1
|
Ghadimi S, Abdi M, Epstein FH. Improved computation of Lagrangian tissue displacement and strain for cine DENSE MRI using a regularized spatiotemporal least squares method. Front Cardiovasc Med 2023; 10:1095159. [PMID: 37008315 PMCID: PMC10061004 DOI: 10.3389/fcvm.2023.1095159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/06/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionIn displacement encoding with stimulated echoes (DENSE), tissue displacement is encoded in the signal phase such that the phase of each pixel in space and time provides an independent measurement of absolute tissue displacement. Previously for DENSE, estimation of Lagrangian displacement used two steps: first a spatial interpolation and, second, least squares fitting through time to a Fourier or polynomial model. However, there is no strong rationale for such a through-time model,MethodsTo compute the Lagrangian displacement field from DENSE phase data, a minimization problem is introduced to enforce fidelity with the acquired Eulerian displacement data while simultaneously providing model-independent regularization in space and time, enforcing only spatiotemporal smoothness. A regularized spatiotemporal least squares (RSTLS) method is used to solve the minimization problem, and RSTLS was tested using two-dimensional DENSE data from 71 healthy volunteers.ResultsThe mean absolute percent error (MAPE) between the Lagrangian displacements and the corresponding Eulerian displacements was significantly lower for the RSTLS method vs. the two-step method for both x- and y-directions (0.73±0.59 vs 0.83 ±0.1, p < 0.05) and (0.75±0.66 vs 0.82 ±0.1, p < 0.05), respectively. Also, peak early diastolic strain rate (PEDSR) was higher (1.81±0.58 (s-1) vs. 1.56±0. 63 (s-1), p<0.05) and the strain rate during diastasis was lower (0.14±0.18 (s-1) vs 0.35±0.2 (s-1), p < 0.05) for the RSTLS vs. the two-step method, with the former suggesting that the two-step method was over-regularized.DiscussionThe proposed RSTLS method provides more realistic measurements of Lagrangian displacement and strain from DENSE images without imposing arbitrary motion models.
Collapse
|
2
|
Ogiermann D, Perotti LE, Balzani D. A simple and efficient adaptive time stepping technique for low-order operator splitting schemes applied to cardiac electrophysiology. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3670. [PMID: 36510350 DOI: 10.1002/cnm.3670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 10/25/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
We present a simple, yet efficient adaptive time stepping scheme for cardiac electrophysiology (EP) simulations based on standard operator splitting techniques. The general idea is to exploit the relation between the splitting error and the reaction's magnitude-found in a previous one-dimensional analytical study by Spiteri and Ziaratgahi-to construct the new time step controller for three-dimensional problems. Accordingly, we propose to control the time step length of the operator splitting scheme as a function of the reaction magnitude, in addition to the common approach of adapting the reaction time step. This conforms with observations in numerical experiments supporting the need for a significantly smaller time step length during depolarization than during repolarization. The proposed scheme is compared with classical proportional-integral-differential controllers using state-of-the-art error estimators, which are also presented in details as they have not been previously applied in the context of cardiac EP with operator splitting techniques. Benchmarks show that choosing the time step as a sigmoidal function of the reaction magnitude is highly efficient and full cardiac cycles can be computed with precision even in a realistic biventricular setup. The proposed scheme outperforms common adaptive time stepping techniques, while depending on fewer tuning parameters.
Collapse
Affiliation(s)
- Dennis Ogiermann
- Chair of Continuum Mechanics, Ruhr University Bochum, Bochum, Germany
| | - Luigi E Perotti
- Mechanical and Aerospace Engineering Department, University of Central Florida, Orlando, Florida, USA
| | - Daniel Balzani
- Chair of Continuum Mechanics, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
3
|
Wilson AJ, Sands GB, LeGrice IJ, Young AA, Ennis DB. Myocardial mesostructure and mesofunction. Am J Physiol Heart Circ Physiol 2022; 323:H257-H275. [PMID: 35657613 PMCID: PMC9273275 DOI: 10.1152/ajpheart.00059.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022]
Abstract
The complex and highly organized structural arrangement of some five billion cardiomyocytes directs the coordinated electrical activity and mechanical contraction of the human heart. The characteristic transmural change in cardiomyocyte orientation underlies base-to-apex shortening, circumferential shortening, and left ventricular torsion during contraction. Individual cardiomyocytes shorten ∼15% and increase in diameter ∼8%. Remarkably, however, the left ventricular wall thickens by up to 30-40%. To accommodate this, the myocardium must undergo significant structural rearrangement during contraction. At the mesoscale, collections of cardiomyocytes are organized into sheetlets, and sheetlet shear is the fundamental mechanism of rearrangement that produces wall thickening. Herein, we review the histological and physiological studies of myocardial mesostructure that have established the sheetlet shear model of wall thickening. Recent developments in tissue clearing techniques allow for imaging of whole hearts at the cellular scale, whereas magnetic resonance imaging (MRI) and computed tomography (CT) can image the myocardium at the mesoscale (100 µm to 1 mm) to resolve cardiomyocyte orientation and organization. Through histology, cardiac diffusion tensor imaging (DTI), and other modalities, mesostructural sheetlets have been confirmed in both animal and human hearts. Recent in vivo cardiac DTI methods have measured reorientation of sheetlets during the cardiac cycle. We also examine the role of pathological cardiac remodeling on sheetlet organization and reorientation, and the impact this has on ventricular function and dysfunction. We also review the unresolved mesostructural questions and challenges that may direct future work in the field.
Collapse
Affiliation(s)
- Alexander J Wilson
- Department of Radiology, Stanford University, Stanford, California
- Stanford Cardiovascular Institute, Stanford University, Stanford, California
| | - Gregory B Sands
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Ian J LeGrice
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Alistair A Young
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, California
- Veterans Administration Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
4
|
Yassine IA, Ghanem AM, Metwalli NS, Hamimi A, Ouwerkerk R, Matta JR, Solomon MA, Elinoff JM, Gharib AM, Abd-Elmoniem KZ. Native-resolution myocardial principal Eulerian strain mapping using convolutional neural networks and Tagged Magnetic Resonance Imaging. Comput Biol Med 2022; 141:105041. [PMID: 34836627 PMCID: PMC8900530 DOI: 10.1016/j.compbiomed.2021.105041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Assessment of regional myocardial function at native pixel-level resolution can play a crucial role in recognizing the early signs of the decline in regional myocardial function. Extensive data processing in existing techniques limits the effective resolution and accuracy of the generated strain maps. The purpose of this study is to compute myocardial principal strain maps εp1 and εp2 from tagged MRI (tMRI) at the native image resolution using deep-learning local patch convolutional neural network (CNN) models (DeepStrain). METHODS For network training, validation, and testing, realistic tMRI datasets were generated and consisted of 53,606 cine images simulating the heart, the liver, blood pool, and backgrounds, including ranges of shapes, positions, motion patterns, noise, and strain. In addition, 102 in-vivo image datasets from three healthy subjects, and three Pulmonary Arterial Hypertension patients, were acquired and used to assess the network's in-vivo performance. Four convolutional neural networks were trained for mapping input tagging patterns to corresponding ground-truth principal strains using different cost functions. Strain maps using harmonic phase analysis (HARP) were obtained with various spectral filtering settings for comparison. CNN and HARP strain maps were compared at the pixel level versus the ground-truth and versus the least-loss in-vivo maps using Pearson correlation coefficients (R) and the median error and Inter-Quartile Range (IQR) histograms. RESULTS CNN-based local patch DeepStrain maps at a phantom resolution of 1.1mm × 1.1 mm and in-vivo resolution of 2.1mm × 1.6 mm were artifact-free with multiple fold improvement with εp1 ground-truth median error of 0.009(0.007) vs. 0.32(0.385) using HARP and εp2 ground-truth error of 0.016(0.021) vs. 0.181(0.08) using HARP. CNN-based strain maps showed substantially higher agreement with the ground-truth maps with correlation coefficients R > 0.91 for εp1 and εp2 compared to R < 0.21 and R < 0.82 for HARP-generated maps, respectively. CONCLUSION CNN-generated Eulerian strain mapping permits artifact-free visualization of myocardial function at the native image resolution.
Collapse
Affiliation(s)
- Inas A. Yassine
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Egypt
| | - Ahmed M. Ghanem
- Biomedical and Metabolic Imaging Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Nader S. Metwalli
- Biomedical and Metabolic Imaging Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Ahmed Hamimi
- Biomedical and Metabolic Imaging Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Ronald Ouwerkerk
- Biomedical and Metabolic Imaging Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Jatin R. Matta
- Biomedical and Metabolic Imaging Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Michael A. Solomon
- Cardiovascular Branch of the National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD, USA.,Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, USA
| | - Jason M. Elinoff
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, USA
| | - Ahmed M. Gharib
- Biomedical and Metabolic Imaging Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Khaled Z. Abd-Elmoniem
- Biomedical and Metabolic Imaging Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA,Corresponding author: Khaled Z Abd-Elmoniem, PhD, MHS, Biomedical and Metabolic Imaging Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Bldg. 10, CRC, Rm. 3-5340, Bethesda, MD 20892, Tel: 301-451-8982/Fax: 301-480-3166,
| |
Collapse
|
5
|
Loecher M, Perotti LE, Ennis DB. Using synthetic data generation to train a cardiac motion tag tracking neural network. Med Image Anal 2021; 74:102223. [PMID: 34555661 DOI: 10.1016/j.media.2021.102223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/15/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022]
Abstract
A CNN based method for cardiac MRI tag tracking was developed and validated. A synthetic data simulator was created to generate large amounts of training data using natural images, a Bloch equation simulation, a broad range of tissue properties, and programmed ground-truth motion. The method was validated using both an analytical deforming cardiac phantom and in vivo data with manually tracked reference motion paths. In the analytical phantom, error was investigated relative to SNR, and accurate results were seen for SNR>10 (displacement error <0.3 mm). Excellent agreement was seen in vivo for tag locations (mean displacement difference = -0.02 pixels, 95% CI [-0.73, 0.69]) and calculated cardiac circumferential strain (mean difference = 0.006, 95% CI [-0.012, 0.024]). Automated tag tracking with a CNN trained on synthetic data is both accurate and precise.
Collapse
Affiliation(s)
| | - Luigi E Perotti
- Department of Mechanical and Aerospace Engineering, University of Central Florida, USA
| | - Daniel B Ennis
- Department of Radiology, Stanford University, USA; Cardiovascular Institute, Stanford University, USA; Center for Artificial Intelligence in Medicine & Imaging, Stanford University, USA
| |
Collapse
|
6
|
Guo R, Weingärtner S, Šiurytė P, T Stoeck C, Füetterer M, E Campbell-Washburn A, Suinesiaputra A, Jerosch-Herold M, Nezafat R. Emerging Techniques in Cardiac Magnetic Resonance Imaging. J Magn Reson Imaging 2021; 55:1043-1059. [PMID: 34331487 DOI: 10.1002/jmri.27848] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/10/2022] Open
Abstract
Cardiovascular disease is the leading cause of death and a significant contributor of health care costs. Noninvasive imaging plays an essential role in the management of patients with cardiovascular disease. Cardiac magnetic resonance (MR) can noninvasively assess heart and vascular abnormalities, including biventricular structure/function, blood hemodynamics, myocardial tissue composition, microstructure, perfusion, metabolism, coronary microvascular function, and aortic distensibility/stiffness. Its ability to characterize myocardial tissue composition is unique among alternative imaging modalities in cardiovascular disease. Significant growth in cardiac MR utilization, particularly in Europe in the last decade, has laid the necessary clinical groundwork to position cardiac MR as an important imaging modality in the workup of patients with cardiovascular disease. Although lack of availability, limited training, physician hesitation, and reimbursement issues have hampered widespread clinical adoption of cardiac MR in the United States, growing clinical evidence will ultimately overcome these challenges. Advances in cardiac MR techniques, particularly faster image acquisition, quantitative myocardial tissue characterization, and image analysis have been critical to its growth. In this review article, we discuss recent advances in established and emerging cardiac MR techniques that are expected to strengthen its capability in managing patients with cardiovascular disease. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Rui Guo
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Sebastian Weingärtner
- Department of Imaging Physics, Magnetic Resonance Systems Lab, Delft University of Technology, Delft, The Netherlands
| | - Paulina Šiurytė
- Department of Imaging Physics, Magnetic Resonance Systems Lab, Delft University of Technology, Delft, The Netherlands
| | - Christian T Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Maximilian Füetterer
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Adrienne E Campbell-Washburn
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Avan Suinesiaputra
- Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK
| | - Michael Jerosch-Herold
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Reza Nezafat
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Loecher M, Hannum AJ, Perotti LE, Ennis DB. Arbitrary Point Tracking with Machine Learning to Measure Cardiac Strains in Tagged MRI. FUNCTIONAL IMAGING AND MODELING OF THE HEART : ... INTERNATIONAL WORKSHOP, FIMH ..., PROCEEDINGS. FIMH 2021; 12738:213-222. [PMID: 34590079 PMCID: PMC8478357 DOI: 10.1007/978-3-030-78710-3_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cardiac tagged MR images allow for deformation fields to be measured in the heart by tracking the motion of tag lines throughout the cardiac cycle. Machine learning (ML) algorithms enable accurate and robust tracking of tag lines. Herein, the use of a massive synthetic physics-driven training dataset with known ground truth was used to train an ML network to enable tracking any number of points at arbitrary positions rather than anchored to the tag lines themselves. The tag tracking and strain calculation methods were investigated in a computational deforming cardiac phantom with known (ground truth) strain values. This enabled both tag tracking and strain accuracy to be characterized for a range of image acquisition and tag tracking parameters. The methods were also tested on in vivo volunteer data. Median tracking error was <0.26mm in the computational phantom, and strain measurements were improved in vivo when using the arbitrary point tracking for a standard clinical protocol.
Collapse
Affiliation(s)
| | | | - Luigi E Perotti
- Dept. of Mechanical and Aerospace Engineering, University of Central Florida
| | | |
Collapse
|