1
|
Yalley AK, Ahiatrogah S, Kafintu-Kwashie AA, Amegatcher G, Prah D, Botwe AK, Adusei-Poku MA, Obodai E, Nii-Trebi NI. A Systematic Review on Suitability of Molecular Techniques for Diagnosis and Research into Infectious Diseases of Concern in Resource-Limited Settings. Curr Issues Mol Biol 2022; 44:4367-4385. [PMID: 36286015 PMCID: PMC9601131 DOI: 10.3390/cimb44100300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Infectious diseases significantly impact the health status of developing countries. Historically, infectious diseases of the tropics especially have received insufficient attention in worldwide public health initiatives, resulting in poor preventive and treatment options. Many molecular tests for human infections have been established since the 1980s, when polymerase chain reaction (PCR) testing was introduced. In spite of the substantial innovative advancements in PCR technology, which currently has found wide application in most viral pathogens of global concern, the development and application of molecular diagnostics, particularly in resource-limited settings, poses potential constraints. This review accessed data from sources including PubMed, Google Scholar, the Web of Knowledge, as well as reports from the World Health Organization’s Annual Meeting on infectious diseases and examined these for current molecular approaches used to identify, monitor, or investigate some neglected tropical infectious diseases. This review noted some growth efforts in the development of molecular techniques for diagnosis of pathogens that appear to be common in resource limited settings and identified gaps in the availability and applicability of most of these molecular diagnostics, which need to be addressed if the One Health goal is to be achieved.
Collapse
Affiliation(s)
- Akua K. Yalley
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra P.O. Box KB 143, Ghana
| | - Selasie Ahiatrogah
- Department of Obstetrics and Gynaecology, College of Medicine, Pan African University of Life and Earth Sciences Institute, University of Ibadan, Ibadan P.O. Box 22133, Nigeria
| | - Anna A. Kafintu-Kwashie
- Department of Medical Microbiology, University of Ghana Medical School, Accra GA-221-1570, Ghana
| | - Gloria Amegatcher
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra P.O. Box KB 143, Ghana
| | - Diana Prah
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Akua K. Botwe
- Molecular Biology Unit, Kintampo Health Research Centre, Ghana Health Service, Kintampo P.O. Box 200, Ghana
| | - Mildred A. Adusei-Poku
- Department of Medical Microbiology, University of Ghana Medical School, Accra GA-221-1570, Ghana
| | - Evangeline Obodai
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana
| | - Nicholas I. Nii-Trebi
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra P.O. Box KB 143, Ghana
- Correspondence: ; Tel.: +233-54-827-6424
| |
Collapse
|
2
|
Castillo-Henríquez L, Brenes-Acuña M, Castro-Rojas A, Cordero-Salmerón R, Lopretti-Correa M, Vega-Baudrit JR. Biosensors for the Detection of Bacterial and Viral Clinical Pathogens. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6926. [PMID: 33291722 PMCID: PMC7730340 DOI: 10.3390/s20236926] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 01/09/2023]
Abstract
Biosensors are measurement devices that can sense several biomolecules, and are widely used for the detection of relevant clinical pathogens such as bacteria and viruses, showing outstanding results. Because of the latent existing risk of facing another pandemic like the one we are living through due to COVID-19, researchers are constantly looking forward to developing new technologies for diagnosis and treatment of infections caused by different bacteria and viruses. Regarding that, nanotechnology has improved biosensors' design and performance through the development of materials and nanoparticles that enhance their affinity, selectivity, and efficacy in detecting these pathogens, such as employing nanoparticles, graphene quantum dots, and electrospun nanofibers. Therefore, this work aims to present a comprehensive review that exposes how biosensors work in terms of bacterial and viral detection, and the nanotechnological features that are contributing to achieving a faster yet still efficient COVID-19 diagnosis at the point-of-care.
Collapse
Affiliation(s)
- Luis Castillo-Henríquez
- National Center for High Technology (CeNAT), National Laboratory of Nanotechnology (LANOTEC), San José 1174-1200, Costa Rica;
- Physical Chemistry Laboratory, Faculty of Pharmacy, University of Costa Rica, San José 11501-2060, Costa Rica
| | - Mariana Brenes-Acuña
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (M.B.-A.); (A.C.-R.); (R.C.-S.)
| | - Arianna Castro-Rojas
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (M.B.-A.); (A.C.-R.); (R.C.-S.)
| | - Rolando Cordero-Salmerón
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (M.B.-A.); (A.C.-R.); (R.C.-S.)
| | - Mary Lopretti-Correa
- Nuclear Research Center, Faculty of Science, Universidad de la República (UdelaR), Montevideo 11300, Uruguay;
| | - José Roberto Vega-Baudrit
- National Center for High Technology (CeNAT), National Laboratory of Nanotechnology (LANOTEC), San José 1174-1200, Costa Rica;
- Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica; (M.B.-A.); (A.C.-R.); (R.C.-S.)
| |
Collapse
|
3
|
Clément C, Adhikari NKJ, Lamontagne F. Evidence-Based Clinical Management of Ebola Virus Disease and Epidemic Viral Hemorrhagic Fevers. Infect Dis Clin North Am 2019; 33:247-264. [PMID: 30712765 DOI: 10.1016/j.idc.2018.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The 2014 to 2016 Ebola virus disease outbreak underscored the threat posed by hemorrhagic fevers. Filoviral outbreaks have been identified since 1967, but data collection has remained sparse, limiting current knowledge of these illnesses. Documentation of objective physical signs and laboratory parameters and appropriate clinical management are connected and interdependent. Implementing both is necessary to improve outcomes. Clinical features include severe volume depletion due to diarrhea and vomiting, shock, rhabdomyolysis, and metabolic disturbances. Overt hemorrhage is uncommon. Point-of-care devices and inexpensive electronic equipment enable better monitoring and record keeping in resource-limited settings.
Collapse
Affiliation(s)
- Christophe Clément
- Intensive Care Unit, Polyclinique Bordeaux Nord Aquitaine, 15 rue Claude Boucher, Bordeaux 33000, France; Intensive Care Unit, Mamoudzou Hospital, rue de l'Hôpital, Mayotte 97600, France
| | - Neill K J Adhikari
- Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada; Interdepartmental Division of Critical Care, University of Toronto, 209 Victoria Street, 4th Floor, Room 411, Toronto, Ontario M5B 1T8, Canada
| | - François Lamontagne
- Interdepartmental Division of Critical Care, University of Toronto, 209 Victoria Street, 4th Floor, Room 411, Toronto, Ontario M5B 1T8, Canada; Department of Medicine, Université de Sherbrooke, 300112e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada.
| |
Collapse
|
4
|
Xie L, Zai J, Yi K, Li Y. Intranasal immunization with recombinant Vaccinia virus Tiantan harboring Zaire Ebola virus gp elicited systemic and mucosal neutralizing antibody in mice. Vaccine 2019; 37:3335-3342. [PMID: 31076161 DOI: 10.1016/j.vaccine.2019.04.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/18/2019] [Accepted: 04/24/2019] [Indexed: 01/25/2023]
Abstract
Accumulating literature revealed that human mucosa was likely one of the important routes for EBOV attachment and further infection. Therefore inducing effective mucosal immune responses play key role in preventing the virus infection. Vaccinia virus Tiantan strain (VV) was a remarkably attenuated poxvirus, which has been broadly exploited as a multifunctional vector during the development of genetically recombinant vaccine and cancer therapeutic agent. In this study, we generated a recombinant VV harboring EBOV gp (VV-Egp) that was used to immunize mice, followed by assessing immune responses, particularly the mucosal immune responses to EBOV GP. A stable and further attenuated VV-Egp, in which the VV ha gene was replaced with the EBOV gp, was generated. In BALB/c mouse model, intranasal immunization with VV-Egp elicited robust humoral and cellular immune responses, including high level of neutralizing serum IgG and IgA against EBOV, and a large amount of GP-specific IFN-γ secreting lymphocytes. More importantly, EBOV GP-specific neutralizing secreted IgA (sIgA) in nasal wash and both sIgA and IgG in vaginal wash were induced. In summary, immunization with a safe and stable recombinant VV carrying a single EBOV gp conferred robust systemic immune response and mucosal neutralizing antibodies, indicating that the recombinant virus could be utilized as a viral vector for plug-and-play universal platform in mucosal vaccine development.
Collapse
Affiliation(s)
- Lilan Xie
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan 430400, China
| | - Junjie Zai
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan 430400, China
| | - Kai Yi
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan 430400, China
| | - Yaoming Li
- Hubei Engineering Research Center of Viral Vector, Applied Biotechnology Research Center, Wuhan University of Bioengineering, Wuhan 430400, China.
| |
Collapse
|