1
|
Jamison KW, Gu Z, Wang Q, Tozlu C, Sabuncu MR, Kuceyeski A. Krakencoder: a unified brain connectome translation and fusion tool. Nat Methods 2025:10.1038/s41592-025-02706-2. [PMID: 40473984 DOI: 10.1038/s41592-025-02706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 04/15/2025] [Indexed: 06/11/2025]
Abstract
Brain connectivity can be estimated in many ways, depending on modality and processing strategy. Here, we present the Krakencoder, a joint connectome mapping tool that simultaneously bidirectionally translates between structural and functional connectivity, and between different atlases and processing choices via a common latent representation. These mappings demonstrate exceptional accuracy and individual-level identifiability; the mapping between structural and functional connectivity has identifiability 42-54% higher than existing models. The Krakencoder combines all connectome flavors via a shared low-dimensional latent space. This fusion representation better reflects familial relatedness, preserves age- and sex-relevant information, and enhances cognition-relevant information. The Krakencoder can be applied, without retraining, to new out-of-distribution data while still preserving inter-individual differences in the connectome predictions and familial relationships in the latent representations. The Krakencoder is a notable leap forward in capturing the relationship between multimodal brain connectomes in an individualized, behaviorally and demographically relevant way.
Collapse
Affiliation(s)
- Keith W Jamison
- Department of Computational Biology, Cornell University, Ithaca, NY, USA.
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
| | - Zijin Gu
- School of Electrical and Computer Engineering, Cornell University and Cornell Tech, New York, NY, USA
| | - Qinxin Wang
- Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Ceren Tozlu
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Mert R Sabuncu
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- School of Electrical and Computer Engineering, Cornell University and Cornell Tech, New York, NY, USA
| | - Amy Kuceyeski
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Gondová A, Neumane S, Arichi T, Dubois J. Early Development and Co-Evolution of Microstructural and Functional Brain Connectomes: A Multi-Modal MRI Study in Preterm and Full-Term Infants. Hum Brain Mapp 2025; 46:e70186. [PMID: 40099852 PMCID: PMC11915347 DOI: 10.1002/hbm.70186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/07/2025] [Accepted: 02/22/2025] [Indexed: 03/20/2025] Open
Abstract
Functional networks characterized by coherent neural activity across distributed brain regions have been observed to emerge early in neurodevelopment. Synchronized maturation across regions that relate to functional connectivity (FC) could be partially reflected in the developmental changes in underlying microstructure. Nevertheless, covariation of regional microstructural properties, termed "microstructural connectivity" (MC), and its relationship to the emergence of functional specialization during the early neurodevelopmental period remain poorly understood. We investigated the evolution of MC and FC postnatally across a set of cortical and subcortical regions, focusing on 45 preterm infants scanned longitudinally, and compared to 45 matched full-term neonates as part of the developing Human Connectome Project (dHCP) using direct comparisons of grey-matter connectivity strengths as well as network-based analyses. Our findings revealed a global strengthening of both MC and FC with age, with connection-specific variability influenced by the connection maturational stage. Prematurity at term-equivalent age was associated with significant connectivity disruptions, particularly in FC. During the preterm period, direct comparisons of MC and FC strength showed a positive linear relationship, which seemed to weaken with development. On the other hand, overlaps between MC- and FC-derived networks (estimated with Mutual Information) increased with age, suggesting a potential convergence towards a shared underlying network structure that may support the co-evolution of microstructural and functional systems. Our study offers novel insights into the dynamic interplay between microstructural and functional brain development and highlights the potential of MC as a complementary descriptor for characterizing brain network development and alterations due to perinatal insults such as premature birth.
Collapse
Affiliation(s)
- Andrea Gondová
- Université Paris Cité, Inserm, NeuroDiderotParisFrance
- Université Paris‐Saclay, CEA, NeuroSpin, UNIACTGif‐sur‐YvetteFrance
| | - Sara Neumane
- Université Paris Cité, Inserm, NeuroDiderotParisFrance
- Université Paris‐Saclay, CEA, NeuroSpin, UNIACTGif‐sur‐YvetteFrance
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Tomoki Arichi
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Paediatric Neurosciences, Evelina London Children's HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - Jessica Dubois
- Université Paris Cité, Inserm, NeuroDiderotParisFrance
- Université Paris‐Saclay, CEA, NeuroSpin, UNIACTGif‐sur‐YvetteFrance
| |
Collapse
|
3
|
Gossman KR, Andrews E, Dykstra B, Ta K, Ashourvan A, Smith AS. Structural connectivity of the fore- and mid-brain in prairie voles. iScience 2025; 28:112065. [PMID: 40144636 PMCID: PMC11938270 DOI: 10.1016/j.isci.2025.112065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/14/2024] [Accepted: 02/17/2025] [Indexed: 03/28/2025] Open
Abstract
Mammals live in complex social systems that require higher order cognition to process and display complex social behaviors. It is suggested that brain networks, such as the social decision-making network (SDMN), have evolved to process such information. Recent functional connectivity studies of the SDMN have revealed distinct network dynamics during different social events across several species. However, the structural mapping of this network is incomplete which limits structural-functional modeling. Here, we assess the structural connectivity of an extended SDMN as well as the fore- and mid-brain afferent projections with the use of cholera toxin subunit-B retrograde tracers and the prairie vole (Microtus ochrogaster), a socially monogamous rodent that displays complex social behaviors. This work greatly expands upon the limited structural connectivity of the vole social brain and highlights important regions within the SDMN and other highly innervated regions that may serve as information hubs.
Collapse
Affiliation(s)
- Kyle R. Gossman
- Department of Pharmacsology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Emalee Andrews
- Department of Pharmacsology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Ben Dykstra
- Department of Pharmacsology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Kyle Ta
- Department of Pharmacsology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Arian Ashourvan
- Department of Psychology, University of Kansas, Lawrence KS, USA
| | - Adam S. Smith
- Department of Pharmacsology and Toxicology, University of Kansas, Lawrence, KS, USA
- Program in Neuroscience, University of Kansas, Lawrence KS, USA
| |
Collapse
|
4
|
Liu J, Yu X, Fukuyama H, Murai T, Wu J, Li Q, Zhang Z. CSEPC: a deep learning framework for classifying small-sample multimodal medical image data in Alzheimer's disease. BMC Geriatr 2025; 25:130. [PMID: 40011826 PMCID: PMC11863527 DOI: 10.1186/s12877-025-05771-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder that significantly impacts health care worldwide, particularly among the elderly population. The accurate classification of AD stages is essential for slowing disease progression and guiding effective interventions. However, limited sample sizes continue to present a significant challenge in classifying the stages of AD progression. Addressing this obstacle is crucial for improving diagnostic accuracy and optimizing treatment strategies for those affected by AD. METHODS In this study, we proposed cross-scale equilibrium pyramid coupling (CSEPC), which is a novel diagnostic algorithm designed for small-sample multimodal medical imaging data. CSEPC leverages scale equilibrium theory and modal coupling properties to integrate semantic features from different imaging modalities and across multiple scales within each modality. The architecture first extracts balanced multiscale features from structural MRI (sMRI) data and functional MRI (fMRI) data using a cross-scale pyramid module. These features are then combined through a contrastive learning-based cosine similarity coupling mechanism to capture intermodality associations effectively. This approach enhances the representation of both inter- and intramodal features while significantly reducing the number of learning parameters, making it highly suitable for small sample environments. We validated the effectiveness of the CSEPC model through experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and demonstrated its superior performance in diagnosing and staging AD. RESULTS Our experimental results demonstrate that the proposed model matches or exceeds the performance of models used in previous studies in AD classification. Specifically, the model achieved an accuracy of 85.67% and an area under the curve (AUC) of 0.98 in classifying the progression from mild cognitive impairment (MCI) to AD. To further validate its effectiveness, we used our method to diagnose different stages of AD. In both classification tasks, our approach delivered superior performance. CONCLUSIONS In conclusion, the performance of our model in various tasks has demonstrated its significant potential in the field of small-sample multimodal medical imaging classification, particularly AD classification. This advancement could significantly assist clinicians in effectively managing and intervening in the disease progression of patients with early-stage AD.
Collapse
Affiliation(s)
- Jingyuan Liu
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaojie Yu
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hidenao Fukuyama
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Jinglong Wu
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qi Li
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China.
- Jilin Provincial International Joint Research Center of Brain Informatics and Intelligence Science, Changchun, 130022, China.
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, 528437, China.
| | - Zhilin Zhang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Huang J, Wei S, Gao Z, Jiang S, Wang M, Sun L, Ding W, Zhang D. Local structural-functional coupling with counterfactual explanations for epilepsy prediction. Neuroimage 2025; 306:120978. [PMID: 39755222 DOI: 10.1016/j.neuroimage.2024.120978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/01/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025] Open
Abstract
The structural-functional brain connections coupling (SC-FC coupling) describes the relationship between white matter structural connections (SC) and the corresponding functional activation or functional connections (FC). It has been widely used to identify brain disorders. However, the existing research on SC-FC coupling focuses on global and regional scales, and few studies have investigated the impact of brain disorders on this relationship from the perspective of multi-brain region cooperation (i.e., local scale). Here, we propose the local SC-FC coupling pattern for brain disorders prediction. Compared with previous methods, the proposed patterns quantify the relationship between SC and FC in terms of subgraphs rather than whole connections or single brain regions. Specifically, we first construct structural and functional connections using diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rs-fMRI) data, subsequently organizing them into a multimodal brain network. Then, we extract subgraphs from these multimodal brain networks and select them based on their frequencies to generate local SC-FC coupling patterns. Finally, we employ these patterns to identify brain disorders while refining abnormal patterns to generate counterfactual explanations. Results on a real epilepsy dataset suggest that the proposed method not only outperforms existing methods in accuracy but also provides insights into the local SC-FC coupling pattern and their changes in brain disorders. Code available at https://github.com/UAIBC-Brain/Local-SC-FC-coupling-pattern.
Collapse
Affiliation(s)
- Jiashuang Huang
- School of Artificial Intelligence and Computer Science, Nantong University, Nantong, 226019, China
| | - Shaolong Wei
- School of Artificial Intelligence and Computer Science, Nantong University, Nantong, 226019, China
| | - Zhen Gao
- Affiliated Hospital 2 of Nantong University, Nantong, 226001, China
| | - Shu Jiang
- School of Artificial Intelligence and Computer Science, Nantong University, Nantong, 226019, China
| | - Mingliang Wang
- School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Liang Sun
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Shenzhen Research Institute, Nanjing University of Aeronautics and Astronautics, Shenzhen, 518038, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, 210016, China
| | - Weiping Ding
- School of Artificial Intelligence and Computer Science, Nantong University, Nantong, 226019, China.
| | - Daoqiang Zhang
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Shenzhen Research Institute, Nanjing University of Aeronautics and Astronautics, Shenzhen, 518038, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, 210016, China.
| |
Collapse
|
6
|
Sun H, Liu N, Qiu C, Tao B, Yang C, Tang B, Li H, Zhan K, Cai C, Zhang W, Lui S. Applications of MRI in Schizophrenia: Current Progress in Establishing Clinical Utility. J Magn Reson Imaging 2025; 61:616-633. [PMID: 38946400 DOI: 10.1002/jmri.29470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024] Open
Abstract
Schizophrenia is a severe mental illness that significantly impacts the lives of affected individuals and with increasing mortality rates. Early detection and intervention are crucial for improving outcomes but the lack of validated biomarkers poses great challenges in such efforts. The use of magnetic resonance imaging (MRI) in schizophrenia enables the investigation of the disorder's etiological and neuropathological substrates in vivo. After decades of research, promising findings of MRI have been shown to aid in screening high-risk individuals and predicting illness onset, and predicting symptoms and treatment outcomes of schizophrenia. The integration of machine learning and deep learning techniques makes it possible to develop intelligent diagnostic and prognostic tools with extracted or selected imaging features. In this review, we aimed to provide an overview of current progress and prospects in establishing clinical utility of MRI in schizophrenia. We first provided an overview of MRI findings of brain abnormalities that might underpin the symptoms or treatment response process in schizophrenia patients. Then, we summarized the ongoing efforts in the computer-aided utility of MRI in schizophrenia and discussed the gap between MRI research findings and real-world applications. Finally, promising pathways to promote clinical translation were provided. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Hui Sun
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Naici Liu
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Changjian Qiu
- Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Bo Tao
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Chengmin Yang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Biqiu Tang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Hongwei Li
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| | - Kongcai Zhan
- Department of Radiology, Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong, China
| | - Chunxian Cai
- Department of Radiology, the Second People's Hospital of Neijiang, Neijiang, China
| | - Wenjing Zhang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
7
|
Lv R, Chang W, Yan G, Nie W, Zheng L, Guo B, Sadiq MT. A Novel Recognition and Classification Approach for Motor Imagery Based on Spatio-Temporal Features. IEEE J Biomed Health Inform 2025; 29:210-223. [PMID: 39374272 DOI: 10.1109/jbhi.2024.3464550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Motor imagery, as a paradigm of brain-computer interface, holds vast potential in the field of medical rehabilitation. Addressing the challenges posed by the non-stationarity and low signal-to-noise ratio of EEG signals, the effective extraction of features from motor imagery signals for accurate recognition stands as a key focus in motor imagery brain-computer interface technology. This paper proposes a motor imagery EEG signal classification model that combines functional brain networks with graph convolutional networks. First, functional brain networks are constructed using different brain functional connectivity metrics, and graph theory features are calculated to deeply analyze the characteristics of brain networks under different motor tasks. Then, the constructed functional brain networks are combined with graph convolutional networks for the classification and recognition of motor imagery tasks. The analysis based on brain functional connectivity reveals that the functional connectivity strength during the both fists task is significantly higher than that of other motor imagery tasks, and the functional connectivity strength during actual movement is generally superior to that of motor imagery tasks. In experiments conducted on the Physionet public dataset, the proposed model achieved a classification accuracy of 88.39% under multi-subject conditions, significantly outperforming traditional methods. Under single-subject conditions, the model effectively addressed the issue of individual variability, achieving an average classification accuracy of 99.31%. These results indicate that the proposed model not only exhibits excellent performance in the classification of motor imagery tasks but also provides new insights into the functional connectivity characteristics of different motor tasks and their corresponding brain regions.
Collapse
|
8
|
Cai H, Deng R, Yang D, Zhang F, Wu G, Chen J. Harmonic Wavelet Neural Network for Discovering Neuropathological Propagation Patterns in Alzheimer's Disease. IEEE J Biomed Health Inform 2025; 29:608-619. [PMID: 39074003 DOI: 10.1109/jbhi.2024.3434394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Emerging researchindicates that the degenerative biomarkers associated with Alzheimer's disease (AD) exhibit a non-random distribution within the cerebral cortex, instead following the structural brain network. The alterations in brain networks occur much earlier than the onset of clinical symptoms, thereby affecting the progression of brain disease. In this context, the utilization of computational methods to ascertain the propagation patterns of neuropathological events would contribute to the comprehension of the pathophysiological mechanism involved in the evolution of AD. Despite the encouraging findings achieved by existing graph-based deep learning approaches in analyzing irregular graph data, their applications in identifying the spreading pathway of neuropathology are limited due to two disadvantages. They include (1) lack of a common brain network as an unbiased reference basis for group comparison, and (2) lack of an appropriate mechanism for the identification of propagation patterns. To this end, we propose a proof-of-concept harmonic wavelet neural network (HWNN) to predict the early stage of AD and localize disease-related significant wavelets, which can be used to characterize the spreading pathways of neuropathological events across the brain network. The extensive experiments constructed on both synthetic and real datasets demonstrate that our proposed method achieves superior performance in classification accuracy and statistical power of identifying propagation patterns, compared with other representative approaches.
Collapse
|
9
|
Zhang L, Wu Z, Yu X, Lyu Y, Wu Z, Dai H, Zhao L, Wang L, Li G, Wang X, Liu T, Zhu D. Learning lifespan brain anatomical correspondence via cortical developmental continuity transfer. Med Image Anal 2025; 99:103328. [PMID: 39243599 PMCID: PMC11609030 DOI: 10.1016/j.media.2024.103328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/04/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Identifying anatomical correspondences in the human brain throughout the lifespan is an essential prerequisite for studying brain development and aging. But given the tremendous individual variability in cortical folding patterns, the heterogeneity of different neurodevelopmental stages, and the scarce of neuroimaging data, it is difficult to infer reliable lifespan anatomical correspondence at finer scales. To solve this problem, in this work, we take the advantage of the developmental continuity of the cerebral cortex and propose a novel transfer learning strategy: the model is trained from scratch using the age group with the largest sample size, and then is transferred and adapted to the other groups following the cortical developmental trajectory. A novel loss function is designed to ensure that during the transfer process the common patterns will be extracted and preserved, while the group-specific new patterns will be captured. The proposed framework was evaluated using multiple datasets covering four lifespan age groups with 1,000+ brains (from 34 gestational weeks to young adult). Our experimental results show that: 1) the proposed transfer strategy can dramatically improve the model performance on populations (e.g., early neurodevelopment) with very limited number of training samples; and 2) with the transfer learning we are able to robustly infer the complicated many-to-many anatomical correspondences among different brains at different neurodevelopmental stages. (Code will be released soon: https://github.com/qidianzl/CDC-transfer).
Collapse
Affiliation(s)
- Lu Zhang
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019 USA
| | - Zhengwang Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Xiaowei Yu
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019 USA
| | - Yanjun Lyu
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019 USA
| | - Zihao Wu
- Department of Computer Science, University of Georgia, Athens, GA 30602 USA
| | - Haixing Dai
- Department of Computer Science, University of Georgia, Athens, GA 30602 USA
| | - Lin Zhao
- Department of Computer Science, University of Georgia, Athens, GA 30602 USA
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Xianqiao Wang
- College of Engineering, University of Georgia, Athens, GA 30602 USA
| | - Tianming Liu
- Department of Computer Science, University of Georgia, Athens, GA 30602 USA
| | - Dajiang Zhu
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019 USA
| |
Collapse
|
10
|
Zalesky A, Sarwar T, Tian Y, Liu Y, Yeo BTT, Ramamohanarao K. Predicting an individual's functional connectivity from their structural connectome: Evaluation of evidence, recommendations, and future prospects. Netw Neurosci 2024; 8:1291-1309. [PMID: 39735518 PMCID: PMC11674402 DOI: 10.1162/netn_a_00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/11/2024] [Indexed: 12/31/2024] Open
Abstract
Several recent studies have optimized deep neural networks to learn high-dimensional relationships linking structural and functional connectivity across the human connectome. However, the extent to which these models recapitulate individual-specific characteristics of resting-state functional brain networks remains unclear. A core concern relates to whether current individual predictions outperform simple benchmarks such as group averages and null conditions. Here, we consider two measures to statistically evaluate whether functional connectivity predictions capture individual effects. We revisit our previously published functional connectivity predictions for 1,000 healthy adults and provide multiple lines of evidence supporting that our predictions successfully capture subtle individual-specific variation in connectivity. While predicted individual effects are statistically significant and outperform several benchmarks, we find that effect sizes are small (i.e., 8%-11% improvement relative to group-average benchmarks). As such, initial expectations about individual prediction performance expressed by us and others may require moderation. We conclude that individual predictions can significantly outperform appropriate benchmark conditions and we provide several recommendations for future studies in this area. Future studies should statistically assess the individual prediction performance of their models using one of the measures and benchmarks provided here.
Collapse
Affiliation(s)
- Andrew Zalesky
- Systems Lab, Department of Psychiatry, The University of Melbourne, Victoria, Australia
- Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia
| | - Tabinda Sarwar
- School of Computing Technologies, RMIT University, Victoria, Australia
| | - Ye Tian
- Systems Lab, Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | - Yuanzhe Liu
- Systems Lab, Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | - B. T. Thomas Yeo
- Department of Electrical and Computer Engineering, Center for Sleep & Cognition and N.1 Institute for Health, National University of Singapore, Singapore
| | | |
Collapse
|
11
|
Cai H, Sheng X, Wu G, Hu B, Cheung YM, Chen J. Brain Network Classification for Accurate Detection of Alzheimer's Disease via Manifold Harmonic Discriminant Analysis. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:17266-17280. [PMID: 37566497 PMCID: PMC10858979 DOI: 10.1109/tnnls.2023.3301456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Mounting evidence shows that Alzheimer's disease (AD) manifests the dysfunction of the brain network much earlier before the onset of clinical symptoms, making its early diagnosis possible. Current brain network analyses treat high-dimensional network data as a regular matrix or vector, which destroys the essential network topology, thereby seriously affecting diagnosis accuracy. In this context, harmonic waves provide a solid theoretical background for exploring brain network topology. However, the harmonic waves are originally intended to discover neurological disease propagation patterns in the brain, which makes it difficult to accommodate brain disease diagnosis with high heterogeneity. To address this challenge, this article proposes a network manifold harmonic discriminant analysis (MHDA) method for accurately detecting AD. Each brain network is regarded as an instance drawn on a Stiefel manifold. Every instance is represented by a set of orthonormal eigenvectors (i.e., harmonic waves) derived from its Laplacian matrix, which fully respects the topological structure of the brain network. An MHDA method within the Stiefel space is proposed to identify the group-dependent common harmonic waves, which can be used as group-specific references for downstream analyses. Extensive experiments are conducted to demonstrate the effectiveness of the proposed method in stratifying cognitively normal (CN) controls, mild cognitive impairment (MCI), and AD.
Collapse
Affiliation(s)
- Hongmin Cai
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiaoqi Sheng
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Guorong Wu
- Department of Psychiatry and Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bin Hu
- School of Medical Technology at Beijing Institute of Technology, Beijing Institute of Technology, Beijing, China
| | - Yiu-Ming Cheung
- Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jiazhou Chen
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Blanco R, Preti MG, Koba C, Ville DVD, Crimi A. Comparing structure-function relationships in brain networks using EEG and fNIRS. Sci Rep 2024; 14:28976. [PMID: 39578593 PMCID: PMC11584861 DOI: 10.1038/s41598-024-79817-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
Identifying relationships between structural and functional networks is crucial for understanding the large-scale organization of the human brain. The potential contribution of emerging techniques like functional near-infrared spectroscopy to investigate the structure-functional relationship has yet to be explored. In our study, using simultaneous Electroencephalography (EEG) and Functional near-infrared spectroscopy (fNIRS) recordings from 18 subjects, we characterize global and local structure-function coupling using source-reconstructed EEG and fNIRS signals in both resting state and motor imagery tasks, as this relationship during task periods remains underexplored. Employing the mathematical framework of graph signal processing, we investigate how this relationship varies across electrical and hemodynamic networks and different brain states. Results show that fNIRS structure-function coupling resembles slower-frequency EEG coupling at rest, with variations across brain states and oscillations. Locally, the relationship is heterogeneous, with greater coupling in the sensory cortex and increased decoupling in the association cortex, following the unimodal to transmodal gradient. Discrepancies between EEG and fNIRS are noted, particularly in the frontoparietal network. Cross-band representations of neural activity revealed lower correspondence between electrical and hemodynamic activity in the transmodal cortex, irrespective of brain state while showing specificity for the somatomotor network during a motor imagery task. Overall, these findings initiate a multimodal comprehension of structure-function relationship and brain organization when using affordable functional brain imaging.
Collapse
Affiliation(s)
- Rosmary Blanco
- Computer Vision lab, Sano Center for Computational Medicine, Krakow, Poland.
| | - Maria Giulia Preti
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Cemal Koba
- Computer Vision lab, Sano Center for Computational Medicine, Krakow, Poland
| | - Dimitri Van De Ville
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alessandro Crimi
- Computer Science faculty, AGH University of Science and Technology, Krakow, Poland
| |
Collapse
|
13
|
Bi XA, Yang Z, Huang Y, Xing Z, Xu L, Wu Z, Liu Z, Li X, Liu T. CE-GAN: Community Evolutionary Generative Adversarial Network for Alzheimer's Disease Risk Prediction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3663-3675. [PMID: 38587958 DOI: 10.1109/tmi.2024.3385756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
In the studies of neurodegenerative diseases such as Alzheimer's Disease (AD), researchers often focus on the associations among multi-omics pathogeny based on imaging genetics data. However, current studies overlook the communities in brain networks, leading to inaccurate models of disease development. This paper explores the developmental patterns of AD from the perspective of community evolution. We first establish a mathematical model to describe functional degeneration in the brain as the community evolution driven by entropy information propagation. Next, we propose an interpretable Community Evolutionary Generative Adversarial Network (CE-GAN) to predict disease risk. In the generator of CE-GAN, community evolutionary convolutions are designed to capture the evolutionary patterns of AD. The experiments are conducted using functional magnetic resonance imaging (fMRI) data and single nucleotide polymorphism (SNP) data. CE-GAN achieves 91.67% accuracy and 91.83% area under curve (AUC) in AD risk prediction tasks, surpassing advanced methods on the same dataset. In addition, we validated the effectiveness of CE-GAN for pathogeny extraction. The source code of this work is available at https://github.com/fmri123456/CE-GAN.
Collapse
|
14
|
Jamison KW, Gu Z, Wang Q, Tozlu C, Sabuncu MR, Kuceyeski A. Release the Krakencoder: A unified brain connectome translation and fusion tool. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589274. [PMID: 38659856 PMCID: PMC11042193 DOI: 10.1101/2024.04.12.589274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Brain connectivity can be estimated in many ways, depending on modality and processing strategy. Here we present the Krakencoder, a joint connectome mapping tool that simultaneously, bidirectionally translates between structural (SC) and functional connectivity (FC), and across different atlases and processing choices via a common latent representation. These mappings demonstrate unprecedented accuracy and individual-level identifiability; the mapping between SC and FC has identifiability 42-54% higher than existing models. The Krakencoder combines all connectome flavors via a shared low-dimensional latent space. This "fusion" representation i) better reflects familial relatedness, ii) preserves age- and sex-relevant information and iii) enhances cognition-relevant information. The Krakencoder can be applied without retraining to new, out-of-age-distribution data while still preserving inter-individual differences in the connectome predictions and familial relationships in the latent representations. The Krakencoder is a significant leap forward in capturing the relationship between multi-modal brain connectomes in an individualized, behaviorally- and demographically-relevant way.
Collapse
Affiliation(s)
- Keith W Jamison
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Zijin Gu
- School of Electrical and Computer Engineering, Cornell University and Cornell Tech, New York, NY, USA
| | - Qinxin Wang
- Department of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ceren Tozlu
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Mert R Sabuncu
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
- School of Electrical and Computer Engineering, Cornell University and Cornell Tech, New York, NY, USA
| | - Amy Kuceyeski
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
15
|
Tang H, Ma G, Guo L, Fu X, Huang H, Zhan L. Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling Model. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:7363-7375. [PMID: 36374890 PMCID: PMC10183052 DOI: 10.1109/tnnls.2022.3220220] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Recently, brain networks have been widely adopted to study brain dynamics, brain development, and brain diseases. Graph representation learning techniques on brain functional networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases. However, current graph learning techniques have several issues on brain network mining. First, most current graph learning models are designed for unsigned graph, which hinders the analysis of many signed network data (e.g., brain functional networks). Meanwhile, the insufficiency of brain network data limits the model performance on clinical phenotypes' predictions. Moreover, few of the current graph learning models are interpretable, which may not be capable of providing biological insights for model outcomes. Here, we propose an interpretable hierarchical signed graph representation learning (HSGPL) model to extract graph-level representations from brain functional networks, which can be used for different prediction tasks. To further improve the model performance, we also propose a new strategy to augment functional brain network data for contrastive learning. We evaluate this framework on different classification and regression tasks using data from human connectome project (HCP) and open access series of imaging studies (OASIS). Our results from extensive experiments demonstrate the superiority of the proposed model compared with several state-of-the-art techniques. In addition, we use graph saliency maps, derived from these prediction tasks, to demonstrate detection and interpretation of phenotypic biomarkers.
Collapse
|
16
|
Cao C, Yu X, Zhang L, Chen T, Lyu Y, Liu T, Zhu D. ENHANCING GROUP-WISE CONSISTENCY IN 3-HINGE GYRUS MATCHING VIA ANATOMICAL EMBEDDING AND STRUCTURAL CONNECTIVITY OPTIMIZATION. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2024; 2024:10.1109/isbi56570.2024.10635893. [PMID: 40012833 PMCID: PMC11864806 DOI: 10.1109/isbi56570.2024.10635893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Recently, a novel cortical folding pattern known as the 3-hinge gyrus (3HG) has been identified. 3HGs are defined as the convergence of the gyri coming from three distinct directions on gyral crests. In contrast to cortical regions, 3HGs are defined at a finer scale and they widely exist across different individuals, representing both commonalities and individualities of cortical folding patterns. It is important to note that 3HGs are identified in individual spaces, lacking natural cross-subject correspondences. To address this issue, we have developed a learning-based method to encode anatomical features of 3HGs into a set of embedding vectors that can be compared across individuals. However, this method solely relies on anatomical features and can be suboptimal because it does not consider the related structural connectivity patterns, as many 3HGs have multiple potential matches using anatomical properties only. In this study, we leverage the multimodal imaging data (T1 MRI and DTI) which are complementary to each other in representing 3HGs, to enhance the precision when identifying one-to-one correspondence for 3HGs. Through extensive experiments, we have demonstrated the effectiveness of our approach in mitigating the one-to-many match issue associated with 3HGs, significantly improving the accuracy of 3HG correspondences. This accomplishment holds considerable implications for group-level analyses based on 3HGs and contributes to the broader utilization of 3HGs in brain studies.
Collapse
Affiliation(s)
- Chao Cao
- Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX, USA
| | - Xiaowei Yu
- Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX, USA
| | - Lu Zhang
- Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX, USA
| | - Tong Chen
- Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX, USA
| | - Yanjun Lyu
- Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX, USA
| | - Tianming Liu
- School of Computing, The University of Georgia, Athens, GA, USA
| | - Dajiang Zhu
- Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
17
|
Mao W, Chen Y, He Z, Wang Z, Xiao Z, Sun Y, He L, Zhou J, Guo W, Ma C, Zhao L, Kendrick KM, Zhou B, Becker B, Liu T, Zhang T, Jiang X. Brain Structural Connectivity Guided Vision Transformers for Identification of Functional Connectivity Characteristics in Preterm Neonates. IEEE J Biomed Health Inform 2024; 28:2223-2234. [PMID: 38285570 DOI: 10.1109/jbhi.2024.3355020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Preterm birth is the leading cause of death in children under five years old, and is associated with a wide sequence of complications in both short and long term. In view of rapid neurodevelopment during the neonatal period, preterm neonates may exhibit considerable functional alterations compared to term ones. However, the identified functional alterations in previous studies merely achieve moderate classification performance, while more accurate functional characteristics with satisfying discrimination ability for better diagnosis and therapeutic treatment is underexplored. To address this problem, we propose a novel brain structural connectivity (SC) guided Vision Transformer (SCG-ViT) to identify functional connectivity (FC) differences among three neonatal groups: preterm, preterm with early postnatal experience, and term. Particularly, inspired by the neuroscience-derived information, a novel patch token of SC/FC matrix is defined, and the SC matrix is then adopted as an effective mask into the ViT model to screen out input FC patch embeddings with weaker SC, and to focus on stronger ones for better classification and identification of FC differences among the three groups. The experimental results on multi-modal MRI data of 437 neonatal brains from publicly released Developing Human Connectome Project (dHCP) demonstrate that SCG-ViT achieves superior classification ability compared to baseline models, and successfully identifies holistically different FC patterns among the three groups. Moreover, these different FCs are significantly correlated with the differential gene expressions of the three groups. In summary, SCG-ViT provides a powerfully brain-guided pipeline of adopting large-scale and data-intensive deep learning models for medical imaging-based diagnosis.
Collapse
|
18
|
Oh JH, Lee DJ, Ji CH, Shin DH, Han JW, Son YH, Kam TE. Graph-Based Conditional Generative Adversarial Networks for Major Depressive Disorder Diagnosis With Synthetic Functional Brain Network Generation. IEEE J Biomed Health Inform 2024; 28:1504-1515. [PMID: 38064332 DOI: 10.1109/jbhi.2023.3340325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Major Depressive Disorder (MDD) is a pervasive disorder affecting millions of individuals, presenting a significant global health concern. Functional connectivity (FC) derived from resting-state functional Magnetic Resonance Imaging (rs-fMRI) serves as a crucial tool in revealing functional connectivity patterns associated with MDD, playing an essential role in precise diagnosis. However, the limited data availability of FC poses challenges for robust MDD diagnosis. To tackle this, some studies have employed Deep Neural Networks (DNN) architectures to construct Generative Adversarial Networks (GAN) for synthetic FC generation, but this tends to overlook the inherent topology characteristics of FC. To overcome this challenge, we propose a novel Graph Convolutional Networks (GCN)-based Conditional GAN with Class-Aware Discriminator (GC-GAN). GC-GAN utilizes GCN in both the generator and discriminator to capture intricate FC patterns among brain regions, and the class-aware discriminator ensures the diversity and quality of the generated synthetic FC. Additionally, we introduce a topology refinement technique to enhance MDD diagnosis performance by optimizing the topology using the augmented FC dataset. Our framework was evaluated on publicly available rs-fMRI datasets, and the results demonstrate that GC-GAN outperforms existing methods. This indicates the superior potential of GCN in capturing intricate topology characteristics and generating high-fidelity synthetic FC, thus contributing to a more robust MDD diagnosis.
Collapse
|
19
|
Zhang L, Qu J, Ma H, Chen T, Liu T, Zhu D. Exploring Alzheimer's disease: a comprehensive brain connectome-based survey. PSYCHORADIOLOGY 2024; 4:kkad033. [PMID: 38333558 PMCID: PMC10848159 DOI: 10.1093/psyrad/kkad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024]
Abstract
Dementia is an escalating global health challenge, with Alzheimer's disease (AD) at its forefront. Substantial evidence highlights the accumulation of AD-related pathological proteins in specific brain regions and their subsequent dissemination throughout the broader area along the brain network, leading to disruptions in both individual brain regions and their interconnections. Although a comprehensive understanding of the neurodegeneration-brain network link is lacking, it is undeniable that brain networks play a pivotal role in the development and progression of AD. To thoroughly elucidate the intricate network of elements and connections constituting the human brain, the concept of the brain connectome was introduced. Research based on the connectome holds immense potential for revealing the mechanisms underlying disease development, and it has become a prominent topic that has attracted the attention of numerous researchers. In this review, we aim to systematically summarize studies on brain networks within the context of AD, critically analyze the strengths and weaknesses of existing methodologies, and offer novel perspectives and insights, intending to serve as inspiration for future research.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Junqi Qu
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Haotian Ma
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Tong Chen
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Tianming Liu
- Department of Computer Science, The University of Georgia, Athens, GA 30602, USA
| | - Dajiang Zhu
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
20
|
Udayakumar P, Subhashini R. Connectome-based schizophrenia prediction using structural connectivity - Deep Graph Neural Network(sc-DGNN). JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:1041-1059. [PMID: 38820060 DOI: 10.3233/xst-230426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
BACKGROUND Connectome is understanding the complex organization of the human brain's structural and functional connectivity is essential for gaining insights into cognitive processes and disorders. OBJECTIVE To improve the prediction accuracy of brain disorder issues, the current study investigates dysconnected subnetworks and graph structures associated with schizophrenia. METHOD By using the proposed structural connectivity-deep graph neural network (sc-DGNN) model and compared with machine learning (ML) and deep learning (DL) models.This work attempts to focus on eighty-eight subjects of diffusion magnetic resonance imaging (dMRI), three classical ML, and five DL models. RESULT The structural connectivity-deep graph neural network (sc-DGNN) model is proposed to effectively predict dysconnectedness associated with schizophrenia and exhibits superior performance compared to traditional ML and DL (GNNs) methods in terms of accuracy, sensitivity, specificity, precision, F1-score, and Area under receiver operating characteristic (AUC). CONCLUSION The classification task on schizophrenia using structural connectivity matrices and experimental results showed that linear discriminant analysis (LDA) performed 72% accuracy rate in ML models and sc-DGNN performed at a 93% accuracy rate in DL models to distinguish between schizophrenia and healthy patients.
Collapse
Affiliation(s)
- P Udayakumar
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, India
| | - R Subhashini
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
21
|
Zhang L, Wang L, Liu T, Zhu D. Disease2Vec: Encoding Alzheimer's progression via disease embedding tree. Pharmacol Res 2024; 199:107038. [PMID: 38072216 PMCID: PMC11334056 DOI: 10.1016/j.phrs.2023.107038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
For decades, a variety of predictive approaches have been proposed and evaluated in terms of their prediction capability for Alzheimer's Disease (AD) and its precursor - mild cognitive impairment (MCI). Most of them focused on prediction or identification of statistical differences among different clinical groups or phases, especially in the context of binary or multi-class classification. The continuous nature of AD development and transition states between successive AD related stages have been typically overlooked. Though a few progression models of AD have been studied recently, they were mainly designed to determine and compare the order of specific biomarkers. How to effectively predict the individual patient's status within a wide spectrum of continuous AD progression has been largely understudied. In this work, we developed a novel learning-based embedding framework to encode the intrinsic relations among AD related clinical stages by a set of meaningful embedding vectors in the latent space (Disease2Vec). We named this process as disease embedding. By Disease2Vec, our framework generates a disease embedding tree (DETree) which effectively represents different clinical stages as a tree trajectory reflecting AD progression and thus can be used to predict clinical status by projecting individuals onto this continuous trajectory. Through this model, DETree can not only perform efficient and accurate prediction for patients at any stages of AD development (across five fine-grained clinical groups instead of typical two groups), but also provide richer status information by examining the projecting locations within a wide and continuous AD progression process. (Code will be available: https://github.com/qidianzl/Disease2Vec.).
Collapse
Affiliation(s)
- Lu Zhang
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX, USA
| | - Li Wang
- Department of Mathematics, The University of Texas at Arlington, Arlington, TX, USA
| | - Tianming Liu
- Department of Computer Science, The University of Georgia, Athens, GA, USA
| | - Dajiang Zhu
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
22
|
Hong Y, Cornea E, Girault JB, Bagonis M, Foster M, Kim SH, Prieto JC, Chen H, Gao W, Styner MA, Gilmore JH. Structural and functional connectome relationships in early childhood. Dev Cogn Neurosci 2023; 64:101314. [PMID: 37898019 PMCID: PMC10630618 DOI: 10.1016/j.dcn.2023.101314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
There is strong evidence that the functional connectome is highly related to the white matter connectome in older children and adults, though little is known about structure-function relationships in early childhood. We investigated the development of cortical structure-function coupling in children longitudinally scanned at 1, 2, 4, and 6 years of age (N = 360) and in a comparison sample of adults (N = 89). We also applied a novel graph convolutional neural network-based deep learning model with a new loss function to better capture inter-subject heterogeneity and predict an individual's functional connectivity from the corresponding structural connectivity. We found regional patterns of structure-function coupling in early childhood that were consistent with adult patterns. In addition, our deep learning model improved the prediction of individual functional connectivity from its structural counterpart compared to existing models.
Collapse
Affiliation(s)
- Yoonmi Hong
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America.
| | - Emil Cornea
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America
| | - Jessica B Girault
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, United States of America
| | - Maria Bagonis
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America
| | - Mark Foster
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America
| | - Sun Hyung Kim
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America
| | - Juan Carlos Prieto
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America
| | - Haitao Chen
- Biomedical Imaging Research Institute (BIRI), Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, United States of America
| | - Wei Gao
- Biomedical Imaging Research Institute (BIRI), Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, United States of America
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America; Department of Computer Science, University of North Carolina at Chapel Hill, United States of America
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America
| |
Collapse
|
23
|
Zuo Q, Shen Y, Zhong N, Chen CLP, Lei B, Wang S. Alzheimer's Disease Prediction via Brain Structural-Functional Deep Fusing Network. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4601-4612. [PMID: 37971911 DOI: 10.1109/tnsre.2023.3333952] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Fusing structural-functional images of the brain has shown great potential to analyze the deterioration of Alzheimer's disease (AD). However, it is a big challenge to effectively fuse the correlated and complementary information from multimodal neuroimages. In this work, a novel model termed cross-modal transformer generative adversarial network (CT-GAN) is proposed to effectively fuse the functional and structural information contained in functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI). The CT-GAN can learn topological features and generate multimodal connectivity from multimodal imaging data in an efficient end-to-end manner. Moreover, the swapping bi-attention mechanism is designed to gradually align common features and effectively enhance the complementary features between modalities. By analyzing the generated connectivity features, the proposed model can identify AD-related brain connections. Evaluations on the public ADNI dataset show that the proposed CT-GAN can dramatically improve prediction performance and detect AD-related brain regions effectively. The proposed model also provides new insights into detecting AD-related abnormal neural circuits.
Collapse
|
24
|
Tang H, Ma G, Zhang Y, Ye K, Guo L, Liu G, Huang Q, Wang Y, Ajilore O, Leow AD, Thompson PM, Huang H, Zhan L. A comprehensive survey of complex brain network representation. META-RADIOLOGY 2023; 1:100046. [PMID: 39830588 PMCID: PMC11741665 DOI: 10.1016/j.metrad.2023.100046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Recent years have shown great merits in utilizing neuroimaging data to understand brain structural and functional changes, as well as its relationship to different neurodegenerative diseases and other clinical phenotypes. Brain networks, derived from different neuroimaging modalities, have attracted increasing attention due to their potential to gain system-level insights to characterize brain dynamics and abnormalities in neurological conditions. Traditional methods aim to pre-define multiple topological features of brain networks and relate these features to different clinical measures or demographical variables. With the enormous successes in deep learning techniques, graph learning methods have played significant roles in brain network analysis. In this survey, we first provide a brief overview of neuroimaging-derived brain networks. Then, we focus on presenting a comprehensive overview of both traditional methods and state-of-the-art deep-learning methods for brain network mining. Major models, and objectives of these methods are reviewed within this paper. Finally, we discuss several promising research directions in this field.
Collapse
Affiliation(s)
- Haoteng Tang
- Department of Computer Science, College of Engineering and Computer Science, University of Texas Rio Grande Valley, 1201 W University Dr, Edinburg, 78539, TX, USA
| | - Guixiang Ma
- Intel Labs, 2111 NE 25th Ave, Hillsboro, 97124, OR, USA
| | - Yanfu Zhang
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, 15261, PA, USA
| | - Kai Ye
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, 15261, PA, USA
| | - Lei Guo
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, 15261, PA, USA
| | - Guodong Liu
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, 15261, PA, USA
| | - Qi Huang
- Department of Radiology, Utah Center of Advanced Imaging, University of Utah, 729 Arapeen Drive, Salt Lake City, 84108, UT, USA
| | - Yalin Wang
- School of Computing and Augmented Intelligence, Arizona State University, 699 S Mill Ave., Tempe, 85281, AZ, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois Chicago, 1601 W. Taylor St., Chicago, 60612, IL, USA
| | - Alex D. Leow
- Department of Psychiatry, University of Illinois Chicago, 1601 W. Taylor St., Chicago, 60612, IL, USA
| | - Paul M. Thompson
- Department of Neurology, University of Southern California, 2001 N. Soto St., Los Angeles, 90032, CA, USA
| | - Heng Huang
- Department of Computer Science, University of Maryland, 8125 Paint Branch Dr, College Park, 20742, MD, USA
| | - Liang Zhan
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, 15261, PA, USA
| |
Collapse
|
25
|
Ye K, Tang H, Dai S, Guo L, Liu JY, Wang Y, Leow A, Thompson PM, Huang H, Zhan L. Bidirectional Mapping with Contrastive Learning on Multimodal Neuroimaging Data. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2023; 14222:138-148. [PMID: 39005889 PMCID: PMC11245326 DOI: 10.1007/978-3-031-43898-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The modeling of the interaction between brain structure and function using deep learning techniques has yielded remarkable success in identifying potential biomarkers for different clinical phenotypes and brain diseases. However, most existing studies focus on one-way mapping, either projecting brain function to brain structure or inversely. This type of unidirectional mapping approach is limited by the fact that it treats the mapping as a one-way task and neglects the intrinsic unity between these two modalities. Moreover, when dealing with the same biological brain, mapping from structure to function and from function to structure yields dissimilar outcomes, highlighting the likelihood of bias in one-way mapping. To address this issue, we propose a novel bidirectional mapping model, named Bidirectional Mapping with Contrastive Learning (BMCL), to reduce the bias between these two unidirectional mappings via ROI-level contrastive learning. We evaluate our framework on clinical phenotype and neurodegenerative disease predictions using two publicly available datasets (HCP and OASIS). Our results demonstrate the superiority of BMCL compared to several state-of-the-art methods.
Collapse
Affiliation(s)
- Kai Ye
- University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Haoteng Tang
- University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Siyuan Dai
- University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lei Guo
- University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Johnny Yuehan Liu
- Thomas Jefferson High School for Science and Technology, Alexandria, VA 22312, USA
| | - Yalin Wang
- Arizona State University, Tempe, AZ 85287, USA
| | - Alex Leow
- University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Paul M Thompson
- University of Southern California, Los Angeles, CA 90032, USA
| | - Heng Huang
- University of Maryland, College Park, MD 20742, USA
| | - Liang Zhan
- University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
26
|
Cao Y, Kuai H, Liang P, Pan JS, Yan J, Zhong N. BNLoop-GAN: a multi-loop generative adversarial model on brain network learning to classify Alzheimer's disease. Front Neurosci 2023; 17:1202382. [PMID: 37424996 PMCID: PMC10326383 DOI: 10.3389/fnins.2023.1202382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/09/2023] [Indexed: 07/11/2023] Open
Abstract
Recent advancements in AI, big data analytics, and magnetic resonance imaging (MRI) have revolutionized the study of brain diseases such as Alzheimer's Disease (AD). However, most AI models used for neuroimaging classification tasks have limitations in their learning strategies, that is batch training without the incremental learning capability. To address such limitations, the systematic Brain Informatics methodology is reconsidered to realize evidence combination and fusion computing with multi-modal neuroimaging data through continuous learning. Specifically, we introduce the BNLoop-GAN (Loop-based Generative Adversarial Network for Brain Network) model, utilizing multiple techniques such as conditional generation, patch-based discrimination, and Wasserstein gradient penalty to learn the implicit distribution of brain networks. Moreover, a multiple-loop-learning algorithm is developed to combine evidence with better sample contribution ranking during training processes. The effectiveness of our approach is demonstrated through a case study on the classification of individuals with AD and healthy control groups using various experimental design strategies and multi-modal brain networks. The BNLoop-GAN model with multi-modal brain networks and multiple-loop-learning can improve classification performance.
Collapse
Affiliation(s)
- Yu Cao
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
- Beijing International Collaboration Base on Brain Informatics and Wisdom Services, Beijing, China
| | - Hongzhi Kuai
- Faculty of Engineering, Maebashi Institute of Technology, Maebashi, Gunma, Japan
| | - Peipeng Liang
- School of Psychology and Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China
| | - Jeng-Shyang Pan
- College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Jianzhuo Yan
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
- Beijing International Collaboration Base on Brain Informatics and Wisdom Services, Beijing, China
| | - Ning Zhong
- Beijing International Collaboration Base on Brain Informatics and Wisdom Services, Beijing, China
- Faculty of Engineering, Maebashi Institute of Technology, Maebashi, Gunma, Japan
- School of Psychology and Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China
| |
Collapse
|
27
|
Zhang S, Zhang T, He Z, Li X, Zhang L, Zhu D, Jiang X, Liu T, Han J, Guo L. Gyral peaks and patterns in human brains. Cereb Cortex 2023; 33:6708-6722. [PMID: 36646465 PMCID: PMC10422926 DOI: 10.1093/cercor/bhac537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
Cortical folding patterns are related to brain function, cognition, and behavior. Since the relationship has not been fully explained on a coarse scale, many efforts have been devoted to the identification of finer grained cortical landmarks, such as sulcal pits and gyral peaks, which were found to remain invariant across subjects and ages and the invariance may be related to gene mediated proto-map. However, gyral peaks were only investigated on macaque monkey brains, but not on human brains where the investigation is challenged due to high inter-individual variabilities. To this end, in this work, we successfully identified 96 gyral peaks both on the left and right hemispheres of human brains, respectively. These peaks are spatially consistent across individuals. Higher or sharper peaks are more consistent across subjects. Both structural and functional graph metrics of peaks are significantly different from other cortical regions, and more importantly, these nodal graph metrics are anti-correlated with the spatial consistency metrics within peaks. In addition, the distribution of peaks and various cortical anatomical, structural/functional connective features show hemispheric symmetry. These findings provide new clues to understanding the cortical landmarks, as well as their relationship with brain functions, cognition, behavior in both healthy and aberrant brains.
Collapse
Affiliation(s)
- Songyao Zhang
- School of Automation, School of Information Technology, and School of Life Science and Technology, Northwestern Polytechnical University, Xi’an 710000, China
| | - Tuo Zhang
- School of Automation, School of Information Technology, and School of Life Science and Technology, Northwestern Polytechnical University, Xi’an 710000, China
| | - Zhibin He
- School of Automation, School of Information Technology, and School of Life Science and Technology, Northwestern Polytechnical University, Xi’an 710000, China
| | - Xiao Li
- School of Automation, School of Information Technology, and School of Life Science and Technology, Northwest University, Xi’an, China
| | - Lu Zhang
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX, United States
| | - Dajiang Zhu
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX, United States
| | - Xi Jiang
- School of Automation, School of Information Technology, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30605, United States
| | - Junwei Han
- School of Automation, School of Information Technology, and School of Life Science and Technology, Northwestern Polytechnical University, Xi’an 710000, China
| | - Lei Guo
- School of Automation, School of Information Technology, and School of Life Science and Technology, Northwestern Polytechnical University, Xi’an 710000, China
| |
Collapse
|
28
|
Zhang L, Yu X, Lyu Y, Liu T, Zhu D. REPRESENTATIVE FUNCTIONAL CONNECTIVITY LEARNING FOR MULTIPLE CLINICAL GROUPS IN ALZHEIMER'S DISEASE. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2023; 2023. [PMID: 38414667 PMCID: PMC10897952 DOI: 10.1109/isbi53787.2023.10230521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Mild cognitive impairment (MCI) is a high-risk dementia condition which progresses to probable Alzheimer's disease (AD) at approximately 10% to 15% per year. Characterization of group-level differences between two subtypes of MCI - stable MCI (sMCI) and progressive MCI (pMCI) is the key step to understand the mechanisms of MCI progression and enable possible delay of transition from MCI to AD. Functional connectivity (FC) is considered as a promising way to study MCI progression since which may show alterations even in preclinical stages and provide substrates for AD progression. However, the representative FC patterns during AD development for different clinical groups, especially for sMCI and pMCI, have been understudied. In this work, we integrated autoencoder and multi-class classification into a single deep model and successfully learned a set of clinical group related feature vectors. Specifically, we trained two non-linear mappings which realized the mutual transformations between the original FC space and the feature space. By mapping the learned clinical group related feature vectors to the original FC space, representative FCs were constructed for each group. Moreover, based on these feature vectors, our model achieves a high classification accuracy - 68% for multi-class classification (NC vs SMC vs sMCI vs pMCI vs AD). Code has been released.
Collapse
Affiliation(s)
- Lu Zhang
- Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX, USA
| | - Xiaowei Yu
- Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX, USA
| | - Yanjun Lyu
- Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX, USA
| | - Tianming Liu
- Computer Science, The University of Georgia, Athens, USA
| | - Dajiang Zhu
- Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
29
|
Tang H, Guo L, Fu X, Wang Y, Mackin S, Ajilore O, Leow AD, Thompson PM, Huang H, Zhan L. Signed graph representation learning for functional-to-structural brain network mapping. Med Image Anal 2023; 83:102674. [PMID: 36442294 PMCID: PMC9904311 DOI: 10.1016/j.media.2022.102674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/04/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022]
Abstract
MRI-derived brain networks have been widely used to understand functional and structural interactions among brain regions, and factors that affect them, such as brain development and diseases. Graph mining on brain networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases. Since brain functional and structural networks describe the brain topology from different perspectives, exploring a representation that combines these cross-modality brain networks has significant clinical implications. Most current studies aim to extract a fused representation by projecting the structural network to the functional counterpart. Since the functional network is dynamic and the structural network is static, mapping a static object to a dynamic object may not be optimal. However, mapping in the opposite direction (i.e., from functional to structural networks) are suffered from the challenges introduced by negative links within signed graphs. Here, we propose a novel graph learning framework, named as Deep Signed Brain Graph Mining or DSBGM, with a signed graph encoder that, from an opposite perspective, learns the cross-modality representations by projecting the functional network to the structural counterpart. We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets (HCP and OASIS). Our experimental results clearly demonstrate the advantages of our model compared to several state-of-the-art methods.
Collapse
Affiliation(s)
- Haoteng Tang
- University of Pittsburgh, 3700 O'Hara St., Pittsburgh, 15261, PA, USA.
| | - Lei Guo
- University of Pittsburgh, 3700 O'Hara St., Pittsburgh, 15261, PA, USA
| | - Xiyao Fu
- University of Pittsburgh, 3700 O'Hara St., Pittsburgh, 15261, PA, USA
| | - Yalin Wang
- Arizona State University, 699 S Mill Ave., Tempe, 85281, AZ, USA
| | - Scott Mackin
- University of California San Francisco, 505 Parnassus Ave., San Francisco, 94143, CA, USA
| | - Olusola Ajilore
- University of Illinois Chicago, 1601 W. Taylor St., Chicago, 60612, IL, USA
| | - Alex D Leow
- University of Illinois Chicago, 1601 W. Taylor St., Chicago, 60612, IL, USA
| | - Paul M Thompson
- University of Southern California, 2001 N. Soto St., Los Angeles, 90032, CA, USA
| | - Heng Huang
- University of Pittsburgh, 3700 O'Hara St., Pittsburgh, 15261, PA, USA
| | - Liang Zhan
- University of Pittsburgh, 3700 O'Hara St., Pittsburgh, 15261, PA, USA.
| |
Collapse
|
30
|
Zhang L, Zhao L, Liu D, Wu Z, Wang X, Liu T, Zhu D. Cortex2vector: anatomical embedding of cortical folding patterns. Cereb Cortex 2022; 33:5851-5862. [PMID: 36487182 PMCID: PMC10183757 DOI: 10.1093/cercor/bhac465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 12/13/2022] Open
Abstract
Abstract
Current brain mapping methods highly depend on the regularity, or commonality, of anatomical structure, by forcing the same atlas to be matched to different brains. As a result, individualized structural information can be overlooked. Recently, we conceptualized a new type of cortical folding pattern called the 3-hinge gyrus (3HG), which is defined as the conjunction of gyri coming from three directions. Many studies have confirmed that 3HGs are not only widely existing on different brains, but also possess both common and individual patterns. In this work, we put further effort, based on the identified 3HGs, to establish the correspondences of individual 3HGs. We developed a learning-based embedding framework to encode individual cortical folding patterns into a group of anatomically meaningful embedding vectors (cortex2vector). Each 3HG can be represented as a combination of these embedding vectors via a set of individual specific combining coefficients. In this way, the regularity of folding pattern is encoded into the embedding vectors, while the individual variations are preserved by the multi-hop combination coefficients. Results show that the learned embeddings can simultaneously encode the commonality and individuality of cortical folding patterns, as well as robustly infer the complicated many-to-many anatomical correspondences among different brains.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Computer Science and Engineering, The University of Texas at Arlington , Arlington, 76010, USA
| | - Lin Zhao
- Department of Computer Science, The University of Georgia , Athens, 30602, USA
| | | | - Zihao Wu
- Department of Computer Science, The University of Georgia , Athens, 30602, USA
| | - Xianqiao Wang
- College of Engineering, The University of Georgia , Athens, 30602, USA
| | - Tianming Liu
- Department of Computer Science, The University of Georgia , Athens, 30602, USA
| | - Dajiang Zhu
- Department of Computer Science and Engineering, The University of Texas at Arlington , Arlington, 76010, USA
| |
Collapse
|
31
|
Longitudinal Infant Functional Connectivity Prediction via Conditional Intensive Triplet Network. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2022; 13438:255-264. [PMID: 36563062 PMCID: PMC9769983 DOI: 10.1007/978-3-031-16452-1_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Longitudinal infant brain functional connectivity (FC) constructed from resting-state functional MRI (rs-fMRI) has increasingly become a pivotal tool in studying the dynamics of early brain development. However, due to various reasons including high acquisition cost, strong motion artifact, and subject dropout, there has been an extreme shortage of usable longitudinal infant rs-fMRI scans to construct longitudinal FCs, which hinders comprehensive understanding and modeling of brain functional development at early ages. To address this issue, in this paper, we propose a novel conditional intensive triplet network (CITN) for longitudinal prediction of the dynamic development of infant FC, which can traverse FCs within a long duration and predict the target FC at any specific age during infancy. Targeting at accurately modeling of the progression pattern of FC, while maintaining the individual functional uniqueness, our model effectively disentangles the intrinsically mixed age-related and identity-related information from the source FC and predicts the target FC by fusing well-disentangled identity-related information with the specific age-related information. Specifically, we introduce an intensive triplet auto-encoder for effective disentanglement of age-related and identity-related information and an identity conditional module to mix identity-related information with designated age-related information. We train the proposed model in a self-supervised way and design downstream tasks to help robustly disentangle age-related and identity-related features. Experiments on 464 longitudinal infant fMRI scans show the superior performance of the proposed method in longitudinal FC prediction in comparison with state-of-the-art approaches.
Collapse
|
32
|
Lei B, Zhang Y, Liu D, Xu Y, Yue G, Cao J, Hu H, Yu S, Yang P, Wang T, Qiu Y, Xiao X, Wang S. Longitudinal study of early mild cognitive impairment via similarity-constrained group learning and self-attention based SBi-LSTM. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.109466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|