1
|
Northcott J, Bartha G, Harris J, Li C, Navarro FC, Pyke RM, Hong M, Zhang Q, Ma S, Chen TX, Lai J, Udar N, Saldivar JS, Ayash E, Anderson J, Li J, Cui T, Le T, Chow R, Velasco RJ, Mallo C, Santiago R, Bruce RC, Goodman LJ, Chen Y, Norton D, Chen RO, Lyle JM. Analytical validation of NeXT Personal®, an ultra-sensitive personalized circulating tumor DNA assay. Oncotarget 2024; 15:200-218. [PMID: 38484152 PMCID: PMC10939476 DOI: 10.18632/oncotarget.28565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
We describe the analytical validation of NeXT Personal®, an ultra-sensitive, tumor-informed circulating tumor DNA (ctDNA) assay for detecting residual disease, monitoring therapy response, and detecting recurrence in patients diagnosed with solid tumor cancers. NeXT Personal uses whole genome sequencing of tumor and matched normal samples combined with advanced analytics to accurately identify up to ~1,800 somatic variants specific to the patient's tumor. A personalized panel is created, targeting these variants and then used to sequence cell-free DNA extracted from patient plasma samples for ultra-sensitive detection of ctDNA. The NeXT Personal analytical validation is based on panels designed from tumor and matched normal samples from two cell lines, and from 123 patients across nine cancer types. Analytical measurements demonstrated a detection threshold of 1.67 parts per million (PPM) with a limit of detection at 95% (LOD95) of 3.45 PPM. NeXT Personal showed linearity over a range of 0.8 to 300,000 PPM (Pearson correlation coefficient = 0.9998). Precision varied from a coefficient of variation of 12.8% to 3.6% over a range of 25 to 25,000 PPM. The assay targets 99.9% specificity, with this validation study measuring 100% specificity and in silico methods giving us a confidence interval of 99.92 to 100%. In summary, this study demonstrates NeXT Personal as an ultra-sensitive, highly quantitative and robust ctDNA assay that can be used to detect residual disease, monitor treatment response, and detect recurrence in patients.
Collapse
Affiliation(s)
| | | | | | - Conan Li
- Personalis, Inc., Fremont, CA 94555, USA
| | | | | | | | - Qi Zhang
- Personalis, Inc., Fremont, CA 94555, USA
| | - Shuyuan Ma
- Personalis, Inc., Fremont, CA 94555, USA
| | | | - Janet Lai
- Personalis, Inc., Fremont, CA 94555, USA
| | - Nitin Udar
- Personalis, Inc., Fremont, CA 94555, USA
| | | | - Erin Ayash
- Personalis, Inc., Fremont, CA 94555, USA
| | | | - Jiang Li
- Personalis, Inc., Fremont, CA 94555, USA
| | - Tiange Cui
- Personalis, Inc., Fremont, CA 94555, USA
| | - Tu Le
- Personalis, Inc., Fremont, CA 94555, USA
| | | | | | | | | | | | | | - Yi Chen
- Personalis, Inc., Fremont, CA 94555, USA
| | - Dan Norton
- Personalis, Inc., Fremont, CA 94555, USA
| | | | - John M. Lyle
- Personalis, Inc., Fremont, CA 94555, USA
- Co-last authors
| |
Collapse
|
2
|
van der Leest P, Schuuring E. Critical Factors in the Analytical Work Flow of Circulating Tumor DNA-Based Molecular Profiling. Clin Chem 2024; 70:220-233. [PMID: 38175597 DOI: 10.1093/clinchem/hvad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/30/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Liquid biopsy testing, especially molecular tumor profiling of circulating tumor DNA (ctDNA) in cell-free plasma, has received increasing interest in recent years as it serves as a reliable alternative for the detection of tumor-specific aberrations to guide treatment decision-making in oncology. Many (commercially available) applications have been developed, however, broad divergences in (pre)analytical work flows and lack of universally applied guidelines impede routine clinical implementation. In this review, critical factors in the blood-based ctDNA liquid biopsy work flow are evaluated. CONTENT In the preanalytical phase, several aspects (e.g., blood collection tubes [BCTs], plasma processing, and extraction method) affect the quantity and quality of the circulating cell-free DNA (ccfDNA) applicable for subsequent molecular analyses and should meet certain standards to be applied in diagnostic work flows. Analytical considerations, such as analytical input and choice of assay, might vary based on the clinical application (i.e., screening, primary diagnosis, minimal residual disease [MRD], response monitoring, and resistance identification). In addition to practical procedures, variant interpretation and reporting ctDNA results should be harmonized. Collaborative efforts in (inter)national consortia and societies are essential for the establishment of standard operating procedures (SOPs) in attempts to standardize the plasma-based ctDNA analysis work flow. SUMMARY Development of universally applicable guidelines regarding the critical factors in liquid biopsy testing are necessary to pave the way to clinical implementation for routine diagnostics.
Collapse
Affiliation(s)
- Paul van der Leest
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Laboratory Medicine, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ed Schuuring
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
3
|
Spiegl B, Kapidzic F, Röner S, Kircher M, Speicher M. GCparagon: evaluating and correcting GC biases in cell-free DNA at the fragment level. NAR Genom Bioinform 2023; 5:lqad102. [PMID: 38025047 PMCID: PMC10657415 DOI: 10.1093/nargab/lqad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/18/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Analyses of cell-free DNA (cfDNA) are increasingly being employed for various diagnostic and research applications. Many technologies aim to increase resolution, e.g. for detecting early-stage cancer or minimal residual disease. However, these efforts may be confounded by inherent base composition biases of cfDNA, specifically the over - and underrepresentation of guanine (G) and cytosine (C) sequences. Currently, there is no universally applicable tool to correct these effects on sequencing read-level data. Here, we present GCparagon, a two-stage algorithm for computing and correcting GC biases in cfDNA samples. In the initial step, length and GC base count parameters are determined. Here, our algorithm minimizes the inclusion of known problematic genomic regions, such as low-mappability regions, in its calculations. In the second step, GCparagon computes weights counterbalancing the distortion of cfDNA attributes (correction matrix). These fragment weights are added to a binary alignment map (BAM) file as alignment tags for individual reads. The GC correction matrix or the tagged BAM file can be used for downstream analyses. Parallel computing allows for a GC bias estimation below 1 min. We demonstrate that GCparagon vastly improves the analysis of regulatory regions, which frequently show specific GC composition patterns and will contribute to standardized cfDNA applications.
Collapse
Affiliation(s)
- Benjamin Spiegl
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, 8010 Graz, Austria
| | - Faruk Kapidzic
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, 8010 Graz, Austria
| | - Sebastian Röner
- Exploratory Diagnostic Sciences, Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Martin Kircher
- Exploratory Diagnostic Sciences, Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Institute of Human Genetics, University Medical Center Schleswig-Holstein (UKSH), University of Lübeck, 23562 Lübeck, Germany
| | - Michael R Speicher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
4
|
Climent MT, Serra A, Llueca M, Llueca A. Surgery in Recurrent Ovarian Cancer: A Meta-Analysis. Cancers (Basel) 2023; 15:3470. [PMID: 37444580 DOI: 10.3390/cancers15133470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Background: The second cytoreductive surgery performed for a patient who has recurrent ovarian cancer remains controversial. Our study analyzes overall survival (OS) and disease-free survival (DFS) for cytoreductive surgery in addition to chemotherapy in recurrent ovarian cancer instead of chemotherapy alone. Methods: A meta-analysis was conducted using PubMed and the Cochrane database of systematic reviews to select randomized controlled studies. In total, three randomized studies were used, employing a total of 1249 patients. Results: The results of our meta-analysis of these randomized controlled trials identified significant differences in OS (HR = 0.83, IC 95% 0.70-0.99, p < 0.04) and DFS (HR = 0.63, IC 95% 0.55-0.72, p < 0.000001). A subgroup analysis comparing complete cytoreductive surgery and surgery with residual tumor achieved better results for both OS (HR = 0.65, IC 95% 0.49-0.86, p = 0.002) and DFS (HR = 0.67, IC 95% 0.53-0.82, p = 0.0008), with statistical significance. Conclusions: A complete secondary cytoreductive surgery (SCS) in recurrent ovarian cancer (ROC) demonstrates an improvement in the OS and DFS, and this benefit is most evident in cases where complete cytoreductive surgery is achieved. The challenge is the correct patient selection for secondary cytoreductive surgery to improve the results of this approach.
Collapse
Affiliation(s)
- Maria Teresa Climent
- Multidisciplinary Unit of Abdominopelvic Oncology Surgery (MUAPOS), Department of Obstetrics and Gynaecology, University General Hospital of Castellon, 12004 Castellon, Spain
- Oncological Surgery Research Group (OSRG), Department of Medicine, University Jaume I (UJI), 12004 Castellon, Spain
| | - Anna Serra
- Multidisciplinary Unit of Abdominopelvic Oncology Surgery (MUAPOS), Department of Obstetrics and Gynaecology, University General Hospital of Castellon, 12004 Castellon, Spain
- Oncological Surgery Research Group (OSRG), Department of Medicine, University Jaume I (UJI), 12004 Castellon, Spain
| | - Maria Llueca
- Department of Medicine, University CEU-Cardenal Herrera, 12006 Castellon, Spain
| | - Antoni Llueca
- Multidisciplinary Unit of Abdominopelvic Oncology Surgery (MUAPOS), Department of Obstetrics and Gynaecology, University General Hospital of Castellon, 12004 Castellon, Spain
- Oncological Surgery Research Group (OSRG), Department of Medicine, University Jaume I (UJI), 12004 Castellon, Spain
| |
Collapse
|
5
|
Santonja A, Cooper WN, Eldridge MD, Edwards PAW, Morris JA, Edwards AR, Zhao H, Heider K, Couturier D, Vijayaraghavan A, Mennea P, Ditter E, Smith CG, Boursnell C, Manzano García R, Rueda OM, Beddowes E, Biggs H, Sammut S, Rosenfeld N, Caldas C, Abraham JE, Gale D. Comparison of tumor-informed and tumor-naïve sequencing assays for ctDNA detection in breast cancer. EMBO Mol Med 2023; 15:e16505. [PMID: 37161793 PMCID: PMC10245040 DOI: 10.15252/emmm.202216505] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/11/2023] Open
Abstract
Analysis of circulating tumor DNA (ctDNA) to monitor cancer dynamics and detect minimal residual disease has been an area of increasing interest. Multiple methods have been proposed but few studies have compared the performance of different approaches. Here, we compare detection of ctDNA in serial plasma samples from patients with breast cancer using different tumor-informed and tumor-naïve assays designed to detect structural variants (SVs), single nucleotide variants (SNVs), and/or somatic copy-number aberrations, by multiplex PCR, hybrid capture, and different depths of whole-genome sequencing. Our results demonstrate that the ctDNA dynamics and allele fractions (AFs) were highly concordant when analyzing the same patient samples using different assays. Tumor-informed assays showed the highest sensitivity for detection of ctDNA at low concentrations. Hybrid capture sequencing targeting between 1,347 and 7,491 tumor-identified mutations at high depth was the most sensitive assay, detecting ctDNA down to an AF of 0.00024% (2.4 parts per million, ppm). Multiplex PCR targeting 21-47 tumor-identified SVs per patient detected ctDNA down to 0.00047% AF (4.7 ppm) and has potential as a clinical assay.
Collapse
Affiliation(s)
- Angela Santonja
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUK
- Cancer Research UK Cambridge Centre, Cancer Research UK Cambridge Institute, Li Ka Shing CentreCambridgeUK
| | - Wendy N Cooper
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUK
- Cancer Research UK Cambridge Centre, Cancer Research UK Cambridge Institute, Li Ka Shing CentreCambridgeUK
| | - Matthew D Eldridge
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUK
- Cancer Research UK Cambridge Centre, Cancer Research UK Cambridge Institute, Li Ka Shing CentreCambridgeUK
| | - Paul A W Edwards
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUK
- Cancer Research UK Cambridge Centre, Cancer Research UK Cambridge Institute, Li Ka Shing CentreCambridgeUK
- Department of PathologyUniversity of CambridgeCambridgeUK
| | - James A Morris
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUK
- Cancer Research UK Cambridge Centre, Cancer Research UK Cambridge Institute, Li Ka Shing CentreCambridgeUK
| | - Abigail R Edwards
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUK
| | - Hui Zhao
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUK
- Cancer Research UK Cambridge Centre, Cancer Research UK Cambridge Institute, Li Ka Shing CentreCambridgeUK
| | - Katrin Heider
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUK
- Cancer Research UK Cambridge Centre, Cancer Research UK Cambridge Institute, Li Ka Shing CentreCambridgeUK
| | - Dominique‐Laurent Couturier
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUK
- Cancer Research UK Cambridge Centre, Cancer Research UK Cambridge Institute, Li Ka Shing CentreCambridgeUK
- MRC Biostatistics UnitUniversity of CambridgeCambridgeUK
| | - Aadhitthya Vijayaraghavan
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUK
- Cancer Research UK Cambridge Centre, Cancer Research UK Cambridge Institute, Li Ka Shing CentreCambridgeUK
| | - Paulius Mennea
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUK
- Cancer Research UK Cambridge Centre, Cancer Research UK Cambridge Institute, Li Ka Shing CentreCambridgeUK
| | - Emma‐Jane Ditter
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUK
- Cancer Research UK Cambridge Centre, Cancer Research UK Cambridge Institute, Li Ka Shing CentreCambridgeUK
| | - Christopher G Smith
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUK
- Cancer Research UK Cambridge Centre, Cancer Research UK Cambridge Institute, Li Ka Shing CentreCambridgeUK
| | - Chris Boursnell
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUK
- Cancer Research UK Cambridge Centre, Cancer Research UK Cambridge Institute, Li Ka Shing CentreCambridgeUK
| | - Raquel Manzano García
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUK
- Cancer Research UK Cambridge Centre, Cancer Research UK Cambridge Institute, Li Ka Shing CentreCambridgeUK
| | - Oscar M Rueda
- MRC Biostatistics UnitUniversity of CambridgeCambridgeUK
| | - Emma Beddowes
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUK
- Cancer Research UK Cambridge Centre, Cancer Research UK Cambridge Institute, Li Ka Shing CentreCambridgeUK
| | - Heather Biggs
- Department of OncologyUniversity of CambridgeCambridgeUK
- Precision Breast Cancer Institute, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's HospitalCambridgeUK
| | - Stephen‐John Sammut
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUK
- Cancer Research UK Cambridge Centre, Cancer Research UK Cambridge Institute, Li Ka Shing CentreCambridgeUK
- Department of OncologyUniversity of CambridgeCambridgeUK
| | - Nitzan Rosenfeld
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUK
- Cancer Research UK Cambridge Centre, Cancer Research UK Cambridge Institute, Li Ka Shing CentreCambridgeUK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUK
- Cancer Research UK Cambridge Centre, Cancer Research UK Cambridge Institute, Li Ka Shing CentreCambridgeUK
- Department of OncologyUniversity of CambridgeCambridgeUK
- Precision Breast Cancer Institute, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's HospitalCambridgeUK
| | - Jean E Abraham
- Cancer Research UK Cambridge Centre, Cancer Research UK Cambridge Institute, Li Ka Shing CentreCambridgeUK
- Department of OncologyUniversity of CambridgeCambridgeUK
- Precision Breast Cancer Institute, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's HospitalCambridgeUK
| | - Davina Gale
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUK
- Cancer Research UK Cambridge Centre, Cancer Research UK Cambridge Institute, Li Ka Shing CentreCambridgeUK
| |
Collapse
|
6
|
Assi T, Khoury R, Ibrahim R, Baz M, Ibrahim T, LE Cesne A. Overview of the role of liquid biopsy in cancer management. Transl Oncol 2023; 34:101702. [PMID: 37267803 DOI: 10.1016/j.tranon.2023.101702] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
With the emergence of novel targeted therapeutic options in early-stage and advanced-stage malignancies, researchers have shifted their focus on developing personalized treatment plans through molecular profiling. Circulating tumor DNA (ctDNA) is a cell-free DNA (ctDNA) fragment, originating from tumor cells, and circulating in the bloodstream as well as biological fluids. Over the past decade, many techniques were developed for liquid biopsies through next-generation sequencing. This alternative non-invasive biopsy offers several advantages in various types of tumors over traditional tissue biopsy. The process of liquid biopsy is considered minimally invasive and therefore easily repeatable when needed, providing a more dynamic analysis of the tumor cells. Moreover, it has an advantage in patients with tumors that are not candidates for tissue sampling. Besides, it offers a deeper understanding of tumor burden as well as treatment response, thereby enhancing the detection of minimal residual disease and therapeutic guidance for personalized medicine. Despite its many advantages, ctDNA and liquid biopsy do have some limitations. This paper discusses the basis of ctDNA and the current data available on the subject, as well as its clinical utility. We also reflect on the limitations of using ctDNA in addition to its future perspectives in clinical oncology and precision medicine.
Collapse
Affiliation(s)
- Tarek Assi
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France.
| | - Rita Khoury
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Rebecca Ibrahim
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Maria Baz
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Tony Ibrahim
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Axel LE Cesne
- Division of International Patients Care, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
7
|
Wang S, Xia Z, You J, Gu X, Meng F, Chen P, Tang W, Bao H, Zhang J, Wu X, Shao Y, Wang J, Zuo X, Xu L, Yin R. Enhanced Detection of Landmark Minimal Residual Disease in Lung Cancer Using Cell-free DNA Fragmentomics. CANCER RESEARCH COMMUNICATIONS 2023; 3:933-942. [PMID: 37377889 PMCID: PMC10228550 DOI: 10.1158/2767-9764.crc-22-0363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/07/2022] [Accepted: 05/09/2023] [Indexed: 06/29/2023]
Abstract
Currently, approximately 30%-55% of the patients with non-small cell lung cancer (NSCLC) develop recurrence due to minimal residual disease (MRD) after receiving surgical resection of the tumor. This study aims to develop an ultrasensitive and affordable fragmentomic assay for MRD detection in patients with NSCLC. A total of 87 patients with NSCLC, who received curative surgical resections (23 patients relapsed during follow-up), enrolled in this study. A total of 163 plasma samples, collected at 7 days and 6 months postsurgical, were used for both whole-genome sequencing (WGS) and targeted sequencing. WGS-based cell-free DNA (cfDNA) fragment profile was used to fit regularized Cox regression models, and leave-one-out cross-validation was further used to evaluate models' performance. The models showed excellent performances in detecting patients with a high risk of recurrence. At 7 days postsurgical, the high-risk patients detected by our model showed an increased risk of 4.6 times, while the risk increased to 8.3 times at 6 months postsurgical. These fragmentomics determined higher risk compared with the targeted sequencing-based circulating mutations both at 7 days and 6 months postsurgical. The overall sensitivity for detecting patients with recurrence reached 78.3% while using both fragmentomics and mutation results from 7 days and 6 months postsurgical, which increased from the 43.5% sensitivity by using only the circulating mutations. The fragmentomics showed great sensitivity in predicting patient recurrence compared with the traditional circulating mutation, especially after the surgery for early-stage NSCLC, therefore exhibiting great potential to guide adjuvant therapeutics. Significance The circulating tumor DNA mutation-based approach shows limited performance in MRD detection, especially for landmark MRD detection at an early-stage cancer after surgery. Here, we describe a cfDNA fragmentomics-based method in MRD detection of resectable NSCLC using WGS, and the cfDNA fragmentomics showed a great sensitivity in predicting prognosis.
Collapse
Affiliation(s)
- Siwei Wang
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P.R. China
| | - Zhijun Xia
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P.R. China
| | - Jing You
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P.R. China
| | - Xiaolan Gu
- Department of Anesthesiology, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P.R. China
| | - Fanchen Meng
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P.R. China
| | - Peng Chen
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P.R. China
| | - Wanxiangfu Tang
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, P.R. China
| | - Hua Bao
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, P.R. China
| | - Jingyuan Zhang
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, P.R. China
| | - Xue Wu
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, P.R. China
| | - Yang Shao
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, P.R. China
| | - Jie Wang
- Department of Science and Technology, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P.R. China
- Biobank of Lung Cancer, Jiangsu Biobank of Clinical Resources, Nanjing, P.R. China
| | - Xianglin Zuo
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P.R. China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P.R. China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, P.R. China
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P.R. China
- Department of Science and Technology, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P.R. China
- Biobank of Lung Cancer, Jiangsu Biobank of Clinical Resources, Nanjing, P.R. China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
8
|
Khan SR, Scheffler M, Soomar SM, Rashid YA, Moosajee M, Ahmad A, Raza A, Uddin S. Role of circulating-tumor DNA in the early-stage non-small cell lung carcinoma as a predictive biomarker. Pathol Res Pract 2023; 245:154455. [PMID: 37054576 DOI: 10.1016/j.prp.2023.154455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
Lung cancer is one of the most common solid malignancies. Tissue biopsy is the standard method for accurately diagnosing lung and many other malignancies over decades. However, molecular profiling of tumors leads to establishing a new horizon in the field of precision medicine, which has now entered the mainstream in clinical practice. In this context, a minimally invasive complementary method has been proposed as a liquid biopsy (LB) which is a blood-based test that is gaining popularity as it provides the opportunity to test genotypes in a unique, less invasive manner. Circulating tumor cells (CTC) captivating the Circulating-tumor DNA (Ct-DNA) are often present in the blood of lung cancer patients and are the fundamental concept behind LB. There are multiple clinical uses of Ct-DNA, including its role in prognostic and therapeutic purposes. The treatment of lung cancer has drastically evolved over time. Therefore, this review article mainly focuses on the current literature on circulating tumor DNA and its clinical implications and future goals in non-small cell lung cancer.
Collapse
Affiliation(s)
- Saqib Raza Khan
- Medical Oncology Department, Aga Khan University Hospital, Karachi, Pakistan.
| | - Matthias Scheffler
- Internal Medicine Department, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | | | - Yasmin Abdul Rashid
- Medical Oncology Department, Aga Khan University Hospital, Karachi, Pakistan
| | - Munira Moosajee
- Medical Oncology Department, Aga Khan University Hospital, Karachi, Pakistan
| | - Aamir Ahmad
- Translational Research Institute & Dermatology Institute, Hamad Medical Corporation, Doha, Qatar
| | - Afsheen Raza
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Shahab Uddin
- Translational Research Institute & Dermatology Institute, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
9
|
Ashley CW, Selenica P, Patel J, Wu M, Nincevic J, Lakhman Y, Zhou Q, Shah RH, Berger MF, Da Cruz Paula A, Brown DN, Marra A, Iasonos A, Momeni-Boroujeni A, Alektiar KM, Roche KL, Zivanovic O, Mueller JJ, Zamarin D, Broach VA, Sonoda Y, Leitao MM, Friedman CF, Jewell E, Reis-Filho JS, Ellenson LH, Aghajanian C, Abu-Rustum NR, Cadoo K, Weigelt B. High-Sensitivity Mutation Analysis of Cell-Free DNA for Disease Monitoring in Endometrial Cancer. Clin Cancer Res 2023; 29:410-421. [PMID: 36007103 PMCID: PMC9852004 DOI: 10.1158/1078-0432.ccr-22-1134] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/21/2022] [Accepted: 08/23/2022] [Indexed: 01/22/2023]
Abstract
PURPOSE We sought to determine whether sequencing analysis of circulating cell-free DNA (cfDNA) in patients with prospectively accrued endometrial cancer captures the mutational repertoire of the primary lesion and allows for disease monitoring. EXPERIMENTAL DESIGN Peripheral blood was prospectively collected from 44 newly diagnosed patients with endometrial cancer over a 24-month period (i.e., baseline, postsurgery, every 6 months after). DNA from the primary endometrial cancers was subjected to targeted next-generation sequencing (NGS) of 468 cancer-related genes, and cfDNA to a high-depth NGS assay of 129 genes with molecular barcoding. Sequencing data were analyzed using validated bioinformatics methods. RESULTS cfDNA levels correlated with surgical stage in endometrial cancers, with higher levels of cfDNA being present in advanced-stage disease. Mutations in cfDNA at baseline were detected preoperatively in 8 of 36 (22%) patients with sequencing data, all of whom were diagnosed with advanced-stage disease, high tumor volume, and/or aggressive histologic type. Of the 38 somatic mutations identified in the primary tumors also present in the cfDNA assay, 35 (92%) and 38 (100%) were detected at baseline and follow-up, respectively. In 6 patients with recurrent disease, changes in circulating tumor DNA (ctDNA) fraction/variant allele fractions in cfDNA during follow-up closely mirrored disease progression and therapy response, with a lead time over clinically detected recurrence in two cases. The presence of ctDNA at baseline (P < 0.001) or postsurgery (P = 0.014) was significantly associated with reduced progression-free survival. CONCLUSIONS cfDNA sequencing analysis in patients with endometrial cancer at diagnosis has prognostic value, and serial postsurgery cfDNA analysis enables disease and treatment response monitoring. See related commentary by Grant et al., p. 305.
Collapse
Affiliation(s)
- Charles W. Ashley
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Current address: Department of OB/GYN, University of Vermont, Burlington, VT, USA
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juber Patel
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michelle Wu
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Josip Nincevic
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yulia Lakhman
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qin Zhou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronak H Shah
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael F Berger
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arnaud Da Cruz Paula
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David N Brown
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Antonio Marra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexia Iasonos
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amir Momeni-Boroujeni
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kaled M. Alektiar
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kara Long Roche
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Oliver Zivanovic
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jennifer J. Mueller
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dmitriy Zamarin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vance A Broach
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yukio Sonoda
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mario M. Leitao
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Claire F. Friedman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth Jewell
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S. Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lora H Ellenson
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carol Aghajanian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadeem R. Abu-Rustum
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karen Cadoo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Current address: HOPe Directorate, St. James’s Hospital Dublin, Trinity College Dublin, Trinitiy St. James’s Cancer Institute
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
10
|
Tsoneva DK, Ivanov MN, Conev NV, Manev R, Stoyanov DS, Vinciguerra M. Circulating Histones to Detect and Monitor the Progression of Cancer. Int J Mol Sci 2023; 24:ijms24020942. [PMID: 36674455 PMCID: PMC9860657 DOI: 10.3390/ijms24020942] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Liquid biopsies have emerged as a minimally invasive cancer detection and monitoring method, which could identify cancer-related alterations in nucleosome or histone levels and modifications in blood, saliva, and urine. Histones, the core component of the nucleosome, are essential for chromatin compaction and gene expression modulation. Increasing evidence suggests that circulating histones and histone complexes, originating from cell death or immune cell activation, could act as promising biomarkers for cancer detection and management. In this review, we provide an overview of circulating histones as a powerful liquid biopsy approach and methods for their detection. We highlight current knowledge on circulating histones in hematologic malignancies and solid cancer, with a focus on their role in cancer dissemination, monitoring, and tumorigenesis. Last, we describe recently developed strategies to identify cancer tissue-of-origin in blood plasma based on nucleosome positioning, inferred from nucleosomal DNA fragmentation footprint, which is independent of the genetic landscape.
Collapse
Affiliation(s)
- Desislava K. Tsoneva
- Department of Medical Genetics, Faculty of Medicine, Medical University of Varna, 9000 Varna, Bulgaria
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, 9000 Varna, Bulgaria
| | - Martin N. Ivanov
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, 9000 Varna, Bulgaria
- Department of Anatomy and Cell Biology, Research Institute, Medical University of Varna, 9000 Varna, Bulgaria
| | - Nikolay Vladimirov Conev
- Clinic of Medical Oncology, UMHAT “St. Marina”, 1 “Hristo Smirnenski” Blvd., 9000 Varna, Bulgaria
- Department of Propedeutics of Internal Diseases, Medical University of Varna, 9000 Varna, Bulgaria
| | - Rostislav Manev
- Clinic of Medical Oncology, UMHAT “St. Marina”, 1 “Hristo Smirnenski” Blvd., 9000 Varna, Bulgaria
- Department of Propedeutics of Internal Diseases, Medical University of Varna, 9000 Varna, Bulgaria
| | - Dragomir Svetozarov Stoyanov
- Clinic of Medical Oncology, UMHAT “St. Marina”, 1 “Hristo Smirnenski” Blvd., 9000 Varna, Bulgaria
- Department of Propedeutics of Internal Diseases, Medical University of Varna, 9000 Varna, Bulgaria
| | - Manlio Vinciguerra
- Department of Stem Cell Biology and Transplantology, Research Institute, Medical University of Varna, 9000 Varna, Bulgaria
- Correspondence:
| |
Collapse
|
11
|
Duffy MJ, Crown J. Circulating Tumor DNA as a Biomarker for Monitoring Patients with Solid Cancers: Comparison with Standard Protein Biomarkers. Clin Chem 2022; 68:1381-1390. [PMID: 35962648 DOI: 10.1093/clinchem/hvac121] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/21/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Protein-based biomarkers are widely used in monitoring patients with diagnosed cancer. These biomarkers however, lack specificity for cancer and have poor sensitivity in detecting early recurrences and monitoring therapy effectiveness. Emerging data suggest that the use of circulating tumor DNA (ctDNA) has several advantages over standard biomarkers. CONTENT Following curative-intent surgery for cancer, the presence of ctDNA is highly predictive of early disease recurrence, while in metastatic cancer an early decline in ctDNA following the initiation of treatment is predictive of good outcome. Compared with protein biomarkers, ctDNA provides greater cancer specificity and sensitivity for detecting early recurrent/metastatic disease. Thus, in patients with surgically resected colorectal cancer, multiple studies have shown that ctDNA is superior to carcinoembryonic antigen (CEA) in detecting residual disease and early recurrence. Similarly, in breast cancer, ctDNA was shown to be more accurate than carbohydrate antigen 15-3 (CA 15-3) in detecting early recurrences. Other advantages of ctDNA over protein biomarkers in monitoring cancer patients include a shorter half-life in plasma and an ability to predict likely response to specific therapies and identify mechanisms of therapy resistance. However, in contrast to proteins, ctDNA biomarkers are more expensive to measure, less widely available, and have longer turnaround times for reporting. Furthermore, ctDNA assays are less well standardized. SUMMARY Because of their advantages, it is likely that ctDNA measurements will enter clinical use in the future, where they will complement existing biomarkers and imaging in managing patients with cancer. Hopefully, these combined approaches will lead to a better outcome for patients.
Collapse
Affiliation(s)
- Michael J Duffy
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.,UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - John Crown
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
12
|
Gale D, Heider K, Ruiz-Valdepenas A, Hackinger S, Perry M, Marsico G, Rundell V, Wulff J, Sharma G, Knock H, Castedo J, Cooper W, Zhao H, Smith CG, Garg S, Anand S, Howarth K, Gilligan D, Harden SV, Rassl DM, Rintoul RC, Rosenfeld N. Residual ctDNA after treatment predicts early relapse in patients with early-stage non-small cell lung cancer. Ann Oncol 2022; 33:500-510. [PMID: 35306155 PMCID: PMC9067454 DOI: 10.1016/j.annonc.2022.02.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/02/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Identification of residual disease in patients with localized non-small cell lung cancer (NSCLC) following treatment with curative intent holds promise to identify patients at risk of relapse. New methods can detect circulating tumour DNA (ctDNA) in plasma to fractional concentrations as low as a few parts per million, and clinical evidence is required to inform their use. PATIENTS AND METHODS We analyzed 363 serial plasma samples from 88 patients with early-stage NSCLC (48.9%/28.4%/22.7% at stage I/II/III), predominantly adenocarcinomas (62.5%), treated with curative intent by surgery (n = 61), surgery and adjuvant chemotherapy/radiotherapy (n = 8), or chemoradiotherapy (n = 19). Tumour exome sequencing identified somatic mutations and plasma was analyzed using patient-specific RaDaR™ assays with up to 48 amplicons targeting tumour-specific variants unique to each patient. RESULTS ctDNA was detected before treatment in 24%, 77% and 87% of patients with stage I, II and III disease, respectively, and in 26% of all longitudinal samples. The median tumour fraction detected was 0.042%, with 63% of samples <0.1% and 36% of samples <0.01%. ctDNA detection had clinical specificity >98.5% and preceded clinical detection of recurrence of the primary tumour by a median of 212.5 days. ctDNA was detected after treatment in 18/28 (64.3%) of patients who had clinical recurrence of their primary tumour. Detection within the landmark timepoint 2 weeks to 4 months after treatment end occurred in 17% of patients, and was associated with shorter recurrence-free survival [hazard ratio (HR): 14.8, P <0.00001] and overall survival (HR: 5.48, P <0.0003). ctDNA was detected 1-3 days after surgery in 25% of patients yet was not associated with disease recurrence. Detection before treatment was associated with shorter overall survival and recurrence-free survival (HR: 2.97 and 3.14, P values 0.01 and 0.003, respectively). CONCLUSIONS ctDNA detection after initial treatment of patients with early-stage NSCLC using sensitive patient-specific assays has potential to identify patients who may benefit from further therapeutic intervention.
Collapse
Affiliation(s)
- D Gale
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Centre - Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - K Heider
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Centre - Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - A Ruiz-Valdepenas
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Centre - Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - S Hackinger
- Inivata Ltd, The Glenn Berge Building, Babraham Research Park, Babraham, Cambridge, UK
| | - M Perry
- Inivata Ltd, The Glenn Berge Building, Babraham Research Park, Babraham, Cambridge, UK
| | - G Marsico
- Inivata Ltd, The Glenn Berge Building, Babraham Research Park, Babraham, Cambridge, UK
| | - V Rundell
- Cambridge Clinical Trials Unit - Cancer Theme, Cambridge, UK
| | - J Wulff
- Cambridge Clinical Trials Unit - Cancer Theme, Cambridge, UK
| | - G Sharma
- Inivata Ltd, The Glenn Berge Building, Babraham Research Park, Babraham, Cambridge, UK
| | - H Knock
- Cambridge Clinical Trials Unit - Cancer Theme, Cambridge, UK
| | - J Castedo
- Cancer Research UK Cambridge Centre - Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK; Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - W Cooper
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Centre - Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - H Zhao
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Centre - Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - C G Smith
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Centre - Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - S Garg
- Cancer Molecular Diagnostics Laboratory, Clifford Allbutt Building, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - S Anand
- Cancer Molecular Diagnostics Laboratory, Clifford Allbutt Building, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - K Howarth
- Inivata Ltd, The Glenn Berge Building, Babraham Research Park, Babraham, Cambridge, UK
| | - D Gilligan
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK; Addenbrooke's Hospital, Cambridge, UK
| | | | - D M Rassl
- Cancer Research UK Cambridge Centre - Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK; Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - R C Rintoul
- Cancer Research UK Cambridge Centre - Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK; Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK; Department of Oncology, University of Cambridge Hutchison-MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK.
| | - N Rosenfeld
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Centre - Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK; Inivata Ltd, The Glenn Berge Building, Babraham Research Park, Babraham, Cambridge, UK.
| |
Collapse
|