, Odette Cancer Center Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
| | - Alexandra Leary
- Department Medical Oncology, Gustave Roussy Institute, Villejuif, France
| | - Dionyssios Katsaros
- Department of Surgical Sciences, Gynecologic Oncology, Città della Salute and S Anna Hospital, University of Turin, Turin, Italy
| | - Hans W Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephanie M de Boer
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Remi A Nout
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - David Church
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Comprehensive Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Vincent T H B M Smit
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Carien L Creutzberg
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Viktor H Koelzer
- Department of Pathology and Molecular Pathology, University Hospital, University of Zurich, Zurich, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Tjalling Bosse
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
23
|
Claudio Quiros A, Coudray N, Yeaton A, Yang X, Liu B, Le H, Chiriboga L, Karimkhan A, Narula N, Moore DA, Park CY, Pass H, Moreira AL, Le Quesne J, Tsirigos A, Yuan K. Mapping the landscape of histomorphological cancer phenotypes using self-supervised learning on unannotated pathology slides. Nat Commun 2024; 15:4596. [PMID: 38862472 PMCID: PMC11525555 DOI: 10.1038/s41467-024-48666-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/08/2024] [Indexed: 06/13/2024] Open
Abstract
Cancer diagnosis and management depend upon the extraction of complex information from microscopy images by pathologists, which requires time-consuming expert interpretation prone to human bias. Supervised deep learning approaches have proven powerful, but are inherently limited by the cost and quality of annotations used for training. Therefore, we present Histomorphological Phenotype Learning, a self-supervised methodology requiring no labels and operating via the automatic discovery of discriminatory features in image tiles. Tiles are grouped into morphologically similar clusters which constitute an atlas of histomorphological phenotypes (HP-Atlas), revealing trajectories from benign to malignant tissue via inflammatory and reactive phenotypes. These clusters have distinct features which can be identified using orthogonal methods, linking histologic, molecular and clinical phenotypes. Applied to lung cancer, we show that they align closely with patient survival, with histopathologically recognised tumor types and growth patterns, and with transcriptomic measures of immunophenotype. These properties are maintained in a multi-cancer study.
Collapse
Affiliation(s)
- Adalberto Claudio Quiros
- School of Computing Science, University of Glasgow, Glasgow, Scotland, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Nicolas Coudray
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Medicine, Division of Precision Medicine, NYU Grossman School of Medicine, New York, USA
| | - Anna Yeaton
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Xinyu Yang
- School of Computing Science, University of Glasgow, Glasgow, Scotland, UK
| | - Bojing Liu
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Soln, Sweden
| | - Hortense Le
- Department of Medicine, Division of Precision Medicine, NYU Grossman School of Medicine, New York, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Luis Chiriboga
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Afreen Karimkhan
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Navneet Narula
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - David A Moore
- Department of Cellular Pathology, University College London Hospital, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Christopher Y Park
- Department of Medicine, Division of Precision Medicine, NYU Grossman School of Medicine, New York, USA
| | - Harvey Pass
- Department of Cardiothoracic Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Andre L Moreira
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - John Le Quesne
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK.
- Cancer Research UK Scotland Institute, Glasgow, Scotland, UK.
- Queen Elizabeth University Hospital, Greater Glasgow and Clyde NHS Trust, Glasgow, Scotland, UK.
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Medicine, Division of Precision Medicine, NYU Grossman School of Medicine, New York, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
| | - Ke Yuan
- School of Computing Science, University of Glasgow, Glasgow, Scotland, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK.
- Cancer Research UK Scotland Institute, Glasgow, Scotland, UK.
| |
Collapse
|
24
|
Shao W, Shi H, Liu J, Zuo Y, Sun L, Xia T, Chen W, Wan P, Sheng J, Zhu Q, Zhang D. Multi-Instance Multi-Task Learning for Joint Clinical Outcome and Genomic Profile Predictions From the Histopathological Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2266-2278. [PMID: 38319755 DOI: 10.1109/tmi.2024.3362852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
With the remarkable success of digital histopathology and the deep learning technology, many whole-slide pathological images (WSIs) based deep learning models are designed to help pathologists diagnose human cancers. Recently, rather than predicting categorical variables as in cancer diagnosis, several deep learning studies are also proposed to estimate the continuous variables such as the patients' survival or their transcriptional profile. However, most of the existing studies focus on conducting these predicting tasks separately, which overlooks the useful intrinsic correlation among them that can boost the prediction performance of each individual task. In addition, it is sill challenge to design the WSI-based deep learning models, since a WSI is with huge size but annotated with coarse label. In this study, we propose a general multi-instance multi-task learning framework (HistMIMT) for multi-purpose prediction from WSIs. Specifically, we firstly propose a novel multi-instance learning module (TMICS) considering both common and specific task information across different tasks to generate bag representation for each individual task. Then, a soft-mask based fusion module with channel attention (SFCA) is developed to leverage useful information from the related tasks to help improve the prediction performance on target task. We evaluate our method on three cancer cohorts derived from the Cancer Genome Atlas (TCGA). For each cohort, our multi-purpose prediction tasks range from cancer diagnosis, survival prediction and estimating the transcriptional profile of gene TP53. The experimental results demonstrated that HistMIMT can yield better outcome on all clinical prediction tasks than its competitors.
Collapse
|
25
|
Zhao W, Chen W, Li G, Lei D, Yang J, Chen Y, Jiang Y, Wu J, Ni B, Sun Y, Wang S, Sun Y, Li M, Liu J. GMILT: A Novel Transformer Network That Can Noninvasively Predict EGFR Mutation Status. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:7324-7338. [PMID: 35862326 DOI: 10.1109/tnnls.2022.3190671] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Noninvasively and accurately predicting the epidermal growth factor receptor (EGFR) mutation status is a clinically vital problem. Moreover, further identifying the most suspicious area related to the EGFR mutation status can guide the biopsy to avoid false negatives. Deep learning methods based on computed tomography (CT) images may improve the noninvasive prediction of EGFR mutation status and potentially help clinicians guide biopsies by visual methods. Inspired by the potential inherent links between EGFR mutation status and invasiveness information, we hypothesized that the predictive performance of a deep learning network can be improved through extra utilization of the invasiveness information. Here, we created a novel explainable transformer network for EGFR classification named gated multiple instance learning transformer (GMILT) by integrating multi-instance learning and discriminative weakly supervised feature learning. Pathological invasiveness information was first introduced into the multitask model as embeddings. GMILT was trained and validated on a total of 512 patients with adenocarcinoma and tested on three datasets (the internal test dataset, the external test dataset, and The Cancer Imaging Archive (TCIA) public dataset). The performance (area under the curve (AUC) =0.772 on the internal test dataset) of GMILT exceeded that of previously published methods and radiomics-based methods (i.e., random forest and support vector machine) and attained a preferable generalization ability (AUC =0.856 in the TCIA test dataset and AUC =0.756 in the external dataset). A diameter-based subgroup analysis further verified the efficiency of our model (most of the AUCs exceeded 0.772) to noninvasively predict EGFR mutation status from computed tomography (CT) images. In addition, because our method also identified the "core area" of the most suspicious area related to the EGFR mutation status, it has the potential ability to guide biopsies.
Collapse
|
26
|
Gao R, Yuan X, Ma Y, Wei T, Johnston L, Shao Y, Lv W, Zhu T, Zhang Y, Zheng J, Chen G, Sun J, Wang YG, Yu Z. Harnessing TME depicted by histological images to improve cancer prognosis through a deep learning system. Cell Rep Med 2024; 5:101536. [PMID: 38697103 PMCID: PMC11149411 DOI: 10.1016/j.xcrm.2024.101536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024]
Abstract
Spatial transcriptomics (ST) provides insights into the tumor microenvironment (TME), which is closely associated with cancer prognosis, but ST has limited clinical availability. In this study, we provide a powerful deep learning system to augment TME information based on histological images for patients without ST data, thereby empowering precise cancer prognosis. The system provides two connections to bridge existing gaps. The first is the integrated graph and image deep learning (IGI-DL) model, which predicts ST expression based on histological images with a 0.171 increase in mean correlation across three cancer types compared with five existing methods. The second connection is the cancer prognosis prediction model, based on TME depicted by spatial gene expression. Our survival model, using graphs with predicted ST features, achieves superior accuracy with a concordance index of 0.747 and 0.725 for The Cancer Genome Atlas breast cancer and colorectal cancer cohorts, outperforming other survival models. For the external Molecular and Cellular Oncology colorectal cancer cohort, our survival model maintains a stable advantage.
Collapse
Affiliation(s)
- Ruitian Gao
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Yuan
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanran Ma
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ting Wei
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Luke Johnston
- School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanfei Shao
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenwen Lv
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tengteng Zhu
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yue Zhang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junke Zheng
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guoqiang Chen
- State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Sun
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Yu Guang Wang
- School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Zhangjiang Institute of Advanced Research, Shanghai Jiao Tong University, Shanghai 201203, China.
| | - Zhangsheng Yu
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai 200240, China; School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
27
|
Deng R, Cui C, Remedios LW, Bao S, Womick RM, Chiron S, Li J, Roland JT, Lau KS, Liu Q, Wilson KT, Wang Y, Coburn LA, Landman BA, Huo Y. Cross-scale multi-instance learning for pathological image diagnosis. Med Image Anal 2024; 94:103124. [PMID: 38428271 PMCID: PMC11016375 DOI: 10.1016/j.media.2024.103124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Analyzing high resolution whole slide images (WSIs) with regard to information across multiple scales poses a significant challenge in digital pathology. Multi-instance learning (MIL) is a common solution for working with high resolution images by classifying bags of objects (i.e. sets of smaller image patches). However, such processing is typically performed at a single scale (e.g., 20× magnification) of WSIs, disregarding the vital inter-scale information that is key to diagnoses by human pathologists. In this study, we propose a novel cross-scale MIL algorithm to explicitly aggregate inter-scale relationships into a single MIL network for pathological image diagnosis. The contribution of this paper is three-fold: (1) A novel cross-scale MIL (CS-MIL) algorithm that integrates the multi-scale information and the inter-scale relationships is proposed; (2) A toy dataset with scale-specific morphological features is created and released to examine and visualize differential cross-scale attention; (3) Superior performance on both in-house and public datasets is demonstrated by our simple cross-scale MIL strategy. The official implementation is publicly available at https://github.com/hrlblab/CS-MIL.
Collapse
Affiliation(s)
| | - Can Cui
- Vanderbilt University, Nashville, TN 37215, USA
| | | | | | - R Michael Womick
- The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Sophie Chiron
- Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jia Li
- Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joseph T Roland
- Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ken S Lau
- Vanderbilt University, Nashville, TN 37215, USA
| | - Qi Liu
- Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Keith T Wilson
- Vanderbilt University Medical Center, Nashville, TN 37232, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Yaohong Wang
- Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lori A Coburn
- Vanderbilt University Medical Center, Nashville, TN 37232, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Bennett A Landman
- Vanderbilt University, Nashville, TN 37215, USA; Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yuankai Huo
- Vanderbilt University, Nashville, TN 37215, USA.
| |
Collapse
|
28
|
He Q, Ge S, Zeng S, Wang Y, Ye J, He Y, Li J, Wang Z, Guan T. Global attention based GNN with Bayesian collaborative learning for glomerular lesion recognition. Comput Biol Med 2024; 173:108369. [PMID: 38552283 DOI: 10.1016/j.compbiomed.2024.108369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Glomerular lesions reflect the onset and progression of renal disease. Pathological diagnoses are widely regarded as the definitive method for recognizing these lesions, as the deviations in histopathological structures closely correlate with impairments in renal function. METHODS Deep learning plays a crucial role in streamlining the laborious, challenging, and subjective task of recognizing glomerular lesions by pathologists. However, the current methods treat pathology images as data in regular Euclidean space, limiting their ability to efficiently represent the complex local features and global connections. In response to this challenge, this paper proposes a graph neural network (GNN) that utilizes global attention pooling (GAP) to more effectively extract high-level semantic features from glomerular images. The model incorporates Bayesian collaborative learning (BCL), enhancing node feature fine-tuning and fusion during training. In addition, this paper adds a soft classification head to mitigate the semantic ambiguity associated with a purely hard classification. RESULTS This paper conducted extensive experiments on four glomerular datasets, comprising a total of 491 whole slide images (WSIs) and 9030 images. The results demonstrate that the proposed model achieves impressive F1 scores of 81.37%, 90.12%, 87.72%, and 98.68% on four private datasets for glomerular lesion recognition. These scores surpass the performance of the other models used for comparison. Furthermore, this paper employed a publicly available BReAst Carcinoma Subtyping (BRACS) dataset with an 85.61% F1 score to further prove the superiority of the proposed model. CONCLUSION The proposed model not only facilitates precise recognition of glomerular lesions but also serves as a potent tool for diagnosing kidney diseases effectively. Furthermore, the framework and training methodology of the GNN can be adeptly applied to address various pathology image classification challenges.
Collapse
Affiliation(s)
- Qiming He
- Department of Life and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Shuang Ge
- Department of Life and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Peng Cheng Laboratory, Shenzhen, China
| | - Siqi Zeng
- Department of Life and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Greater Bay Area National Center of Technology Innovation, Guangzhou, China
| | - Yanxia Wang
- Department of Pathology, State Key Laboratory of Cancer Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jing Ye
- Department of Pathology, State Key Laboratory of Cancer Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yonghong He
- Department of Life and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Jing Li
- Department of Pathology, State Key Laboratory of Cancer Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Zhe Wang
- Department of Pathology, State Key Laboratory of Cancer Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Tian Guan
- Department of Life and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| |
Collapse
|
29
|
Mu Y, Tizhoosh HR, Dehkharghanian T, Alfasly S, Campbell CJV. Model-Agnostic Binary Patch Grouping for Bone Marrow Whole Slide Image Representation. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:721-734. [PMID: 38320631 DOI: 10.1016/j.ajpath.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024]
Abstract
Histopathology is the reference standard for pathology diagnosis, and has evolved with the digitization of glass slides [ie, whole slide images (WSIs)]. While trained histopathologists are able to diagnose diseases by examining WSIs visually, this process is time consuming and prone to variability. To address these issues, artificial intelligence models are being developed to generate slide-level representations of WSIs, summarizing the entire slide as a single vector. This enables various computational pathology applications, including interslide search, multimodal training, and slide-level classification. Achieving expressive and robust slide-level representations hinges on patch feature extraction and aggregation steps. This study proposed an additional binary patch grouping (BPG) step, a plugin that can be integrated into various slide-level representation pipelines, to enhance the quality of slide-level representation in bone marrow histopathology. BPG excludes patches with less clinical relevance through minimal interaction with the pathologist; a one-time human intervention for the entire process. This study further investigated domain-general versus domain-specific feature extraction models based on convolution and attention and examined two different feature aggregation methods, with and without BPG, showing BPG's generalizability. The results showed that using BPG boosts the performance of WSI retrieval (mean average precision at 10) by 4% and improves WSI classification (weighted-F1) by 5% compared to not using BPG. Additionally, domain-general large models and parameterized pooling produced the best-quality slide-level representations.
Collapse
Affiliation(s)
- Youqing Mu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Hamid R Tizhoosh
- Rhazes Lab, Artificial Intelligence and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Taher Dehkharghanian
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Nephrology, University Health Network, Toronto, Ontario, Canada
| | - Saghir Alfasly
- Rhazes Lab, Artificial Intelligence and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Clinton J V Campbell
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
30
|
Pan L, Peng Y, Li Y, Wang X, Liu W, Xu L, Liang Q, Peng S. SELECTOR: Heterogeneous graph network with convolutional masked autoencoder for multimodal robust prediction of cancer survival. Comput Biol Med 2024; 172:108301. [PMID: 38492453 DOI: 10.1016/j.compbiomed.2024.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/03/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Accurately predicting the survival rate of cancer patients is crucial for aiding clinicians in planning appropriate treatment, reducing cancer-related medical expenses, and significantly enhancing patients' quality of life. Multimodal prediction of cancer patient survival offers a more comprehensive and precise approach. However, existing methods still grapple with challenges related to missing multimodal data and information interaction within modalities. This paper introduces SELECTOR, a heterogeneous graph-aware network based on convolutional mask encoders for robust multimodal prediction of cancer patient survival. SELECTOR comprises feature edge reconstruction, convolutional mask encoder, feature cross-fusion, and multimodal survival prediction modules. Initially, we construct a multimodal heterogeneous graph and employ the meta-path method for feature edge reconstruction, ensuring comprehensive incorporation of feature information from graph edges and effective embedding of nodes. To mitigate the impact of missing features within the modality on prediction accuracy, we devised a convolutional masked autoencoder (CMAE) to process the heterogeneous graph post-feature reconstruction. Subsequently, the feature cross-fusion module facilitates communication between modalities, ensuring that output features encompass all features of the modality and relevant information from other modalities. Extensive experiments and analysis on six cancer datasets from TCGA demonstrate that our method significantly outperforms state-of-the-art methods in both modality-missing and intra-modality information-confirmed cases. Our codes are made available at https://github.com/panliangrui/Selector.
Collapse
Affiliation(s)
- Liangrui Pan
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410083, Hunan, China.
| | - Yijun Peng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410083, Hunan, China.
| | - Yan Li
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410083, Hunan, China.
| | - Xiang Wang
- Department of Thoracic Surgery, The second xiangya hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Wenjuan Liu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410083, Hunan, China.
| | - Liwen Xu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410083, Hunan, China.
| | - Qingchun Liang
- Department of Pathology, The second xiangya hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410083, Hunan, China.
| |
Collapse
|
31
|
Vaidya A, Chen RJ, Williamson DFK, Song AH, Jaume G, Yang Y, Hartvigsen T, Dyer EC, Lu MY, Lipkova J, Shaban M, Chen TY, Mahmood F. Demographic bias in misdiagnosis by computational pathology models. Nat Med 2024; 30:1174-1190. [PMID: 38641744 DOI: 10.1038/s41591-024-02885-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 02/23/2024] [Indexed: 04/21/2024]
Abstract
Despite increasing numbers of regulatory approvals, deep learning-based computational pathology systems often overlook the impact of demographic factors on performance, potentially leading to biases. This concern is all the more important as computational pathology has leveraged large public datasets that underrepresent certain demographic groups. Using publicly available data from The Cancer Genome Atlas and the EBRAINS brain tumor atlas, as well as internal patient data, we show that whole-slide image classification models display marked performance disparities across different demographic groups when used to subtype breast and lung carcinomas and to predict IDH1 mutations in gliomas. For example, when using common modeling approaches, we observed performance gaps (in area under the receiver operating characteristic curve) between white and Black patients of 3.0% for breast cancer subtyping, 10.9% for lung cancer subtyping and 16.0% for IDH1 mutation prediction in gliomas. We found that richer feature representations obtained from self-supervised vision foundation models reduce performance variations between groups. These representations provide improvements upon weaker models even when those weaker models are combined with state-of-the-art bias mitigation strategies and modeling choices. Nevertheless, self-supervised vision foundation models do not fully eliminate these discrepancies, highlighting the continuing need for bias mitigation efforts in computational pathology. Finally, we demonstrate that our results extend to other demographic factors beyond patient race. Given these findings, we encourage regulatory and policy agencies to integrate demographic-stratified evaluation into their assessment guidelines.
Collapse
Affiliation(s)
- Anurag Vaidya
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA, USA
| | - Richard J Chen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Drew F K Williamson
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew H Song
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Guillaume Jaume
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yuzhe Yang
- Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - Thomas Hartvigsen
- School of Data Science, University of Virginia, Charlottesville, VA, USA
| | - Emma C Dyer
- T.H. Chan School of Public Health, Harvard University, Cambridge, MA, USA
| | - Ming Y Lu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - Jana Lipkova
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Muhammad Shaban
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tiffany Y Chen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Faisal Mahmood
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Data Science Initiative, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
32
|
Bao LX, Luo ZM, Zhu XL, Xu YY. Automated identification of protein expression intensity and classification of protein cellular locations in mouse brain regions from immunofluorescence images. Med Biol Eng Comput 2024; 62:1105-1119. [PMID: 38150111 DOI: 10.1007/s11517-023-02985-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
Knowledge of protein expression in mammalian brains at regional and cellular levels can facilitate understanding of protein functions and associated diseases. As the mouse brain is a typical mammalian brain considering cell type and structure, several studies have been conducted to analyze protein expression in mouse brains. However, labeling protein expression using biotechnology is costly and time-consuming. Therefore, automated models that can accurately recognize protein expression are needed. Here, we constructed machine learning models to automatically annotate the protein expression intensity and cellular location in different mouse brain regions from immunofluorescence images. The brain regions and sub-regions were segmented through learning image features using an autoencoder and then performing K-means clustering and registration to align with the anatomical references. The protein expression intensities for those segmented structures were computed on the basis of the statistics of the image pixels, and patch-based weakly supervised methods and multi-instance learning were used to classify the cellular locations. Results demonstrated that the models achieved high accuracy in the expression intensity estimation, and the F1 score of the cellular location prediction was 74.5%. This work established an automated pipeline for analyzing mouse brain images and provided a foundation for further study of protein expression and functions.
Collapse
Affiliation(s)
- Lin-Xia Bao
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Medical Imaging Processing, Southern Medical University, Guangzhou, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510623, China
| | - Zhuo-Ming Luo
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Medical Imaging Processing, Southern Medical University, Guangzhou, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510623, China
| | - Xi-Liang Zhu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Medical Imaging Processing, Southern Medical University, Guangzhou, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510623, China
| | - Ying-Ying Xu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Medical Imaging Processing, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510623, China.
| |
Collapse
|
33
|
Unger M, Kather JN. Deep learning in cancer genomics and histopathology. Genome Med 2024; 16:44. [PMID: 38539231 PMCID: PMC10976780 DOI: 10.1186/s13073-024-01315-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/13/2024] [Indexed: 07/08/2024] Open
Abstract
Histopathology and genomic profiling are cornerstones of precision oncology and are routinely obtained for patients with cancer. Traditionally, histopathology slides are manually reviewed by highly trained pathologists. Genomic data, on the other hand, is evaluated by engineered computational pipelines. In both applications, the advent of modern artificial intelligence methods, specifically machine learning (ML) and deep learning (DL), have opened up a fundamentally new way of extracting actionable insights from raw data, which could augment and potentially replace some aspects of traditional evaluation workflows. In this review, we summarize current and emerging applications of DL in histopathology and genomics, including basic diagnostic as well as advanced prognostic tasks. Based on a growing body of evidence, we suggest that DL could be the groundwork for a new kind of workflow in oncology and cancer research. However, we also point out that DL models can have biases and other flaws that users in healthcare and research need to know about, and we propose ways to address them.
Collapse
Affiliation(s)
- Michaela Unger
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany.
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany.
- Department of Medicine I, University Hospital Dresden, Dresden, Germany.
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
34
|
Luna M, Chikontwe P, Park SH. Enhanced Nuclei Segmentation and Classification via Category Descriptors in the SAM Model. Bioengineering (Basel) 2024; 11:294. [PMID: 38534568 DOI: 10.3390/bioengineering11030294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Segmenting and classifying nuclei in H&E histopathology images is often limited by the long-tailed distribution of nuclei types. However, the strong generalization ability of image segmentation foundation models like the Segment Anything Model (SAM) can help improve the detection quality of rare types of nuclei. In this work, we introduce category descriptors to perform nuclei segmentation and classification by prompting the SAM model. We close the domain gap between histopathology and natural scene images by aligning features in low-level space while preserving the high-level representations of SAM. We performed extensive experiments on the Lizard dataset, validating the ability of our model to perform automatic nuclei segmentation and classification, especially for rare nuclei types, where achieved a significant detection improvement in the F1 score of up to 12%. Our model also maintains compatibility with manual point prompts for interactive refinement during inference without requiring any additional training.
Collapse
Affiliation(s)
- Miguel Luna
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Philip Chikontwe
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Sang Hyun Park
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- AI Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
35
|
Thompson N, Morley-Bunker A, McLauchlan J, Glyn T, Eglinton T. Use of artificial intelligence for the prediction of lymph node metastases in early-stage colorectal cancer: systematic review. BJS Open 2024; 8:zrae033. [PMID: 38637299 PMCID: PMC11026097 DOI: 10.1093/bjsopen/zrae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Risk evaluation of lymph node metastasis for early-stage (T1 and T2) colorectal cancers is critical for determining therapeutic strategies. Traditional methods of lymph node metastasis prediction have limited accuracy. This systematic review aimed to review the potential of artificial intelligence in predicting lymph node metastasis in early-stage colorectal cancers. METHODS A comprehensive search was performed of papers that evaluated the potential of artificial intelligence in predicting lymph node metastasis in early-stage colorectal cancers. Studies were appraised using the Joanna Briggs Institute tools. The primary outcome was summarizing artificial intelligence models and their accuracy. Secondary outcomes included influential variables and strategies to address challenges. RESULTS Of 3190 screened manuscripts, 11 were included, involving 8648 patients from 1996 to 2023. Due to diverse artificial intelligence models and varied metrics, no data synthesis was performed. Models included random forest algorithms, support vector machine, deep learning, artificial neural network, convolutional neural network and least absolute shrinkage and selection operator regression. Artificial intelligence models' area under the curve values ranged from 0.74 to 0.9993 (slide level) and 0.9476 to 0.9956 (single-node level), outperforming traditional clinical guidelines. CONCLUSION Artificial intelligence models show promise in predicting lymph node metastasis in early-stage colorectal cancers, potentially refining clinical decisions and improving outcomes. PROSPERO REGISTRATION NUMBER CRD42023409094.
Collapse
Affiliation(s)
- Nasya Thompson
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | - Arthur Morley-Bunker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Jared McLauchlan
- Department of Surgery, Te Whatu Ora – Health New Zealand Waitaha Canterbury, Christchurch, New Zealand
| | - Tamara Glyn
- Department of Surgery, University of Otago, Christchurch, New Zealand
- Department of Surgery, Te Whatu Ora – Health New Zealand Waitaha Canterbury, Christchurch, New Zealand
| | - Tim Eglinton
- Department of Surgery, University of Otago, Christchurch, New Zealand
- Department of Surgery, Te Whatu Ora – Health New Zealand Waitaha Canterbury, Christchurch, New Zealand
| |
Collapse
|
36
|
Chen RJ, Ding T, Lu MY, Williamson DFK, Jaume G, Song AH, Chen B, Zhang A, Shao D, Shaban M, Williams M, Oldenburg L, Weishaupt LL, Wang JJ, Vaidya A, Le LP, Gerber G, Sahai S, Williams W, Mahmood F. Towards a general-purpose foundation model for computational pathology. Nat Med 2024; 30:850-862. [PMID: 38504018 PMCID: PMC11403354 DOI: 10.1038/s41591-024-02857-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024]
Abstract
Quantitative evaluation of tissue images is crucial for computational pathology (CPath) tasks, requiring the objective characterization of histopathological entities from whole-slide images (WSIs). The high resolution of WSIs and the variability of morphological features present significant challenges, complicating the large-scale annotation of data for high-performance applications. To address this challenge, current efforts have proposed the use of pretrained image encoders through transfer learning from natural image datasets or self-supervised learning on publicly available histopathology datasets, but have not been extensively developed and evaluated across diverse tissue types at scale. We introduce UNI, a general-purpose self-supervised model for pathology, pretrained using more than 100 million images from over 100,000 diagnostic H&E-stained WSIs (>77 TB of data) across 20 major tissue types. The model was evaluated on 34 representative CPath tasks of varying diagnostic difficulty. In addition to outperforming previous state-of-the-art models, we demonstrate new modeling capabilities in CPath such as resolution-agnostic tissue classification, slide classification using few-shot class prototypes, and disease subtyping generalization in classifying up to 108 cancer types in the OncoTree classification system. UNI advances unsupervised representation learning at scale in CPath in terms of both pretraining data and downstream evaluation, enabling data-efficient artificial intelligence models that can generalize and transfer to a wide range of diagnostically challenging tasks and clinical workflows in anatomic pathology.
Collapse
Affiliation(s)
- Richard J Chen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Tong Ding
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Ming Y Lu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Drew F K Williamson
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Guillaume Jaume
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrew H Song
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Bowen Chen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew Zhang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA, USA
| | - Daniel Shao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA, USA
| | - Muhammad Shaban
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mane Williams
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Lukas Oldenburg
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Luca L Weishaupt
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA, USA
| | - Judy J Wang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anurag Vaidya
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA, USA
| | - Long Phi Le
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA, USA
| | - Georg Gerber
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sharifa Sahai
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Systems Biology, Harvard University, Cambridge, MA, USA
| | - Walt Williams
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Faisal Mahmood
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Data Science Initiative, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
37
|
Gadermayr M, Tschuchnig M. Multiple instance learning for digital pathology: A review of the state-of-the-art, limitations & future potential. Comput Med Imaging Graph 2024; 112:102337. [PMID: 38228020 DOI: 10.1016/j.compmedimag.2024.102337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 12/04/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
Digital whole slides images contain an enormous amount of information providing a strong motivation for the development of automated image analysis tools. Particularly deep neural networks show high potential with respect to various tasks in the field of digital pathology. However, a limitation is given by the fact that typical deep learning algorithms require (manual) annotations in addition to the large amounts of image data, to enable effective training. Multiple instance learning exhibits a powerful tool for training deep neural networks in a scenario without fully annotated data. These methods are particularly effective in the domain of digital pathology, due to the fact that labels for whole slide images are often captured routinely, whereas labels for patches, regions, or pixels are not. This potential resulted in a considerable number of publications, with the vast majority published in the last four years. Besides the availability of digitized data and a high motivation from the medical perspective, the availability of powerful graphics processing units exhibits an accelerator in this field. In this paper, we provide an overview of widely and effectively used concepts of (deep) multiple instance learning approaches and recent advancements. We also critically discuss remaining challenges as well as future potential.
Collapse
Affiliation(s)
- Michael Gadermayr
- Department of Information Technologies and Digitalisation, Salzburg University of Applied Sciences, Austria.
| | - Maximilian Tschuchnig
- Department of Information Technologies and Digitalisation, Salzburg University of Applied Sciences, Austria; Department of Artificial Intelligence and Human Interfaces, University of Salzburg, Austria
| |
Collapse
|
38
|
Drachneris J, Morkunas M, Fabijonavicius M, Cekauskas A, Jankevicius F, Laurinavicius A. Prediction of Non-Muscle Invasive Papillary Urothelial Carcinoma Relapse from Hematoxylin-Eosin Images Using Deep Multiple Instance Learning in Patients Treated with Bacille Calmette-Guérin Immunotherapy. Biomedicines 2024; 12:360. [PMID: 38397962 PMCID: PMC10886666 DOI: 10.3390/biomedicines12020360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The limited reproducibility of the grading of non-muscle invasive papillary urothelial carcinoma (NMIPUC) necessitates the search for more robust image-based predictive factors. In a cohort of 157 NMIPUC patients treated with Bacille Calmette-Guérin (BCG) immunotherapy, we explored the multiple instance learning (MIL)-based classification approach for the prediction of 2-year and 5-year relapse-free survival and the multiple instance survival learning (MISL) framework for survival regression. We used features extracted from image patches sampled from whole slide images of hematoxylin-eosin-stained transurethral resection (TUR) NPMIPUC specimens and tested several patch sampling and feature extraction network variations to optimize the model performance. We selected the model showing the best patient survival stratification for further testing in the context of clinical and pathological variables. MISL with the multiresolution patch sampling technique achieved the best patient risk stratification (concordance index = 0.574, p = 0.010), followed by a 2-year MIL classification. The best-selected model revealed an independent prognostic value in the context of other clinical and pathologic variables (tumor stage, grade, and presence of tumor on the repeated TUR) with statistically significant patient risk stratification. Our findings suggest that MISL-based predictions can improve NMIPUC patient risk stratification, while validation studies are needed to test the generalizability of our models.
Collapse
Affiliation(s)
- Julius Drachneris
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania
| | - Mindaugas Morkunas
- Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 08406 Vilnius, Lithuania; (M.M.); (A.C.); (F.J.)
| | - Mantas Fabijonavicius
- Center of Urology, Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania;
| | - Albertas Cekauskas
- Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 08406 Vilnius, Lithuania; (M.M.); (A.C.); (F.J.)
- Center of Urology, Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania;
| | - Feliksas Jankevicius
- Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 08406 Vilnius, Lithuania; (M.M.); (A.C.); (F.J.)
- Center of Urology, Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania;
| | - Arvydas Laurinavicius
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania
| |
Collapse
|
39
|
Luo X, Qu L, Guo Q, Song Z, Wang M. Negative Instance Guided Self-Distillation Framework for Whole Slide Image Analysis. IEEE J Biomed Health Inform 2024; 28:964-975. [PMID: 37494153 DOI: 10.1109/jbhi.2023.3298798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Histopathology image classification is an important clinical task, and current deep learning-based whole-slide image (WSI) classification methods typically cut WSIs into small patches and cast the problem as multi-instance learning. The mainstream approach is to train a bag-level classifier, but their performance on both slide classification and positive patch localization is limited because the instance-level information is not fully explored. In this article, we propose a negative instance-guided, self-distillation framework to directly train an instance-level classifier end-to-end. Instead of depending only on the self-supervised training of the teacher and the student classifiers in a typical self-distillation framework, we input the true negative instances into the student classifier to guide the classifier to better distinguish positive and negative instances. In addition, we propose a prediction bank to constrain the distribution of pseudo instance labels generated by the teacher classifier to prevent the self-distillation from falling into the degeneration of classifying all instances as negative. We conduct extensive experiments and analysis on three publicly available pathological datasets: CAMELYON16, PANDA, and TCGA, as well as an in-house pathological dataset for cervical cancer lymph node metastasis prediction. The results show that our method outperforms existing methods by a large margin. Code will be publicly available.
Collapse
|
40
|
Bai Y, Li W, An J, Xia L, Chen H, Zhao G, Gao Z. Masked autoencoders with handcrafted feature predictions: Transformer for weakly supervised esophageal cancer classification. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107936. [PMID: 38016392 DOI: 10.1016/j.cmpb.2023.107936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 10/28/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND AND OBJECTIVE Esophageal cancer is a serious disease with a high prevalence in Eastern Asia. Histopathology tissue analysis stands as the gold standard in diagnosing esophageal cancer. In recent years, there has been a shift towards digitizing histopathological images into whole slide images (WSIs), progressively integrating them into cancer diagnostics. However, the gigapixel sizes of WSIs present significant storage and processing challenges, and they often lack localized annotations. To address this issue, multi-instance learning (MIL) has been introduced for WSI classification, utilizing weakly supervised learning for diagnosis analysis. By applying the principles of MIL to WSI analysis, it is possible to reduce the workload of pathologists by facilitating the generation of localized annotations. Nevertheless, the approach's effectiveness is hindered by the traditional simple aggregation operation and the domain shift resulting from the prevalent use of convolutional feature extractors pretrained on ImageNet. METHODS We propose a MIL-based framework for WSI analysis and cancer classification. Concurrently, we introduce employing self-supervised learning, which obviates the need for manual annotation and demonstrates versatility in various tasks, to pretrain feature extractors. This method enhances the extraction of representative features from esophageal WSI for MIL, ensuring more robust and accurate performance. RESULTS We build a comprehensive dataset of whole esophageal slide images and conduct extensive experiments utilizing this dataset. The performance on our dataset demonstrates the efficiency of our proposed MIL framework and the pretraining process, with our framework outperforming existing methods, achieving an accuracy of 93.07% and AUC (area under the curve) of 95.31%. CONCLUSION This work proposes an effective MIL method to classify WSI of esophageal cancer. The promising results indicate that our cancer classification framework holds great potential in promoting the automatic whole esophageal slide image analysis.
Collapse
Affiliation(s)
- Yunhao Bai
- the School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Wenqi Li
- Department of Pathology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jianpeng An
- the School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Lili Xia
- the School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Huazhen Chen
- the School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Gang Zhao
- Department of Pathology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhongke Gao
- the School of Electrical and Information Engineering, Tianjin University, Tianjin, China.
| |
Collapse
|
41
|
Kang J, Le VNT, Lee DW, Kim S. Diagnosing oral and maxillofacial diseases using deep learning. Sci Rep 2024; 14:2497. [PMID: 38291068 PMCID: PMC10827796 DOI: 10.1038/s41598-024-52929-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024] Open
Abstract
The classification and localization of odontogenic lesions from panoramic radiographs is a challenging task due to the positional biases and class imbalances of the lesions. To address these challenges, a novel neural network, DOLNet, is proposed that uses mutually influencing hierarchical attention across different image scales to jointly learn the global representation of the entire jaw and the local discrepancy between normal tissue and lesions. The proposed approach uses local attention to learn representations within a patch. From the patch-level representations, we generate inter-patch, i.e., global, attention maps to represent the positional prior of lesions in the whole image. Global attention enables the reciprocal calibration of path-level representations by considering non-local information from other patches, thereby improving the generation of whole-image-level representation. To address class imbalances, we propose an effective data augmentation technique that involves merging lesion crops with normal images, thereby synthesizing new abnormal cases for effective model training. Our approach outperforms recent studies, enhancing the classification performance by up to 42.4% and 44.2% in recall and F1 scores, respectively, and ensuring robust lesion localization with respect to lesion size variations and positional biases. Our approach further outperforms human expert clinicians in classification by 10.7 % and 10.8 % in recall and F1 score, respectively.
Collapse
Affiliation(s)
| | - Van Nhat Thang Le
- Faculty of Odonto-Stomatology, Hue University of Medicine and Pharmacy, Hue University, Hue, 49120, Vietnam
| | - Dae-Woo Lee
- The Department of Pediatric Dentistry, Jeonbuk National University, Jeonju, 54896, Korea.
- Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University, Jeonju, 54896, Korea.
- Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, 54896, Korea.
| | - Sungchan Kim
- The Department of Computer Science and Artificial Intelligence, Jeonbuk National University, Jeonju, 54896, Korea.
- Center for Advanced Image Information Technology, Jeonbuk National University, Jeonju, 54896, Korea.
| |
Collapse
|
42
|
Liu P, Ji L, Ye F, Fu B. AdvMIL: Adversarial multiple instance learning for the survival analysis on whole-slide images. Med Image Anal 2024; 91:103020. [PMID: 37926034 DOI: 10.1016/j.media.2023.103020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/05/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
The survival analysis on histological whole-slide images (WSIs) is one of the most important means to estimate patient prognosis. Although many weakly-supervised deep learning models have been developed for gigapixel WSIs, their potential is generally restricted by classical survival analysis rules and fully-supervised learning requirements. As a result, these models provide patients only with a completely-certain point estimation of time-to-event, and they could only learn from the labeled WSI data currently at a small scale. To tackle these problems, we propose a novel adversarial multiple instance learning (AdvMIL) framework. This framework is based on adversarial time-to-event modeling, and integrates the multiple instance learning (MIL) that is much necessary for WSI representation learning. It is a plug-and-play one, so that most existing MIL-based end-to-end methods can be easily upgraded by applying this framework, gaining the improved abilities of survival distribution estimation and semi-supervised learning. Our extensive experiments show that AdvMIL not only could often bring performance improvement to mainstream WSI survival analysis methods at a relatively low computational cost, but also enables these methods to effectively utilize unlabeled data via semi-supervised learning. Moreover, it is observed that AdvMIL could help improving the robustness of models against patch occlusion and two representative image noises. The proposed AdvMIL framework could promote the research of survival analysis in computational pathology with its novel adversarial MIL paradigm.
Collapse
Affiliation(s)
- Pei Liu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Xiyuan Ave, Chengdu, 611731, Sichuan, China.
| | - Luping Ji
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Xiyuan Ave, Chengdu, 611731, Sichuan, China.
| | - Feng Ye
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| | - Bo Fu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Xiyuan Ave, Chengdu, 611731, Sichuan, China.
| |
Collapse
|
43
|
Cong C, Liu S, Di Ieva A, Russo C, Suero Molina E, Pagnucco M, Song Y. Computer Vision in Digital Neuropathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1462:123-138. [PMID: 39523263 DOI: 10.1007/978-3-031-64892-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Digital pathology has revolutionized the field of neuropathology, enabling rapid and precise analysis of tissue samples. As neuropathologists and neurosurgeons increasingly embrace digital platforms, computer vision techniques and computerized quantitative analyses (i.e., pathomics) play a pivotal role in automating and enhancing diagnostic processes, as well as in unlocking new insights from neuropathological images. This chapter explores the role of computer vision in bridging the gap between traditional and digital neuropathology, providing a comprehensive overview of computer vision applications in neuropathology, covering image preprocessing, and decision support for clinical tasks, such as early detection of neurological disorders, classification of brain tumors, and quantitative assessment of tissue biomarkers. In addition, we further delve into the challenges and opportunities presented by large-scale image datasets and the integration of digital pathology into neurosurgical practice.
Collapse
Affiliation(s)
- Cong Cong
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia.
- Centre for Health Informatics, Macquarie University, Sydney, NSW, Australia.
- Computational NeuroSurgery Lab, Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Sidong Liu
- Centre for Health Informatics, Macquarie University, Sydney, NSW, Australia
- Computational NeuroSurgery Lab, Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Antonio Di Ieva
- Computational NeuroSurgery Lab, Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia
- Macquarie Neurosurgery & Spine, MQ Health, Macquarie University Hospital, Sydney, NSW, Australia
- Department of Neurosurgery, Nepean Blue Mountains Local Health District, Kingswood, NSW, Australia
- Centre for Applied Artificial Intelligence, School of Computing, Macquarie University, Sydney, NSW, Australia
| | - Carlo Russo
- Computational NeuroSurgery Lab, Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Eric Suero Molina
- Computational NeuroSurgery Lab, Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| | - Maurice Pagnucco
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Yang Song
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
44
|
Mukashyaka P, Sheridan TB, Foroughi Pour A, Chuang JH. SAMPLER: unsupervised representations for rapid analysis of whole slide tissue images. EBioMedicine 2024; 99:104908. [PMID: 38101298 PMCID: PMC10733087 DOI: 10.1016/j.ebiom.2023.104908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Deep learning has revolutionized digital pathology, allowing automatic analysis of hematoxylin and eosin (H&E) stained whole slide images (WSIs) for diverse tasks. WSIs are broken into smaller images called tiles, and a neural network encodes each tile. Many recent works use supervised attention-based models to aggregate tile-level features into a slide-level representation, which is then used for downstream analysis. Training supervised attention-based models is computationally intensive, architecture optimization of the attention module is non-trivial, and labeled data are not always available. Therefore, we developed an unsupervised and fast approach called SAMPLER to generate slide-level representations. METHODS Slide-level representations of SAMPLER are generated by encoding the cumulative distribution functions of multiscale tile-level features. To assess effectiveness of SAMPLER, slide-level representations of breast carcinoma (BRCA), non-small cell lung carcinoma (NSCLC), and renal cell carcinoma (RCC) WSIs of The Cancer Genome Atlas (TCGA) were used to train separate classifiers distinguishing tumor subtypes in FFPE and frozen WSIs. In addition, BRCA and NSCLC classifiers were externally validated on frozen WSIs. Moreover, SAMPLER's attention maps identify regions of interest, which were evaluated by a pathologist. To determine time efficiency of SAMPLER, we compared runtime of SAMPLER with two attention-based models. SAMPLER concepts were used to improve the design of a context-aware multi-head attention model (context-MHA). FINDINGS SAMPLER-based classifiers were comparable to state-of-the-art attention deep learning models to distinguish subtypes of BRCA (AUC = 0.911 ± 0.029), NSCLC (AUC = 0.940 ± 0.018), and RCC (AUC = 0.987 ± 0.006) on FFPE WSIs (internal test sets). However, training SAMLER-based classifiers was >100 times faster. SAMPLER models successfully distinguished tumor subtypes on both internal and external test sets of frozen WSIs. Histopathological review confirmed that SAMPLER-identified high attention tiles contained subtype-specific morphological features. The improved context-MHA distinguished subtypes of BRCA and RCC (BRCA-AUC = 0.921 ± 0.027, RCC-AUC = 0.988 ± 0.010) with increased accuracy on internal test FFPE WSIs. INTERPRETATION Our unsupervised statistical approach is fast and effective for analyzing WSIs, with greatly improved scalability over attention-based deep learning methods. The high accuracy of SAMPLER-based classifiers and interpretable attention maps suggest that SAMPLER successfully encodes the distinct morphologies within WSIs and will be applicable to general histology image analysis problems. FUNDING This study was supported by the National Cancer Institute (Grant No. R01CA230031 and P30CA034196).
Collapse
Affiliation(s)
- Patience Mukashyaka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Todd B Sheridan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Pathology, Hartford Hospital, Hartford, CT, USA
| | | | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
45
|
Tu C, Du D, Zeng T, Zhang Y. Deep Multi-Dictionary Learning for Survival Prediction With Multi-Zoom Histopathological Whole Slide Images. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:14-25. [PMID: 37788195 DOI: 10.1109/tcbb.2023.3321593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Survival prediction based on histopathological whole slide images (WSIs) is of great significance for risk-benefit assessment and clinical decision. However, complex microenvironments and heterogeneous tissue structures in WSIs bring challenges to learning informative prognosis-related representations. Additionally, previous studies mainly focus on modeling using mono-scale WSIs, which commonly ignore useful subtle differences existed in multi-zoom WSIs. To this end, we propose a deep multi-dictionary learning framework for cancer survival prediction with multi-zoom histopathological WSIs. The framework can recognize and learn discriminative clusters (i.e., microenvironments) based on multi-scale deep representations for survival analysis. Specifically, we learn multi-scale features based on multi-zoom tiles from WSIs via stacked deep autoencoders network followed by grouping different microenvironments by cluster algorithm. Based on multi-scale deep features of clusters, a multi-dictionary learning method with a post-pruning strategy is devised to learn discriminative representations from selected prognosis-related clusters in a task-driven manner. Finally, a survival model (i.e., EN-Cox) is constructed to estimate the risk index of an individual patient. The proposed model is evaluated on three datasets derived from The Cancer Genome Atlas (TCGA), and the experimental results demonstrate that it outperforms several state-of-the-art survival analysis approaches.
Collapse
|
46
|
Tavolara TE, Su Z, Gurcan MN, Niazi MKK. One label is all you need: Interpretable AI-enhanced histopathology for oncology. Semin Cancer Biol 2023; 97:70-85. [PMID: 37832751 DOI: 10.1016/j.semcancer.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Artificial Intelligence (AI)-enhanced histopathology presents unprecedented opportunities to benefit oncology through interpretable methods that require only one overall label per hematoxylin and eosin (H&E) slide with no tissue-level annotations. We present a structured review of these methods organized by their degree of verifiability and by commonly recurring application areas in oncological characterization. First, we discuss morphological markers (tumor presence/absence, metastases, subtypes, grades) in which AI-identified regions of interest (ROIs) within whole slide images (WSIs) verifiably overlap with pathologist-identified ROIs. Second, we discuss molecular markers (gene expression, molecular subtyping) that are not verified via H&E but rather based on overlap with positive regions on adjacent tissue. Third, we discuss genetic markers (mutations, mutational burden, microsatellite instability, chromosomal instability) that current technologies cannot verify if AI methods spatially resolve specific genetic alterations. Fourth, we discuss the direct prediction of survival to which AI-identified histopathological features quantitatively correlate but are nonetheless not mechanistically verifiable. Finally, we discuss in detail several opportunities and challenges for these one-label-per-slide methods within oncology. Opportunities include reducing the cost of research and clinical care, reducing the workload of clinicians, personalized medicine, and unlocking the full potential of histopathology through new imaging-based biomarkers. Current challenges include explainability and interpretability, validation via adjacent tissue sections, reproducibility, data availability, computational needs, data requirements, domain adaptability, external validation, dataset imbalances, and finally commercialization and clinical potential. Ultimately, the relative ease and minimum upfront cost with which relevant data can be collected in addition to the plethora of available AI methods for outcome-driven analysis will surmount these current limitations and achieve the innumerable opportunities associated with AI-driven histopathology for the benefit of oncology.
Collapse
Affiliation(s)
- Thomas E Tavolara
- Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ziyu Su
- Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Metin N Gurcan
- Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - M Khalid Khan Niazi
- Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
47
|
Tang Z, Liu L, Shen Y, Chen Z, Ma G, Dong J, Sun X, Zhang X, Li C, Zheng Q, Yang L. Explainable survival analysis with uncertainty using convolution-involved vision transformer. Comput Med Imaging Graph 2023; 110:102302. [PMID: 37839216 DOI: 10.1016/j.compmedimag.2023.102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Image-based precision medicine research is able to help doctors make better decisions on treatments. Among all kinds of medical images, a special form is called Whole Slide Image (WSI), which is used for diagnosing patients with cancer, aiming to enable more accurate survival prediction with its high resolution. However, One unique challenge of the WSI-based prediction models is processing the gigabyte-size or even terabyte-size WSIs, which would make most models computationally infeasible. Although existing models mostly use a pre-selected subset of key patches or patch clusters as input, they might discard some important morphology information, making the prediction inferior. Another challenge is improving the prediction models' explainability, which is crucial to help doctors understand the predictions given by the models and make faithful decisions with high confidence. To address the above two challenges, in this work, we propose a novel explainable survival prediction model based on Vision Transformer. Specifically, we adopt dual-channel convolutional layers to utilize the complete WSIs for more accurate predictions. We also introduce the aleatoric uncertainty into our model to understand its limitation and avoid overconfidence in using the prediction results. Additionally, we present a post-hoc explainable method to identify the most salient patches and distinct morphology features as supporting evidence for predictions. Evaluations of two large cancer datasets show that our proposed model is able to make survival predictions more effectively and has better explainability for cancer diagnosis.
Collapse
Affiliation(s)
- Zhihao Tang
- Key Laboratory of Trustworthy Distributed Computing and Service (MoE), Beijing University of Posts and Telecommunications, Beijing, China.
| | - Li Liu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yifan Shen
- Key Laboratory of Trustworthy Distributed Computing and Service (MoE), Beijing University of Posts and Telecommunications, Beijing, China.
| | - Zongyi Chen
- Key Laboratory of Trustworthy Distributed Computing and Service (MoE), Beijing University of Posts and Telecommunications, Beijing, China.
| | - Guixiang Ma
- Department of Computer Science, University of Illinois at Chicago, Chicago, USA.
| | - Jiyan Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xujie Sun
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xi Zhang
- Key Laboratory of Trustworthy Distributed Computing and Service (MoE), Beijing University of Posts and Telecommunications, Beijing, China.
| | - Chaozhuo Li
- Microsoft Research Lab - Asia, Beijing, China.
| | - Qingfeng Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Lin Yang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
48
|
Ding S, Li J, Wang J, Ying S, Shi J. Multi-Scale Efficient Graph-Transformer for Whole Slide Image Classification. IEEE J Biomed Health Inform 2023; 27:5926-5936. [PMID: 37725722 DOI: 10.1109/jbhi.2023.3317067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The multi-scale information among the whole slide images (WSIs) is essential for cancer diagnosis. Although the existing multi-scale vision Transformer has shown its effectiveness for learning multi-scale image representation, it still cannot work well on the gigapixel WSIs due to their extremely large image sizes. To this end, we propose a novel Multi-scale Efficient Graph-Transformer (MEGT) framework for WSI classification. The key idea of MEGT is to adopt two independent efficient Graph-based Transformer (EGT) branches to process the low-resolution and high-resolution patch embeddings (i.e., tokens in a Transformer) of WSIs, respectively, and then fuse these tokens via a multi-scale feature fusion module (MFFM). Specifically, we design an EGT to efficiently learn the local-global information of patch tokens, which integrates the graph representation into Transformer to capture spatial-related information of WSIs. Meanwhile, we propose a novel MFFM to alleviate the semantic gap among different resolution patches during feature fusion, which creates a non-patch token for each branch as an agent to exchange information with another branch by cross-attention mechanism. In addition, to expedite network training, a new token pruning module is developed in EGT to reduce the redundant tokens. Extensive experiments on both TCGA-RCC and CAMELYON16 datasets demonstrate the effectiveness of the proposed MEGT.
Collapse
|
49
|
Wang Z, Yu L, Ding X, Liao X, Wang L. Shared-Specific Feature Learning With Bottleneck Fusion Transformer for Multi-Modal Whole Slide Image Analysis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:3374-3383. [PMID: 37335798 DOI: 10.1109/tmi.2023.3287256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The fusion of multi-modal medical data is essential to assist medical experts to make treatment decisions for precision medicine. For example, combining the whole slide histopathological images (WSIs) and tabular clinical data can more accurately predict the lymph node metastasis (LNM) of papillary thyroid carcinoma before surgery to avoid unnecessary lymph node resection. However, the huge-sized WSI provides much more high-dimensional information than low-dimensional tabular clinical data, making the information alignment challenging in the multi-modal WSI analysis tasks. This paper presents a novel transformer-guided multi-modal multi-instance learning framework to predict lymph node metastasis from both WSIs and tabular clinical data. We first propose an effective multi-instance grouping scheme, named siamese attention-based feature grouping (SAG), to group high-dimensional WSIs into representative low-dimensional feature embeddings for fusion. We then design a novel bottleneck shared-specific feature transfer module (BSFT) to explore the shared and specific features between different modalities, where a few learnable bottleneck tokens are utilized for knowledge transfer between modalities. Moreover, a modal adaptation and orthogonal projection scheme were incorporated to further encourage BSFT to learn shared and specific features from multi-modal data. Finally, the shared and specific features are dynamically aggregated via an attention mechanism for slide-level prediction. Experimental results on our collected lymph node metastasis dataset demonstrate the efficiency of our proposed components and our framework achieves the best performance with AUC (area under the curve) of 97.34%, outperforming the state-of-the-art methods by over 1.27%.
Collapse
|
50
|
Lin Y, Liang Z, He Y, Huang W, Guan T. End-to-end affine registration framework for histopathological images with weak annotations. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 241:107763. [PMID: 37634308 DOI: 10.1016/j.cmpb.2023.107763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/12/2023] [Accepted: 08/12/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND AND OBJECTIVE Histopathological image registration is an essential component in digital pathology and biomedical image analysis. Deep-learning-based algorithms have been proposed to achieve fast and accurate affine registration. Some previous studies assume that the pairs are free from sizeable initial position misalignment and large rotation angles before performing the affine transformation. However, large-rotation angles are often introduced into image pairs during the production process in real-world pathology images. Reliable initial alignment is important for registration performance. The existing deep-learning-based approaches often use a two-step affine registration pipeline because convolutional neural networks (CNNs) cannot correct large-angle rotations. METHODS In this manuscript, a general framework ARoNet is developed to achieve end-to-end affine registration for histopathological images. We use CNNs to extract global features of images and fuse them to construct correspondent information for affine transformation. In ARoNet, a rotation recognition network is implemented to eliminate great rotation misalignment. In addition, a self-supervised learning task is proposed to assist the learning of image representations in an unsupervised manner. RESULTS We applied our model to four datasets, and the results indicate that ARoNet surpasses existing affine registration algorithms in alignment accuracy when large angular misalignments (e.g., 180 rotation) are present, providing accurate affine initialization for subsequent non-rigid alignments. Besides, ARoNet shows advantages in execution time (0.05 per pair), registration accuracy, and robustness. CONCLUSION We believe that the proposed general framework promises to simplify and speed up the registration process and has the potential for clinical applications.
Collapse
Affiliation(s)
- Yuanhua Lin
- Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Zhendong Liang
- Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Yonghong He
- Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Wenting Huang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 518116, Shenzhen, China
| | - Tian Guan
- Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China.
| |
Collapse
|