1
|
Carr CR, Crawford KHD, Murphy M, Galloway JG, Haddox HK, Matsen FA, Andersen KG, King NP, Bloom JD. Deep mutational scanning reveals functional constraints and antibody-escape potential of Lassa virus glycoprotein complex. Immunity 2024; 57:2061-2076.e11. [PMID: 39013466 PMCID: PMC11390330 DOI: 10.1016/j.immuni.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/23/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
Lassa virus is estimated to cause thousands of human deaths per year, primarily due to spillovers from its natural host, Mastomys rodents. Efforts to create vaccines and antibody therapeutics must account for the evolutionary variability of the Lassa virus's glycoprotein complex (GPC), which mediates viral entry into cells and is the target of neutralizing antibodies. To map the evolutionary space accessible to GPC, we used pseudovirus deep mutational scanning to measure how nearly all GPC amino-acid mutations affected cell entry and antibody neutralization. Our experiments defined functional constraints throughout GPC. We quantified how GPC mutations affected neutralization with a panel of monoclonal antibodies. All antibodies tested were escaped by mutations that existed among natural Lassa virus lineages. Overall, our work describes a biosafety-level-2 method to elucidate the mutational space accessible to GPC and shows how prospective characterization of antigenic variation could aid the design of therapeutics and vaccines.
Collapse
Affiliation(s)
- Caleb R Carr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Katharine H D Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Michael Murphy
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jared G Galloway
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Hugh K Haddox
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Frederick A Matsen
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Statistics, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Scripps Research Translational Institute, La Jolla, CA 92037, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
2
|
Carr CR, Crawford KHD, Murphy M, Galloway JG, Haddox HK, Matsen FA, Andersen KG, King NP, Bloom JD. Deep mutational scanning reveals functional constraints and antigenic variability of Lassa virus glycoprotein complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.579020. [PMID: 38370709 PMCID: PMC10871245 DOI: 10.1101/2024.02.05.579020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Lassa virus is estimated to cause thousands of human deaths per year, primarily due to spillovers from its natural host, Mastomys rodents. Efforts to create vaccines and antibody therapeutics must account for the evolutionary variability of Lassa virus's glycoprotein complex (GPC), which mediates viral entry into cells and is the target of neutralizing antibodies. To map the evolutionary space accessible to GPC, we use pseudovirus deep mutational scanning to measure how nearly all GPC amino-acid mutations affect cell entry and antibody neutralization. Our experiments define functional constraints throughout GPC. We quantify how GPC mutations affect neutralization by a panel of monoclonal antibodies and show that all antibodies are escaped by mutations that exist among natural Lassa virus lineages. Overall, our work describes a biosafety-level-2 method to elucidate the mutational space accessible to GPC and shows how prospective characterization of antigenic variation could aid design of therapeutics and vaccines.
Collapse
Affiliation(s)
- Caleb R. Carr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98109, USA
| | - Katharine H. D. Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98109, USA
| | - Michael Murphy
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jared G. Galloway
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Hugh K. Haddox
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Frederick A. Matsen
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Statistics, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Kristian G. Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Research Translational Institute, La Jolla, CA 92037, USA
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
- Lead contact
| |
Collapse
|
3
|
Bigotti MG, Brancaccio A. High degree of conservation of the enzymes synthesizing the laminin-binding glycoepitope of α-dystroglycan. Open Biol 2021; 11:210104. [PMID: 34582712 PMCID: PMC8478517 DOI: 10.1098/rsob.210104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The dystroglycan (DG) complex plays a pivotal role for the stabilization of muscles in Metazoa. It is formed by two subunits, extracellular α-DG and transmembrane β-DG, originating from a unique precursor via a complex post-translational maturation process. The α-DG subunit is extensively glycosylated in sequential steps by several specific enzymes and employs such glycan scaffold to tightly bind basement membrane molecules. Mutations of several of these enzymes cause an alteration of the carbohydrate structure of α-DG, resulting in severe neuromuscular disorders collectively named dystroglycanopathies. Given the fundamental role played by DG in muscle stability, it is biochemically and clinically relevant to investigate these post-translational modifying enzymes from an evolutionary perspective. A first phylogenetic history of the thirteen enzymes involved in the fabrication of the so-called 'M3 core' laminin-binding epitope has been traced by an overall sequence comparison approach, and interesting details on the primordial enzyme set have emerged, as well as substantial conservation in Metazoa. The optimization along with the evolution of a well-conserved enzymatic set responsible for the glycosylation of α-DG indicate the importance of the glycosylation shell in modulating the connection between sarcolemma and surrounding basement membranes to increase skeletal muscle stability, and eventually support movement and locomotion.
Collapse
Affiliation(s)
- Maria Giulia Bigotti
- School of Translational Health Sciences, Research Floor Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK,School of Biochemistry, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Andrea Brancaccio
- School of Biochemistry, University Walk, University of Bristol, Bristol BS8 1TD, UK,Institute of Chemical Sciences and Technologies ‘Giulio Natta’ (SCITEC) - CNR, Largo F.Vito 1, 00168, Rome, Italy
| |
Collapse
|
4
|
Cassan C, Diagne CA, Tatard C, Gauthier P, Dalecky A, Bâ K, Kane M, Niang Y, Diallo M, Sow A, Brouat C, Bañuls AL. Leishmania major and Trypanosoma lewisi infection in invasive and native rodents in Senegal. PLoS Negl Trop Dis 2018; 12:e0006615. [PMID: 29958273 PMCID: PMC6042788 DOI: 10.1371/journal.pntd.0006615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/12/2018] [Accepted: 06/17/2018] [Indexed: 11/19/2022] Open
Abstract
Bioinvasion is a major public health issue because it can lead to the introduction of pathogens in new areas and favours the emergence of zoonotic diseases. Rodents are prominent invasive species, and act as reservoirs in many zoonotic infectious diseases. The aim of this study was to determine the link between the distribution and spread of two parasite taxa (Leishmania spp. and Trypanosoma lewisi) and the progressive invasion of Senegal by two commensal rodent species (the house mouse Mus musculus domesticus and the black rat Rattus rattus). M. m. domesticus and R. rattus have invaded the northern part and the central/southern part of the country, respectively. Native and invasive rodents were caught in villages and cities along the invasion gradients of both invaders, from coastal localities towards the interior of the land. Molecular diagnosis of the two trypanosomatid infections was performed using spleen specimens. In the north, neither M. m. domesticus nor the native species were carriers of these parasites. Conversely, in the south, 17.5% of R. rattus were infected by L. major and 27.8% by T. lewisi, while very few commensal native rodents were carriers. Prevalence pattern along invasion gradients, together with the knowledge on the geographical distribution of the parasites, suggested that the presence of the two parasites in R. rattus in Senegal is of different origins. Indeed, the invader R. rattus could have been locally infected by the native parasite L. major. Conversely, it could have introduced the exotic parasite T. lewisi in Senegal, the latter appearing to be poorly transmitted to native rodents. Altogether, these data show that R. rattus is a carrier of both parasites and could be responsible for the emergence of new foci of cutaneous leishmaniasis, or for the transmission of atypical human trypanosomiasis in Senegal.
Collapse
Affiliation(s)
- Cécile Cassan
- MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France
| | - Christophe A. Diagne
- CBGP, IRD, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
- CBGP, IRD, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Campus ISRA/IRD de Bel Air, Dakar, Sénégal
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Sénégal
| | - Caroline Tatard
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Philippe Gauthier
- CBGP, IRD, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | | | - Khalilou Bâ
- CBGP, IRD, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Campus ISRA/IRD de Bel Air, Dakar, Sénégal
| | - Mamadou Kane
- CBGP, IRD, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Campus ISRA/IRD de Bel Air, Dakar, Sénégal
| | - Youssoupha Niang
- CBGP, IRD, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Campus ISRA/IRD de Bel Air, Dakar, Sénégal
| | - Mamoudou Diallo
- CBGP, IRD, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Campus ISRA/IRD de Bel Air, Dakar, Sénégal
| | - Aliou Sow
- CBGP, IRD, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Campus ISRA/IRD de Bel Air, Dakar, Sénégal
| | - Carine Brouat
- CBGP, IRD, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | | |
Collapse
|
5
|
Rodent-borne Trypanosoma from cities and villages of Niger and Nigeria: A special role for the invasive genus Rattus? Acta Trop 2017; 171:151-158. [PMID: 28373037 DOI: 10.1016/j.actatropica.2017.03.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/17/2017] [Accepted: 03/27/2017] [Indexed: 12/11/2022]
Abstract
Although they are known to sometimes infect humans, atypical trypanosomes are very poorly documented, especially in Africa where one lethal case has yet been described. Here we conducted a survey of rodent-borne Trypanosoma in 19 towns and villages of Niger and Nigeria, with a special emphasis on Niamey, the capital city of Niger. The 1298 rodents that were captured yielded 189 qPCR-positive animals from 14 localities, thus corresponding to a 14.6% overall prevalence. Rats, especially black rats, displayed particularly elevated prevalence (27.4%), with some well sampled sites showing 40-50% and up to 68.8% of Trypanosoma-carrying individuals. Rattus were also characterized by significantly lower Ct values than in the other non-Rattus species. DNA sequences could be obtained for 43 rodent-borne Trypanosoma and corresponded to 41 T. lewisi (all from Rattus) and 2 T. microti (from Cricetomys gambianus). These results, together with data compiled from the available literature, suggest that Rattus may play a particular role for the maintaining and circulation of Trypanosoma, especially T. lewisi, in Africa. Taken into account its strong abilities to invade coastal and inland regions of the continent, we believe that this genus deserves a particular attention in regards to potentially under-looked but emerging atypical trypanosome-related diseases.
Collapse
|
6
|
Development Aspects of Zebrafish Myotendinous Junction: a Model System for Understanding Muscle Basement Membrane Formation and Failure. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0140-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Gryseels S, Baird SJE, Borremans B, Makundi R, Leirs H, Goüy de Bellocq J. When Viruses Don't Go Viral: The Importance of Host Phylogeographic Structure in the Spatial Spread of Arenaviruses. PLoS Pathog 2017; 13:e1006073. [PMID: 28076397 PMCID: PMC5226678 DOI: 10.1371/journal.ppat.1006073] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/17/2016] [Indexed: 01/07/2023] Open
Abstract
Many emerging infections are RNA virus spillovers from animal reservoirs. Reservoir identification is necessary for predicting the geographic extent of infection risk, but rarely are taxonomic levels below the animal species considered as reservoir, and only key circumstances in nature and methodology allow intrinsic virus-host associations to be distinguished from simple geographic (co-)isolation. We sampled and genetically characterized in detail a contact zone of two subtaxa of the rodent Mastomys natalensis in Tanzania. We find two distinct arenaviruses, Gairo and Morogoro virus, each spatially confined to a single M. natalensis subtaxon, only co-occurring at the contact zone’s centre. Inter-subtaxon hybridization at this centre and a continuum of quality habitat for M. natalensis show that both viruses have the ecological opportunity to spread into the other substaxon’s range, but do not, strongly suggesting host-intrinsic barriers. Such barriers could explain why human cases of another M. natalensis-borne arenavirus, Lassa virus, are limited to West Africa. Reservoirs of zoonotic viruses are usually equated with a particular wildlife species. It is rarely assessed whether genetic groups below the species level may instead represent the actual reservoir, though this would have major implications on estimations of the zoonosis’ spatial distribution. Here we investigate whether geographically and genetically distinct subtaxa of the widespread African rodent Mastomys natalensis carry distinct arenaviruses, by sampling in detail across a contact zone of two of these subtaxa. Ongoing hybridization shows that individuals of the subtaxa are in direct physical contact, in principle allowing viral exchange, yet neither of the two arenaviruses -Gairo and Morogoro virus- were found to have crossed the zone. Such intraspecific genetic barriers to arenavirus spatial spread have important implications for our understanding of the related Lassa arenavirus, a pathogen potentially lethal to humans of which Mastomys natalensis is also the main reservoir. Although Lassa virus appears to infect several secondary hosts, its distribution is restricted to West Africa and matches that of another M. natalensis subtaxon. Our data thus indicates that it is because of M. natalensis intraspecific distinctions that the human Lassa fever endemic area has not expanded to the rest of sub-Saharan Africa.
Collapse
Affiliation(s)
- Sophie Gryseels
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
- * E-mail:
| | - Stuart J. E. Baird
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Research Facility Studenec, Brno, Czech Republic
| | - Benny Borremans
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Rhodes Makundi
- Pest Management Centre, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Herwig Leirs
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Joëlle Goüy de Bellocq
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Research Facility Studenec, Brno, Czech Republic
| |
Collapse
|
8
|
Dobigny G, Garba M, Tatard C, Loiseau A, Galan M, Kadaouré I, Rossi JP, Picardeau M, Bertherat E. Urban Market Gardening and Rodent-Borne Pathogenic Leptospira in Arid Zones: A Case Study in Niamey, Niger. PLoS Negl Trop Dis 2015; 9:e0004097. [PMID: 26437456 PMCID: PMC4593649 DOI: 10.1371/journal.pntd.0004097] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/30/2015] [Indexed: 02/06/2023] Open
Abstract
Leptospirosis essentially affects human following contact with rodent urine-contaminated water. As such, it was mainly found associated with rice culture, recreational activities and flooding. This is also the reason why it has mainly been investigated in temperate as well as warm and humid regions, while arid zones have been only very occasionally monitored for this disease. In particular, data for West African countries are extremely scarce. Here, we took advantage of an extensive survey of urban rodents in Niamey, Niger, in order to look for rodent-borne pathogenic Leptospira species presence and distribution across the city. To do so, we used high throughput bacterial 16S-based metabarcoding, lipL32 gene-targeting RT-PCR, rrs gene sequencing and VNTR typing as well as GIS-based multivariate spatial analysis. Our results show that leptospires seem absent from the core city where usual Leptospira reservoir rodent species (namely R. rattus and M. natalensis) are yet abundant. On the contrary, L. kirschneri was detected in Arvicanthis niloticus and Cricetomys gambianus, two rodent species that are restricted to irrigated cultures within the city. Moreover, the VNTR profiles showed that rodent-borne leptospires in Niamey belong to previously undescribed serovars. Altogether, our study points towards the importance of market gardening in maintain and circulation of leptospirosis within Sahelian cities. In Africa, irrigated urban agriculture constitutes a pivotal source of food supply, especially in the context of the ongoing extensive urbanization of the continent. With this in mind, we speculate that leptospirosis may represent a zoonotic disease of concern also in arid regions that would deserve to be more rigorously surveyed, especially in urban agricultural settings.
Collapse
Affiliation(s)
- Gauthier Dobigny
- Institut de Recherche pour le Développement, Centre de Biologie pour la Gestion des Populations (UMR IRD-INRA-CIRAD-SupAgro Montpellier), Campus International de Baillarguet CS30016, Montferrier-sur-Lez, France
| | - Madougou Garba
- Direction Générale de la Protection des Végétaux, Ministère de l’Agriculture, Niamey, Niger
| | - Caroline Tatard
- Institut National de la Recherche Agronomique, CBGP, Campus International de Baillarguet CS30016, Montferrier-sur-Lez, France
| | - Anne Loiseau
- Institut National de la Recherche Agronomique, CBGP, Campus International de Baillarguet CS30016, Montferrier-sur-Lez, France
| | - Max Galan
- Institut National de la Recherche Agronomique, CBGP, Campus International de Baillarguet CS30016, Montferrier-sur-Lez, France
| | | | - Jean-Pierre Rossi
- Institut National de la Recherche Agronomique, CBGP, Campus International de Baillarguet CS30016, Montferrier-sur-Lez, France
| | - Mathieu Picardeau
- Institut Pasteur, Unité de Biologie des Spirochètes, Centre National de Référence et Centre Collaborateur de l’OMS de la Leptospirose, Paris, France
| | | |
Collapse
|
9
|
Pathogenic Old World arenaviruses inhibit TLR2/Mal-dependent proinflammatory cytokines in vitro. J Virol 2012; 86:7216-26. [PMID: 22532679 DOI: 10.1128/jvi.06508-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV), the prototype arenavirus, and Lassa virus (LASV), the causative agent of Lassa fever (LF), have extensive strain diversity and significant variations in pathogenicity for humans and experimental animals. The WE strain of LCMV (LCMV-WE), but not the Armstrong (Arm) strain, induces a fatal LF-like disease in rhesus macaques. We also demonstrated that LASV infection of human macrophages and endothelial cells resulted in reduced levels of proinflammatory cytokines. Here we have shown that cells infected with LASV or with LCMV-WE suppressed Toll-like receptor 2 (TLR2)-dependent proinflammatory cytokine responses. The persisting isolate LCMV clone 13 (CL13) also failed to stimulate interleukin-6 (IL-6) in macrophages. In contrast, nonpathogenic Mopeia virus, which is a genetic relative of LASV and LCMV-Arm induced robust responses that were TLR2/Mal dependent, required virus replication, and were enhanced by CD14. Superinfection experiments demonstrated that the WE strain of LCMV inhibited the Arm-mediated IL-8 response during the early stage of infection. In cells transfected with the NF-κB-luciferase reporter, infection with LCMV-Arm resulted in the induction of NF-κB, but cells infected with LCMV-WE and CL13 did not. These results suggest that pathogenic arenaviruses suppress NF-κB-mediated proinflammatory cytokine responses in infected cells.
Collapse
|
10
|
Yamamoto T, Kato Y, Hiroi A, Shibata N, Osawa M, Kobayashi M. Post-transcriptional regulation of fukutin in an astrocytoma cell line. Int J Exp Pathol 2012; 93:46-55. [PMID: 22264285 DOI: 10.1111/j.1365-2613.2011.00799.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fukutin is the gene responsible for Fukuyama-type congenital muscular dystrophy (FCMD), an autosomal recessive disease associated with central nervous system (CNS) and eye anomalies. Fukutin is involved in basement membrane formation via the glycosylation of α-dystroglycan (α-DG), and hypoglycosylation of α-DG provokes the muscular, CNS and eye lesions of FCMD. Astrocytes play an important role in the pathogenesis of the CNS lesions, but the post-transcriptional regulation of fukutin mRNA has not been elucidated. In this study, we investigated the characteristics of fukutin mRNA using an astrocytoma cell line that expresses fukutin and glycosylated α-DG. The glycosylation of α-DG was considered to be increased by over-expression of fukutin and decreased by knockdown of fukutin. Knockdown of Musashi-1, one of the RNA-binding proteins involved in the regulation of neuronal differentiation, induced a decrease in fukutin mRNA. Immunoprecipitation and ELISA-based RNA-binding assay demonstrated possible binding between fukutin mRNA and Musashi-1 protein. A relationship between fukutin mRNA and vimentin protein was also proposed. In situ hybridization for fukutin mRNA showed a positive cytoplasmic reaction including cytoplasmic processes. From these results, fukutin mRNA is suggested to be a localized mRNA up-regulated by Musashi-1 and to be a component of a mRNA-protein complex which includes Musashi-1 and (presumably) vimentin proteins.
Collapse
Affiliation(s)
- Tomoko Yamamoto
- Department of Pathology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
11
|
Badenhorst D, Tatard C, Suputtamongkol Y, Robinson TJ, Dobigny G. Host cell/Orientia tsutsugamushi interactions: evolution and expression of syndecan-4 in Asian rodents (Rodentia, Muridae). INFECTION GENETICS AND EVOLUTION 2012; 12:1136-46. [PMID: 22484764 DOI: 10.1016/j.meegid.2012.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 11/18/2022]
Abstract
Scrub typhus is an acute febrile zoonotic disease and worldwide more than a billion people may be at risk for infection. Orientia tsutsugamushi, the causative agent of scrub typhus, is an obligate intracellular bacterium. Rodents are reported to be the primary reservoir hosts of the disease and according to the most recent surveys, all species within the Rattus sensu lato complex of the tribe Rattini are carriers of scrub typhus. There is no evidence that any of mouse (Mus) species serves as the primary reservoir of the bacterium even when occurring in sympatry with wild infected rats. This contrast in the host/syndecan-4 interactions between Rattini and Asian Murini may be due to intrinsic (i.e., genetic) differences. Herein we compare the sequence and expression levels of syndecan-4 (the putative cell receptor of O. tsutsugamushi) between Rattini species that are known to be natural reservoirs for the typhus agents, and Murini species that are not. Although it was not possible to conclusively link the structural variations detected in syndecan-4 with carrier status in either Rattini and Murini, our findings indicate the absence of a strong Orientia-mediated selective regime acting on gene structure. In contrast, variable spleen-specific syndecan-4 expression levels show a strong correlation between under-expression of syndecan-4 in Murini and seropositive Rattini, compared to seronegative Rattini rodents. We postulate that two divergent responses may be at work in Murini and Rattini, both linked with differential expression of syndecan-4: (i) reduced syndecan-4 transcription in Murini decreases the likelihood that the host cells will become infected by the Orientia bacterium, while (ii) reduced syndecan-4 expression in seropositive Rattini limits the pathogenicity of Orientia and consequently improves the longevity of the rat hosts. These patterns may underpin the poor carrier status of wild mice on the one hand, and the effective role of wild rats as reservoir hosts on the other.
Collapse
Affiliation(s)
- Daleen Badenhorst
- Evolutionary Genomics Group, University of Stellenbosch, Botany and Zoology Department, Private Bag X1, 7604 Matieland, South Africa
| | | | | | | | | |
Collapse
|