1
|
Nilsson P, Ravinet M, Cui Y, Berg PR, Zhang Y, Guo R, Luo T, Song Y, Trucchi E, Hoff SNK, Lv R, Schmid BV, Easterday WR, Jakobsen KS, Stenseth NC, Yang R, Jentoft S. Polygenic plague resistance in the great gerbil uncovered by population sequencing. PNAS NEXUS 2022; 1:pgac211. [PMID: 36712379 PMCID: PMC9802093 DOI: 10.1093/pnasnexus/pgac211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 06/18/2023]
Abstract
Pathogens can elicit high selective pressure on hosts, potentially altering genetic diversity over short evolutionary timescales. Intraspecific variation in immune response is observable as variable survivability from specific infections. The great gerbil (Rhombomys opimus) is a rodent plague host with a heterogenic but highly resistant phenotype. Here, we investigate the genomic basis for plague-resistant phenotypes by exposing wild-caught great gerbils to plague (Yersinia pestis). Whole genome sequencing of 10 survivors and 10 moribund individuals revealed a subset of genomic regions showing elevated differentiation. Gene ontology analysis of candidate genes in these regions demonstrated enrichment of genes directly involved in immune functions, cellular metabolism and the regulation of apoptosis as well as pathways involved in transcription, translation, and gene regulation. Transcriptomic analysis revealed that the early activated great gerbil immune response to plague consisted of classical components of the innate immune system. Our approach combining challenge experiments with transcriptomics and population level sequencing, provides new insight into the genetic background of plague-resistance and confirms its complex nature, most likely involving multiple genes and pathways of both the immune system and regulation of basic cellular functions.
Collapse
Affiliation(s)
- Pernille Nilsson
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | | | | | | | | | - Rong Guo
- Xinjiang Center for Disease Control and Prevention, Urumqi 830002, China
| | - Tao Luo
- Xinjiang Center for Disease Control and Prevention, Urumqi 830002, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Emiliano Trucchi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Siv N K Hoff
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Ruichen Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Boris V Schmid
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - W Ryan Easterday
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | | | | | - Ruifu Yang
- To whom correspondence should be addressed:
| | | |
Collapse
|
2
|
Solak HM, Yanchukov A, Çolak F, Matur F, Sözen M, Ayanoğlu İC, Winternitz JC. Altitudinal Effects on Innate Immune Response of a Subterranean Rodent. Zoolog Sci 2020; 37:31-41. [PMID: 32068372 DOI: 10.2108/zs190067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/27/2019] [Indexed: 11/17/2022]
Abstract
Immune defense is costly to maintain and deploy, and the optimal investment into immune defense depends on risk of infection. Altitude is a natural environmental factor that is predicted to affect parasite abundance, with lower parasite abundance predicted at higher altitudes due to stronger environmental stressors, which reduce parasite transmission. Using high and low altitude populations of the Turkish blind mole-rat (TBMR) Nannospalax xanthodon, we tested for effects of altitude on constitutive innate immune defense. Field studies were performed with 32 wild animals in 2017 and 2018 from two low- and one high-altitude localities in the Central Taurus Mountains, at respective altitudes of 1010 m, 1115 m, and 2900 m above sea level. We first compared innate standing immune defense as measured by the bacteria-killing ability of blood serum. We then measured corticosterone stress hormone levels, as stressful conditions may affect immune response. Finally, we compared prevalence and intensity of gastrointestinal parasites of field-captured TBMR. We found that the bacteria-killing ability of serum is greater in the mole-rat samples from high altitude. There was no significant difference in stress (corticosterone) levels between altitude categories. Coccidian prevalence and abundance were significantly higher in 2017 than 2018 samples, but there was no significant difference in prevalence, abundance, or intensity between altitudes, or between sexes. Small sample sizes may have reduced power to detect true differences; nevertheless, this study provides support that greater standing innate immunity in high altitude animals may reflect greater investment into constitutive defense.
Collapse
Affiliation(s)
- Halil Mert Solak
- Department of Biology, Faculty of Arts and Science, Bülent Ecevit University, Farabi Campus, 67100, İncivez, Zonguldak, Turkey
| | - Alexey Yanchukov
- Department of Biology, Faculty of Arts and Science, Bülent Ecevit University, Farabi Campus, 67100, İncivez, Zonguldak, Turkey
| | - Faruk Çolak
- Department of Biology, Faculty of Arts and Science, Bülent Ecevit University, Farabi Campus, 67100, İncivez, Zonguldak, Turkey
| | - Ferhat Matur
- Department of Biology, Faculty of Science, Dokuz Eylül University, Tınaztepe Campus, 35390, Buca, İzmir, Turkey
| | - Mustafa Sözen
- Department of Biology, Faculty of Arts and Science, Bülent Ecevit University, Farabi Campus, 67100, İncivez, Zonguldak, Turkey
| | - İhsan Cihan Ayanoğlu
- Department of Biological Sciences, Faculty of Arts and Science, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Jamie C Winternitz
- Department of Animal Behavior, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, Germany,
| |
Collapse
|
3
|
Nilsson P, Solbakken MH, Schmid BV, Orr RJS, Lv R, Cui Y, Song Y, Zhang Y, Baalsrud HT, Tørresen OK, Stenseth NC, Yang R, Jakobsen KS, Easterday WR, Jentoft S. The Genome of the Great Gerbil Reveals Species-Specific Duplication of an MHCII Gene. Genome Biol Evol 2020; 12:3832-3849. [PMID: 31971556 PMCID: PMC7046166 DOI: 10.1093/gbe/evaa008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
The great gerbil (Rhombomys opimus) is a social rodent living in permanent, complex burrow systems distributed throughout Central Asia, where it serves as the main host of several important vector-borne infectious pathogens including the well-known plague bacterium (Yersinia pestis). Here, we present a continuous annotated genome assembly of the great gerbil, covering over 96% of the estimated 2.47-Gb genome. Taking advantage of the recent genome assemblies of the sand rat (Psammomys obesus) and the Mongolian gerbil (Meriones unguiculatus), comparative immunogenomic analyses reveal shared gene losses within TLR gene families (i.e., TLR8, TLR10, and the entire TLR11-subfamily) for Gerbillinae, accompanied with signs of diversifying selection of TLR7 and TLR9. Most notably, we find a great gerbil-specific duplication of the MHCII DRB locus. In silico analyses suggest that the duplicated gene provides high peptide binding affinity for Yersiniae epitopes as well as Leishmania and Leptospira epitopes, putatively leading to increased capability to withstand infections by these pathogens. Our study demonstrates the power of whole-genome sequencing combined with comparative genomic analyses to gain deeper insight into the immunogenomic landscape of the great gerbil and its close relatives.
Collapse
Affiliation(s)
- Pernille Nilsson
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | - Monica H Solbakken
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | - Boris V Schmid
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | | | - Ruichen Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujiang Zhang
- Xinjiang Center for Disease Control and Prevention, Urumqi, China
| | - Helle T Baalsrud
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | - Ole K Tørresen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | - William Ryan Easterday
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| |
Collapse
|
4
|
Andrianaivoarimanana V, Rajerison M, Jambou R. Exposure to Yersinia pestis increases resistance to plague in black rats and modulates transmission in Madagascar. BMC Res Notes 2018; 11:898. [PMID: 30551741 PMCID: PMC6295079 DOI: 10.1186/s13104-018-3984-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES In Madagascar, plague (Yersinia pestis infection) is endemic in the central highlands, maintained by the couple Rattus rattus/flea. The rat is assumed to die shortly after infection inducing migration of the fleas. However we previously reported that black rats from endemic areas can survive the infection whereas those from non-endemic areas remained susceptible. We investigate the hypothesis that lineages of rats can acquire resistance to plague and that previous contacts with the bacteria will affect their survival, allowing maintenance of infected fleas. For this purpose, laboratory-born rats were obtained from wild black rats originating either from plague-endemic or plague-free zones, and were challenged with Y. pestis. Survival rate and antibody immune responses were analyzed. RESULTS Inoculation of low doses of Y. pestis greatly increase survival of rats to subsequent challenge with a lethal dose. During challenge, cytokine profiles support activation of specific immune response associated with the bacteria control. In addition, F1 rats from endemic areas exhibited higher survival rates than those from non-endemic ones, suggesting a selection of a resistant lineage. In Madagascar, these results support the role of black rat as long term reservoir of infected fleas supporting maintenance of plague transmission.
Collapse
Affiliation(s)
- Voahangy Andrianaivoarimanana
- Unité Peste, Institut Pasteur de Madagascar, Ambatofotsikely, P.O. Box 1274, Antananarivo, Madagascar
- Unité d’Immunologie, Institut Pasteur de Madagascar, Ambatofotsikely, P.O. Box 1274, Antananarivo, Madagascar
| | - Minoarisoa Rajerison
- Unité Peste, Institut Pasteur de Madagascar, Ambatofotsikely, P.O. Box 1274, Antananarivo, Madagascar
| | - Ronan Jambou
- Unité d’Immunologie, Institut Pasteur de Madagascar, Ambatofotsikely, P.O. Box 1274, Antananarivo, Madagascar
- Department of Parasites and Insect Vectors, Pasteur Institute, 28 rue Dr Roux, 75015 Paris, France
| |
Collapse
|
5
|
D’Ortenzio E, Lemaître N, Brouat C, Loubet P, Sebbane F, Rajerison M, Baril L, Yazdanpanah Y. Plague: Bridging gaps towards better disease control. Med Mal Infect 2018; 48:307-317. [DOI: 10.1016/j.medmal.2018.04.393] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/13/2018] [Indexed: 01/14/2023]
|
6
|
Kang E, Crouse A, Chevallier L, Pontier SM, Alzahrani A, Silué N, Campbell-Valois FX, Montagutelli X, Gruenheid S, Malo D. Enterobacteria and host resistance to infection. Mamm Genome 2018; 29:558-576. [PMID: 29785663 DOI: 10.1007/s00335-018-9749-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
Abstract
Enterobacteriaceae are a large family of Gram-negative, non-spore-forming bacteria. Although many species exist as part of the natural flora of animals including humans, some members are associated with both intestinal and extraintestinal diseases. In this review, we focus on members of this family that have important roles in human disease: Salmonella, Escherichia, Shigella, and Yersinia, providing a brief overview of the disease caused by these bacteria, highlighting the contribution of animal models to our understanding of their pathogenesis and of host genetic determinants involved in susceptibility or resistance to infection.
Collapse
Affiliation(s)
- Eugene Kang
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill Research Center on Complex Traits, McGill University, Montreal, QC, Canada
| | - Alanna Crouse
- McGill Research Center on Complex Traits, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Lucie Chevallier
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, École Nationale Vétérinaire d'Alfort, UPEC, Maisons-Alfort, France
- Mouse Genetics Laboratory, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Stéphanie M Pontier
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
| | - Ashwag Alzahrani
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
| | - Navoun Silué
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
| | - François-Xavier Campbell-Valois
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Xavier Montagutelli
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, École Nationale Vétérinaire d'Alfort, UPEC, Maisons-Alfort, France
| | - Samantha Gruenheid
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill Research Center on Complex Traits, McGill University, Montreal, QC, Canada
| | - Danielle Malo
- McGill Research Center on Complex Traits, McGill University, Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
- Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
7
|
Lewnard JA, Townsend JP. Climatic and evolutionary drivers of phase shifts in the plague epidemics of colonial India. Proc Natl Acad Sci U S A 2016; 113:14601-14608. [PMID: 27791071 PMCID: PMC5187705 DOI: 10.1073/pnas.1604985113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Immune heterogeneity in wild host populations indicates that disease-mediated selection is common in nature. However, the underlying dynamic feedbacks involving the ecology of disease transmission, evolutionary processes, and their interaction with environmental drivers have proven challenging to characterize. Plague presents an optimal system for interrogating such couplings: Yersinia pestis transmission exerts intense selective pressure driving the local persistence of disease resistance among its wildlife hosts in endemic areas. Investigations undertaken in colonial India after the introduction of plague in 1896 suggest that, only a decade after plague arrived, a heritable, plague-resistant phenotype had become prevalent among commensal rats of cities undergoing severe plague epidemics. To understand the possible evolutionary basis of these observations, we developed a mathematical model coupling environmentally forced plague dynamics with evolutionary selection of rats, capitalizing on extensive archival data from Indian Plague Commission investigations. Incorporating increased plague resistance among rats as a consequence of intense natural selection permits the model to reproduce observed changes in seasonal epidemic patterns in several cities and capture experimentally observed associations between climate and flea population dynamics in India. Our model results substantiate Victorian era claims of host evolution based on experimental observations of plague resistance and reveal the buffering effect of such evolution against environmental drivers of transmission. Our analysis shows that historical datasets can yield powerful insights into the transmission dynamics of reemerging disease agents with which we have limited contemporary experience to guide quantitative modeling and inference.
Collapse
Affiliation(s)
- Joseph A Lewnard
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510;
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520
| |
Collapse
|
8
|
Andrianaivoarimanana V, Kreppel K, Elissa N, Duplantier JM, Carniel E, Rajerison M, Jambou R. Understanding the persistence of plague foci in Madagascar. PLoS Negl Trop Dis 2013; 7:e2382. [PMID: 24244760 PMCID: PMC3820717 DOI: 10.1371/journal.pntd.0002382] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Plague, a zoonosis caused by Yersinia pestis, is still found in Africa, Asia, and the Americas. Madagascar reports almost one third of the cases worldwide. Y. pestis can be encountered in three very different types of foci: urban, rural, and sylvatic. Flea vector and wild rodent host population dynamics are tightly correlated with modulation of climatic conditions, an association that could be crucial for both the maintenance of foci and human plague epidemics. The black rat Rattus rattus, the main host of Y. pestis in Madagascar, is found to exhibit high resistance to plague in endemic areas, opposing the concept of high mortality rates among rats exposed to the infection. Also, endemic fleas could play an essential role in maintenance of the foci. This review discusses recent advances in the understanding of the role of these factors as well as human behavior in the persistence of plague in Madagascar.
Collapse
Affiliation(s)
- Voahangy Andrianaivoarimanana
- Unité Peste, Institut Pasteur de Madagascar, Antananarivo, Madagascar
- Unité d'Immunologie, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Katharina Kreppel
- Department of Veterinary Clinical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Nohal Elissa
- Unité d'Entomologie, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | | | | | | | - Ronan Jambou
- Unité d'Immunologie, Institut Pasteur de Madagascar, Antananarivo, Madagascar
- * E-mail:
| |
Collapse
|
9
|
THE INNATE IMMUNE RESPONSE MAY BE IMPORTANT FOR SURVIVING PLAGUE IN WILD GUNNISON'S PRAIRIE DOGS. J Wildl Dis 2013; 49:920-31. [DOI: 10.7589/2012-08-209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Raoult D, Mouffok N, Bitam I, Piarroux R, Drancourt M. Plague: history and contemporary analysis. J Infect 2012; 66:18-26. [PMID: 23041039 DOI: 10.1016/j.jinf.2012.09.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/26/2012] [Accepted: 09/26/2012] [Indexed: 01/15/2023]
Abstract
Plague has caused ravaging outbreaks, including the Justinian plague and the "black death" in the Middle Ages. The causative agents of these outbreaks have been confirmed using modern molecular tests. The vector of plague during pandemics remains the subject of controversy. Nowadays, plague must be suspected in all areas where plague is endemic in rodents when patients present with adenitis or with pneumonia with a bloody expectorate. Diagnosis is more difficult in the situation of the reemergence of plague, as in Algeria for example, told by the first physician involved in that outbreak (NM). When in doubt, it is preferable to prescribe treatment with doxycycline while waiting for the test results because of the risk of fatality in individuals with plague. The typical bubo is a type of adenitis that is painful, red and nonfluctuating. The diagnosis is simple when microbiological analysis is conducted. Plague is a likely diagnosis when one sees gram-negative bacilli in lymph node aspirate or biopsy samples. Yersinia pestis grows very easily in blood cultures and is easy to identify by biochemical tests and MALDI-TOF mass spectrometry. Pneumonic plague and septicemic plague without adenitis are difficult to diagnose, and these diagnoses are often made by chance or retrospectively when cases are not part of an epidemic or related to another specific epidemiologic context. The treatment of plague must be based on gentamicin or doxycycline. Treatment with one of these antibiotics must be started as soon as plague is suspected. Analysis of past plague epidemics by using modern laboratory tools illustrated the value of epidemic buboes for the clinical diagnosis of plague; and brought new concepts regarding its transmission by human ectoparasites.
Collapse
Affiliation(s)
- Didier Raoult
- Aix Marseille Université, Unité des Rickettsies, UMR CNRS, IRD, INSERM, IHU Méditerranée Infection, France.
| | | | | | | | | |
Collapse
|
11
|
Andrianaivoarimanana V, Telfer S, Rajerison M, Ranjalahy MA, Andriamiarimanana F, Rahaingosoamamitiana C, Rahalison L, Jambou R. Immune responses to plague infection in wild Rattus rattus, in Madagascar: a role in foci persistence? PLoS One 2012; 7:e38630. [PMID: 22719908 PMCID: PMC3377696 DOI: 10.1371/journal.pone.0038630] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 05/08/2012] [Indexed: 11/22/2022] Open
Abstract
Background Plague is endemic within the central highlands of Madagascar, where its main reservoir is the black rat, Rattus rattus. Typically this species is considered susceptible to plague, rapidly dying after infection inducing the spread of infected fleas and, therefore, dissemination of the disease to humans. However, persistence of transmission foci in the same area from year to year, supposes mechanisms of maintenance among which rat immune responses could play a major role. Immunity against plague and subsequent rat survival could play an important role in the stabilization of the foci. In this study, we aimed to investigate serological responses to plague in wild black rats from endemic areas of Madagascar. In addition, we evaluate the use of a recently developed rapid serological diagnostic test to investigate the immune response of potential reservoir hosts in plague foci. Methodology/Principal Findings We experimentally infected wild rats with Yersinia pestis to investigate short and long-term antibody responses. Anti-F1 IgM and IgG were detected to evaluate this antibody response. High levels of anti-F1 IgM and IgG were found in rats one and three weeks respectively after challenge, with responses greatly differing between villages. Plateau in anti-F1 IgM and IgG responses were reached for as few as 500 and 1500 colony forming units (cfu) inoculated respectively. More than 10% of rats were able to maintain anti-F1 responses for more than one year. This anti-F1 response was conveniently followed using dipsticks. Conclusion/Significance Inoculation of very few bacteria is sufficient to induce high immune response in wild rats, allowing their survival after infection. A great heterogeneity of rat immune responses was found within and between villages which could heavily impact on plague epidemiology. In addition, results indicate that, in the field, anti-F1 dipsticks are efficient to investigate plague outbreaks several months after transmission.
Collapse
Affiliation(s)
| | - Sandra Telfer
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | | | | | | | - Lila Rahalison
- Unité Peste, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Ronan Jambou
- Unité d’Immunologie, Institut Pasteur de Madagascar, Antananarivo, Madagascar
- * E-mail:
| |
Collapse
|
12
|
TOLLENAERE C, DUPLANTIER JM, RAHALISON L, RANJALAHY M, BROUAT C. AFLP genome scan in the black rat (Rattus rattus) from Madagascar: detecting genetic markers undergoing plague-mediated selection. Mol Ecol 2010; 20:1026-38. [DOI: 10.1111/j.1365-294x.2010.04633.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Abstract
The potential application of Yersinia pestis for bioterrorism emphasizes the urgent need to develop more effective vaccines against airborne infection. The current status of plague vaccines has been reviewed. The present emphasis is on subunit vaccines based on the F1 and LcrV antigens. These provide good protection in animal models but may not protect against F1 strains with modifications to the type III secretion system. The duration of protection against pneumonic infection is also uncertain. Other strategies under investigation include defined live-attenuated vaccines, DNA vaccines, mucosal delivery systems and heterologous immunization. The live-attenuated strain Y. pestis EV NIIEG protects against aerosol challenge in animal models and, with further modification to reduce residual virulence and to optimize respiratory protection, it could provide a shortcut to improved vaccines. The regulatory problems inherent in licensing vaccines for which efficacy data are unavailable and their possible solutions are discussed herein.
Collapse
Affiliation(s)
- Valentina A Feodorova
- Scientific and Research Institute for Medical and Veterinary Biotechnologies, Russia-Switzerland, Branch in Saratov, 9 Proviantskaya Street, Box 1580, Saratov 410028, Russia.
| | | |
Collapse
|