1
|
Mutation Characteristics and Phylogenetic Analysis of Five Leishmania Clinical Isolates. Animals (Basel) 2022; 12:ani12030321. [PMID: 35158645 PMCID: PMC8833617 DOI: 10.3390/ani12030321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Leishmaniasis, a neglected tropical disease, is caused by infection with the Leishmania species, threatening millions of people in approximately 100 endemic countries. The emergence of antimony-resistant Leishmania strains have brought difficulties to the treatment and elimination of leishmaniasis. This study performed genome-wide resequencing and phylogenetic analysis of five isolates from the Leishmania donovani complex, focusing on finding mutations related to antimony resistance and virulence of the newly isolated Leishmania strain L_HCZ in 2016. By combining whole-genome sequencing and whole-genome phylogenetic analysis, Leishmania isolates L_801, L_9044 and L_Liu were identified as Leishmania donovani, and L_HCZ as Leishmania infantum. By discovering genome-wide single-nucleotide polymorphisms and structural variations, we identified mutations of drug resistance-related genes in the antimony-resistant Leishmania isolate L_HCZ. The new Leishmania isolate L_HCZ has strong virulence and strong drug resistance, which should be taken seriously by the relevant health departments and scientific researchers. Abstract Leishmaniasis is a neglected tropical disease threatening millions of people worldwide. The emergence of antimony-resistant Leishmania strains have brought difficulties to the treatment and elimination of leishmaniasis. This study performed genome sequencing, phylogenetic analysis and mutation analysis of five Leishmania clinical isolates, especially the Leishmania strain L_HCZ isolated in 2016, which shows strong virulence and antimony resistance. By phylogenetic analysis, four isolates (L_DD8, L_801, L_Liu and L_9044) were identified as Leishmania donovani, the isolate L_HCZ was identified as Leishmania infantum and the isolate L_DD8 as a standard strain of L.donovani. Genome-wide mutation analysis was applied to identify mutations related to the drug resistance and virulence of the newly isolated L_HCZ. Compared with the other four Leishmania isolates, L_HCZ had the most mutations in genes associated with antimony resistance, including the ABC transporter, ascorbate-dependent peroxidase, gamma–glutamylcysteine synthetase, glucose-6-phosphate 1-dehydrogenase, ATP-binding cassette protein subfamily A and multi-drug resistance protein-like genes. Among the genes associated with virulence, L_HCZ had the most mutations in cysteine peptidase A, cysteine peptidase B, cysteine peptidase C, heat-shock protein 70, gp63, acid phosphatase, kinesin k39, kinesin, phosphoglycan beta 1, amastin-like surface protein and amastin-like proteins. The mutations in L_HCZ might possibly contribute to its antimony resistance and strong virulence in clinical patients. Whole-genome resequencing has exhibited broad application prospects and may be put into clinical use in the future for parasite identifying and epidemiological investigations.
Collapse
|
2
|
Leishmania and the Model of Predominant Clonal Evolution. Microorganisms 2021; 9:microorganisms9112409. [PMID: 34835534 PMCID: PMC8620605 DOI: 10.3390/microorganisms9112409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 01/23/2023] Open
Abstract
As it is the case for other pathogenic microorganisms, the respective impact of clonality and genetic exchange on Leishmania natural populations has been the object of lively debates since the early 1980s. The predominant clonal evolution (PCE) model states that genetic exchange in these parasites’ natural populations may have a high relevance on an evolutionary scale, but is not sufficient to erase a persistent phylogenetic signal and the existence of bifurcating trees. Recent data based on high-resolution markers and genomic polymorphisms fully confirm the PCE model down to a microevolutionary level.
Collapse
|
3
|
Sarraf NR, Mukhopadhyay S, Banerjee A, Das AK, Roy S, Chakrabarti S, Manna M, Saha P. Genome wide comparison of Leishmania donovani strains from Indian visceral leishmaniasis and para-kala-azar dermal leishmaniasis patients. Acta Trop 2021; 223:106086. [PMID: 34389331 DOI: 10.1016/j.actatropica.2021.106086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
Visceral leishmaniasis (VL) or Kala-azar, primarily caused by Leishmania donovani, is a major health concern in many countries including India. Growing unresponsiveness among the parasites toward the available drugs is alarming, and so, it is necessary to decipher the underlying mechanism of such development for designing new therapeutics. Moreover, even after successful treatment, some VL patients develop apparently harmless skin lesions known as post-kala-azar dermal leishmaniasis (PKDL) which may serve as a reservoir of the parasite in the transmission cycle. Furthermore, recent reports of para-kala-azar dermal leishmaniasis (para-KDL) cases having PKDL manifestation with concomitant VL, emphasize the necessity of more attention to address complex nature of the parasite for eradicating the disease effectively. In the present study, whole genome sequencing is performed with sodium stibogluconate (SSG) sensitive and resistant L. donovani strains along with SSG sensitive para-KDL strains, derived from the clinical isolates of Indian patients to identify the genomic variations among them. Notably, the analyses of chromosome somy values and genome wide mutation profile in the coding regions reveal distinct clustering of the para-KDL strains with 24 genes being mutated uniquely in this group. Such distinguishing genomic changes among the para-KDL strains could be significant for the parasites to become dermatotropic. Overall, the study reveals a possible correlation of the development of SSG resistance and the transition towards the manifestation of PKDL with chromosome aneuploidy and non-synonymous genetic variations in the coding sequences of the L. donovani strains from Indian patients.
Collapse
|
4
|
Medina J, Cruz-Saavedra L, Patiño LH, Muñoz M, Ramírez JD. Comparative analysis of the transcriptional responses of five Leishmania species to trivalent antimony. Parasit Vectors 2021; 14:419. [PMID: 34419127 PMCID: PMC8380399 DOI: 10.1186/s13071-021-04915-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leishmaniasis is a neglected tropical disease caused by several species of Leishmania. The resistance phenotype of these parasites depends on the characteristics of each species, which contributes to increased therapeutic failures. Understanding the mechanism used by the parasite to survive under treatment pressure in order to identify potential common and specific therapeutic targets is essential for the control of leishmaniasis. The aim of this study was to investigate the expression profiles and potential shared and specific resistance markers of the main Leishmania species of medical importance [subgenus L. (Leishmania): L. donovani, L. infantum and L. amazonensis; subgenus L. (Viannia): L. panamensis and L. braziliensis)] resistant and sensitive to trivalent stibogluconate (SbIII). METHODS We conducted comparative analysis of the transcriptomic profiles (only coding sequences) of lines with experimentally induced resistance to SbIII from biological replicates of five Leishmania species available in the databases of four articles based on ortholog attribution. Simultaneously, we carried out functional analysis of ontology and reconstruction of metabolic pathways of the resulting differentially expressed genes (DEGs). RESULTS Resistant lines for each species had differential responses in metabolic processes, compound binding, and membrane components concerning their sensitive counterpart. One hundred and thirty-nine metabolic pathways were found, with the three main pathways comprising cysteine and methionine metabolism, glycolysis, and the ribosome. Differentially expressed orthologous genes assigned to species-specific responses predominated, with 899 self-genes. No differentially expressed genes were found in common among the five species. Two common upregulated orthologous genes were found among four species (L. donovani, L. braziliensis, L. amazonensis, and L. panamensis) related to an RNA-binding protein and the NAD(P)H cytochrome-B5-oxidoreductase complex, associated with transcriptional control and de novo synthesis of linoleic acid, critical mechanisms in resistance to antimonials. CONCLUSION Herein, we identified potential species-specific genes related to resistance to SbIII. Therefore, we suggest that future studies consider a treatment scheme that is species-specific. Despite the limitations of our study, this is the first approach toward unraveling the pan-genus genetic mechanisms of resistance in leishmaniasis.
Collapse
Affiliation(s)
- Julián Medina
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
5
|
Tagliamonte MS, Yowell CA, Elbadry MA, Boncy J, Raccurt CP, Okech BA, Goss EM, Salemi M, Dame JB. Genetic Markers of Adaptation of Plasmodium falciparum to Transmission by American Vectors Identified in the Genomes of Parasites from Haiti and South America. mSphere 2020; 5:e00937-20. [PMID: 33087522 PMCID: PMC7580960 DOI: 10.1128/msphere.00937-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/30/2022] Open
Abstract
The malaria parasite, Plasmodium falciparum, was introduced into Hispaniola and other regions of the Americas through the slave trade spanning the 16th through the 19th centuries. During this period, more than 12 million Africans were brought across the Atlantic to the Caribbean and other regions of the Americas. Since malaria is holoendemic in West Africa, a substantial percentage of these individuals carried the parasite. St. Domingue on Hispaniola, now modern-day Haiti, was a major port of disembarkation, and malaria is still actively transmitted there. We undertook a detailed study of the phylogenetics of the Haitian parasites and those from Colombia and Peru utilizing whole-genome sequencing. Principal-component and phylogenetic analyses, based upon single nucleotide polymorphisms (SNPs) in protein coding regions, indicate that, despite the potential for millions of introductions from Africa, the Haitian parasites share an ancestral relationship within a well-supported monophyletic clade with parasites from South America, while belonging to a distinct lineage. This result, in stark contrast to the historical record of parasite introductions, is best explained by a severe population bottleneck experienced by the parasites introduced into the Americas. Here, evidence is presented for targeted selection of rare African alleles in genes which are expressed in the mosquito stages of the parasite's life cycle. These genetic markers support the hypothesis that the severe population bottleneck was caused by the required adaptation of the parasite to transmission by new definitive hosts among the Anopheles (Nyssorhynchus) spp. found in the Caribbean and South America.IMPORTANCE Historical data suggest that millions of P. falciparum parasite lineages were introduced into the Americas during the trans-Atlantic slave trade, which would suggest a paraphyletic origin of the extant isolates in the Western Hemisphere. Our analyses of whole-genome variants show that the American parasites belong to a well-supported monophyletic clade. We hypothesize that the required adaptation to American vectors created a severe bottleneck, reducing the effective introduction to a few lineages. In support of this hypothesis, we discovered genes expressed in the mosquito stages of the life cycle that have alleles with multiple, high-frequency or fixed, nonsynonymous mutations in the American populations which are rarely found in African isolates. These alleles appear to be in gene products critical for transmission through the anopheline vector. Thus, these results may inform efforts to develop novel transmission-blocking vaccines by identifying parasite proteins functionally interacting with the vector that are important for successful transmission. Further, to the best of our knowledge, these are the first whole-genome data available from Haitian P. falciparum isolates. Defining the genome of these parasites provides genetic markers useful for mapping parasite populations and monitoring parasite movements/introductions.
Collapse
Affiliation(s)
- Massimiliano S Tagliamonte
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Charles A Yowell
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Maha A Elbadry
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Jacques Boncy
- Laboratoire National de Santé Publique, Ministère de la Santé Publique et de la Population, Port-au-Prince, Haiti
| | - Christian P Raccurt
- Department of Tropical Medicine and Infectious Diseases, Faculty of Medicine, University of Quisqueya, Port-au-Prince, Haiti
| | - Bernard A Okech
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Erica M Goss
- Department of Plant Pathology, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - John B Dame
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
6
|
Rogozin IB, Charyyeva A, Sidorenko IA, Babenko VN, Yurchenko V. Frequent Recombination Events in Leishmania donovani: Mining Population Data. Pathogens 2020; 9:pathogens9070572. [PMID: 32679679 PMCID: PMC7400496 DOI: 10.3390/pathogens9070572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 11/21/2022] Open
Abstract
The Leishmania donovani species complex consists of all L. donovani and L. infantum strains mainly responsible for visceral leishmaniasis (VL). It was suggested that genome rearrangements in Leishmania spp. occur very often, thus enabling parasites to adapt to the different environmental conditions. Some of these rearrangements may be directly linked to the virulence or explain the reduced efficacy of antimonial drugs in some isolates. In the current study, we focused on a large-scale analysis of putative gene conversion events using publicly available datasets. Previous population study of L. donovani suggested that population variability of L. donovani is relatively low, however the authors used masking procedures and strict read selection criteria. We decided to re-analyze DNA-seq data without masking sequences, because we were interested in the most dynamic fraction of the genome. The majority of samples have an excess of putative gene conversion/recombination events in the noncoding regions, however we found an overall excess of putative intrachromosomal gene conversion/recombination in the protein coding genes, compared to putative interchromosomal gene conversion/recombination events.
Collapse
Affiliation(s)
- Igor B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA;
| | - Arzuv Charyyeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic;
| | - Ivan A. Sidorenko
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (I.A.S.); (V.N.B.)
| | - Vladimir N. Babenko
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (I.A.S.); (V.N.B.)
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia
- Correspondence:
| |
Collapse
|
7
|
Domagalska MA, Dujardin JC. Next-Generation Molecular Surveillance of TriTryp Diseases. Trends Parasitol 2020; 36:356-367. [PMID: 32191850 DOI: 10.1016/j.pt.2020.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Abstract
Elimination programs targeting TriTryp diseases (Leishmaniasis, Chagas' disease, human African trypanosomiasis) significantly reduced the number of cases. Continued surveillance is crucial to sustain this progress, but parasite molecular surveillance by genotyping is currently lacking. We explain here which epidemiological questions of public health and clinical relevance could be answered by means of molecular surveillance. Whole-genome sequencing (WGS) for molecular surveillance will be an important added value, where we advocate that preference should be given to direct sequencing of the parasite's genome in host tissues instead of analysis of cultivated isolates. The main challenges here, and recent technological advances, are discussed. We conclude with a series of recommendations for implementing whole-genome sequencing for molecular surveillance.
Collapse
Affiliation(s)
- Malgorzata Anna Domagalska
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, B-2000 Antwerp, Belgium.
| | - Jean-Claude Dujardin
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, B-2000 Antwerp, Belgium
| |
Collapse
|
8
|
Kühne V, Büscher P. The Unknown Nature of the Antigen in the Direct Agglutination Test for Visceral Leishmaniasis Hampers Development of Serodiagnostic Tests. Am J Trop Med Hyg 2019; 100:246-255. [PMID: 30560773 PMCID: PMC6367635 DOI: 10.4269/ajtmh.18-0740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Current diagnostic tests for visceral leishmaniasis (VL) are either not adapted for use in resource-poor settings or are insufficiently accurate in Eastern Africa. Only the direct agglutination test (DAT), based on whole Leishmania promastigotes, is highly reliable in all endemic regions, but its implementation is hampered by the need for a cold chain, minimal laboratory conditions, and long incubation times. Integrating the DAT antigen(s) in an immunochromatographic rapid diagnostic test (RDT) would overcome these disadvantages. Unfortunately, the identity of the DAT antigen(s) involved in the agglutination reaction is unknown. For this study, we reviewed all publications that might shed some light on this issue. We conclude that the DAT antigen is a mixture of Leishmania-specific epitopes of protein, carbohydrate, and lipid nature. To develop an accurate RDT for VL diagnosis in Eastern Africa, we suggest to complement the classical protein antigen discovery with approaches to identify carbohydrate and lipid epitopes.
Collapse
Affiliation(s)
- Vera Kühne
- Institute of Tropical Medicine, Antwerp, Belgium
| | | |
Collapse
|
9
|
Environmental Conditions May Shape the Patterns of Genomic Variations in Leishmania panamensis. Genes (Basel) 2019; 10:genes10110838. [PMID: 31652919 PMCID: PMC6896075 DOI: 10.3390/genes10110838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 11/23/2022] Open
Abstract
Due to the absence of transcriptional regulation of gene expression in Leishmania parasites, it is now well accepted that several forms of genomic variations modulate the levels of critical proteins through changes in gene dosage. We previously observed many of these variations in our reference laboratory strain of L. panamensis (PSC-1 strain), including chromosomes with an increased somy and the presence of a putative linear minichromosome derived from chromosome 34. Here, we compared the previously described genomic variations with those occurring after exposure of this strain to increasing concentrations of trivalent antimony (SbIII), as well as those present in two geographically unrelated clinical isolates of L. panamensis. We observed changes in the somy of several chromosomes, amplifications of several chromosomal regions, and copy number variations in gene arrays after exposure to SbIII. Occurrence of amplifications potentially beneficial for the Sb-resistant phenotype appears to be associated with the loss of other forms of amplification, such as the linear minichromosome. In contrast, we found no evidence of changes in somy or amplification of relatively large chromosomal regions in the clinical isolates. In these isolates, the predominant amplifications appear to be those that generate genes arrays; however, in many cases, the amplified arrays have a notably higher number of copies than those from the untreated and Sb-treated laboratory samples.
Collapse
|
10
|
Major changes in chromosomal somy, gene expression and gene dosage driven by Sb III in Leishmania braziliensis and Leishmania panamensis. Sci Rep 2019; 9:9485. [PMID: 31263131 PMCID: PMC6603004 DOI: 10.1038/s41598-019-45538-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022] Open
Abstract
Leishmania braziliensis and Leishmania panamensis are two species clinically and epidemiologically important, among others because of their relative resistance to first-line drugs (antimonials). The precise mechanism underlying the ability of these species to survive antimony treatment remains unknown. Therefore, elucidating the pathways mediating drug resistance is essential. We herein experimentally selected resistance to trivalent antimony (SbIII) in the reference strains of L. braziliensis (MHOM/BR75/M2904) and L. panamensis (MHOM/COL/81L13) and compared whole genome and transcriptome alterations in the culture promastigote stage. The results allowed us to identify differences in somy, copy number variations in some genes related to antimony resistance and large-scale copy number variations (deletions and duplications) in chromosomes with no somy changes. We found mainly in L. braziliensis, a direct relation between the chromosomal/local copy number variation and the gene expression. We identified differentially expressed genes in the resistant lines that are involved in antimony resistance, virulence, and vital biological processes in parasites. The results of this study may be useful for characterizing the genetic mechanisms of these Leishmania species under antimonial pressure, and for clarifying why the parasites are resistant to first-line drug treatments.
Collapse
|
11
|
Banu SS, Meyer W, Ferreira-Paim K, Wang Q, Kuhls K, Cupolillo E, Schönian G, Lee R. A novel multilocus sequence typing scheme identifying genetic diversity amongst Leishmania donovani isolates from a genetically homogeneous population in the Indian subcontinent. Int J Parasitol 2019; 49:555-567. [PMID: 31108098 DOI: 10.1016/j.ijpara.2019.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 02/20/2019] [Accepted: 02/23/2019] [Indexed: 01/29/2023]
Abstract
In the Indian subcontinent, infection with Leishmania donovani can cause fatal visceral leishmaniasis. Genetic variation in L. donovani is believed to occur rapidly from environmental changes and through selective drug pressures, thereby allowing continued disease occurrence in this region. All previous molecular markers that are commonly in use multilocus microsatellite typing and multilocus sequence typing, were monomorphic in L. donovani originating from the Indian subcontinent (with only a few exceptions) and hence are not suitable for this region. An multilocus sequence typing scheme consisting of a new set of seven housekeeping genes was developed in this study, based on recent findings from whole genome sequencing data. This new scheme was used to assess the genetic diversity amongst 22 autochthonous L. donovani isolates from Bangladesh. Nineteen additional isolates of the L. donovani complex (including sequences of L. donovani reference strain BPK282A1) from other countries were included for comparison. By using restriction fragment length polymorphism of the internal transcribed spacer 1 region (ITS1-RFLP) and ITS1 sequencing, all Bangladeshi isolates were confirmed to be L. donovani. Population genetic analyses of 41 isolates using the seven new MLST loci clearly separated L. donovani from Leishmania infantum. With this multilocus sequence typing scheme, seven genotypes were identified amongst Bangladeshi L. donovani isolates, and these isolates were found to be phylogenetically different compared with those from India, Nepal, Iraq and Africa. This novel multilocus sequence typing approach can detect intra- and inter-species variations within the L. donovani complex, but most importantly these molecular markers can be applied to resolve the phylogenetically very homogeneous L. donovani strains from the Indian subcontinent. Four of these markers were found suitable to differentiate strains originating from Bangladesh, with marker A2P being the most discriminative one.
Collapse
Affiliation(s)
- Sultana Shahana Banu
- Parasitology Department, Centre for Infectious Diseases and Microbiology Laboratory Services (CIDMLS), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, Sydney, NSW, Australia; Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Westmead Hospital (Research and Education Network), The University of Sydney, Sydney, NSW, Australia; Westmead Institute for Medical Research, Westmead, Sydney, NSW, Australia; Directorate General of Health Services (DGHS), Ministry of Health and Family Welfare (MOHFW), Dhaka, Bangladesh
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Westmead Hospital (Research and Education Network), The University of Sydney, Sydney, NSW, Australia; Westmead Institute for Medical Research, Westmead, Sydney, NSW, Australia
| | - Kennio Ferreira-Paim
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Westmead Hospital (Research and Education Network), The University of Sydney, Sydney, NSW, Australia; Westmead Institute for Medical Research, Westmead, Sydney, NSW, Australia; Department of Microbiology, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Qinning Wang
- Parasitology Department, Centre for Infectious Diseases and Microbiology Laboratory Services (CIDMLS), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, Sydney, NSW, Australia
| | - Katrin Kuhls
- Division of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Elisa Cupolillo
- Laboratory on Leishmaniasis Research, Oswaldo Cruz Institute - Fiocruz, Rio de Janeiro, Brazil
| | - Gabriele Schönian
- Institute for Microbiology and Hygiene CC05, Charité University Medicine Berlin, Berlin, Germany
| | - Rogan Lee
- Parasitology Department, Centre for Infectious Diseases and Microbiology Laboratory Services (CIDMLS), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, Sydney, NSW, Australia; Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Westmead Hospital (Research and Education Network), The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
12
|
Abstract
Phylogenetics is an important component of the systems biology approach. Knowledge about evolution of the genus Leishmania is essential to understand various aspects of basic biology of these parasites, such as parasite-host or parasite-vector relationships, biogeography, or epidemiology. Here, we present a comprehensive guideline for performing phylogenetic studies based on DNA sequence data, but with principles that can be adapted to protein sequences or other molecular markers. It is presented as a compilation of the most commonly used genetic targets for phylogenetic studies of Leishmania, including their respective primers for amplification and references, as well as details of PCR assays. Guidelines are, then, presented to choose the best targets in relation to the types of samples under study. Finally, and importantly, instructions are given to obtain optimal sequences, alignments, and datasets for the subsequent data analysis and phylogenetic inference. Different bioinformatics methods and software for phylogenetic inference are presented and explained. This chapter aims to provide a compilation of methods and generic guidelines to conduct phylogenetics of Leishmania for nonspecialists.
Collapse
Affiliation(s)
- Katrin Kuhls
- Molekulare Biotechnologie und Funktionelle Genomik, Technische Hochschule Wildau, Wildau, Germany.
| | - Isabel Mauricio
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| |
Collapse
|
13
|
Importance of secondary screening with clinical isolates for anti-leishmania drug discovery. Sci Rep 2018; 8:11765. [PMID: 30082744 PMCID: PMC6078976 DOI: 10.1038/s41598-018-30040-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/10/2018] [Indexed: 11/17/2022] Open
Abstract
The growing drug resistance (DR) raises major concerns for the control of visceral leishmaniasis (VL), a neglected disease lethal in 95 percent of the cases if left untreated. Resistance has rendered antimonials (SSG) obsolete in the Indian Sub-Continent (ISC) and the first miltefosine-resistant Leishmania donovani were isolated. New chemotherapeutic options are needed and novel compounds are being identified by high-throughput screening (HTS). HTS is generally performed with old laboratory strains such as LdBOB and we aimed here to validate the activity of selected compounds against recent clinical isolates. In this academic/industrial collaboration, 130 compounds from the GSK “Leishbox” were screened against one SSG-sensitive and one SSG-resistant strain of L. donovani recently isolated from ISC patients, using an intracellular assay of L. donovani-infected THP1-derived macrophages. We showed that only 45% of the compounds were active in both clinical isolates and LdBOB. There were also different compound efficiencies linked to the SSG susceptibility background of the strains. In addition, our results suggested that the differential susceptibility profiles were chemical series-dependent. In conclusion, we demonstrate the potential value of including clinical isolates (as well as resistant strains) in the HTS progression cascade.
Collapse
|
14
|
Abstract
Visceral leishmaniasis (VL), a deadly parasitic disease, is a major public health concern globally. Countries affected by VL have signed the London Declaration on Neglected Tropical Diseases and committed to eliminate VL as a public health problem by 2020. To achieve and sustain VL elimination, it will become progressively important not to miss any remaining cases in the community who can maintain transmission. This requires accurate identification of symptomatic and asymptomatic carriers using highly sensitive diagnostic tools at the primary health service setting. The rK39 rapid diagnostic test (RDT) is the most widely used tool and with its good sensitivity and specificity is the first choice for decentralized diagnosis of VL in endemic areas. However, this test cannot discriminate between current, subclinical, or past infections and is useless for diagnosis of relapses and as a prognostic (cure) test. Importantly, as the goal of elimination of VL as a public health problem is approaching, the number of people susceptible to infection will increase. Therefore, correct diagnosis using a highly sensitive diagnostic test is crucial for applying appropriate treatment and management of cases. Recent advances in molecular techniques have improved Leishmania detection and quantification, and therefore this technology has become increasingly relevant due to its possible application in a variety of clinical sample types. Most importantly, given current problems in identifying asymptomatic individuals because of poor correlation between the main methods of detection, molecular tests are valuable for VL elimination programs, especially to monitor changes in burden of infection in specific communities. This review provides a comprehensive overview of the available VL diagnostics and discusses the usefulness of molecular methods in the diagnosis, quantification, and species differentiation as well as their clinical applications.
Collapse
Affiliation(s)
- Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 005, India
| | - Om Prakash Singh
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 005, India.
| |
Collapse
|
15
|
Jaber HT, Hailu A, Pratlong F, Lami P, Bastien P, Jaffe CL. Analysis of genetic polymorphisms and tropism in East African Leishmania donovani by Amplified Fragment Length Polymorphism and kDNA minicircle sequencing. INFECTION GENETICS AND EVOLUTION 2018; 65:80-90. [PMID: 30016714 PMCID: PMC6218636 DOI: 10.1016/j.meegid.2018.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 01/01/2023]
Abstract
Visceral leishmaniasis (VL), the most severe form of leishmaniasis, is caused by Leishmania donovani. In addition to fatal VL, these parasites also cause skin diseases in immune-competent and -suppressed people, post-kala azar dermal leishmaniasis (PKDL) and HIV/VL co-infections, respectively. Genetic polymorphism in 36 Ethiopian and Sudanese L. donovani strains from VL, PKDL and HIV/VL patients was examined using Amplified Fragment Length Polymorphism (AFLP), kDNA minicircle sequencing and Southern blotting. Strains were isolated from different patient tissues: in VL from lymph node, spleen or bone marrow; and in HIV/VL from skin, spleen or bone marrow. When VL and PKDL strains from the same region in Sudan were examined by Southern blotting using a DNA probe to the L. donovani 28S rRNA gene only minor differences were observed. kDNA sequence analysis distributed the strains in no particular order among four clusters (A - D), while AFLP analysis grouped the strains according to geographical origin into two major clades, Southern Ethiopia (SE) and Sudan/Northern Ethiopia (SD/NE). Strains in the latter clade were further divided into subpopulations by zymodeme, geography and year of isolation, but not by clinical symptoms. However, skin isolates showed significantly (p < 0.0001) fewer polymorphic AFLP fragments (average 10 strains = 348.6 ± 8.1) than VL strains (average 26 strains = 383.5 ± 3.8).
Collapse
Affiliation(s)
- Hanan T Jaber
- Department of Microbiology and Molecular Genetics, Kuvin Centre for the Study of Infectious and Tropical Diseases, IMRIC, Hebrew University - Hadassah Medical School, Jerusalem, Israel
| | - Asrat Hailu
- School of Medicine, College of Health Sciences, Department of Microbiology, Immunology & Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Francine Pratlong
- Department of Parasitology-Mycology, National Reference Centre for Leishmanioses, Academic Hospital of Montpellier, France; University of Montpellier, CNRS 5290/IRD 224 "MiVEGEC", Montpellier, France
| | - Patrick Lami
- Department of Parasitology-Mycology, National Reference Centre for Leishmanioses, Academic Hospital of Montpellier, France; University of Montpellier, CNRS 5290/IRD 224 "MiVEGEC", Montpellier, France
| | - Patrick Bastien
- Department of Parasitology-Mycology, National Reference Centre for Leishmanioses, Academic Hospital of Montpellier, France; University of Montpellier, CNRS 5290/IRD 224 "MiVEGEC", Montpellier, France
| | - Charles L Jaffe
- Department of Microbiology and Molecular Genetics, Kuvin Centre for the Study of Infectious and Tropical Diseases, IMRIC, Hebrew University - Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
16
|
Nayak A, Akpunarlieva S, Barrett M, Burchmore R. A defined medium for Leishmania culture allows definition of essential amino acids. Exp Parasitol 2018; 185:39-52. [PMID: 29326050 DOI: 10.1016/j.exppara.2018.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/18/2017] [Accepted: 01/05/2018] [Indexed: 10/18/2022]
Abstract
Axenic culture of Leishmania is generally performed in rich, serum-supplemented media which sustain robust growth over multiple passages. The use of such undefined media, however, obscures proteomic analyses and confounds the study of metabolism. We have established a simple, defined culture medium that supports the sustained growth of promastigotes over multiple passages and which yields parasites that have similar infectivity to macrophages to parasites grown in a conventional semi-defined medium. We have exploited this medium to investigate the amino acid requirements of promastigotes in culture and have found that phenylalanine, tryptophan, arginine, leucine, lysine and valine are essential for viability in culture. Most of the 20 proteogenic amino acids promote growth of Leishmania promastigotes, with the exception of alanine, asparagine, and glycine. This defined medium will be useful for further studies of promastigote substrate requirements, and will facilitate future proteomic and metabolomic analyses.
Collapse
Affiliation(s)
- Archana Nayak
- Institute of Infection, Immunity and Inflammation and Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Snezhana Akpunarlieva
- Institute of Infection, Immunity and Inflammation and Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Michael Barrett
- Institute of Infection, Immunity and Inflammation and Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Richard Burchmore
- Institute of Infection, Immunity and Inflammation and Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
17
|
Zackay A, Cotton JA, Sanders M, Hailu A, Nasereddin A, Warburg A, Jaffe CL. Genome wide comparison of Ethiopian Leishmania donovani strains reveals differences potentially related to parasite survival. PLoS Genet 2018; 14:e1007133. [PMID: 29315303 PMCID: PMC5777657 DOI: 10.1371/journal.pgen.1007133] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/22/2018] [Accepted: 11/28/2017] [Indexed: 12/22/2022] Open
Abstract
Leishmania donovani is the main cause of visceral leishmaniasis (VL) in East Africa. Differences between northern Ethiopia/Sudan (NE) and southern Ethiopia (SE) in ecology, vectors, and patient sensitivity to drug treatment have been described, however the relationship between differences in parasite genotype between these two foci and phenotype is unknown. Whole genomic sequencing (WGS) was carried out for 41 L. donovani strains and clones from VL and VL/HIV co-infected patients in NE (n = 28) and SE (n = 13). Chromosome aneuploidy was observed in all parasites examined with each isolate exhibiting a unique karyotype. Differences in chromosome ploidy or karyotype were not correlated with the geographic origin of the parasites. However, correlation between single nucleotide polymorphism (SNP) and geographic origin was seen for 38/41 isolates, separating the NE and SE parasites into two large groups. SNP restricted to NE and SE groups were associated with genes involved in viability and parasite resistance to drugs. Unique copy number variation (CNV) were also associated with NE and SE parasites, respectively. One striking example is the folate transporter (FT) family genes (LdBPK_100390, LdBPK_100400 and LdBPK_100410) on chromosome 10 that are single copy in all 13 SE isolates, but either double copy or higher in 39/41 NE isolates (copy number 2-4). High copy number (= 4) was also found for one Sudanese strain examined. This was confirmed by quantitative polymerase chain reaction for LdBPK_100400, the L. donovani FT1 transporter homolog. Good correlation (p = 0.005) between FT copy number and resistance to methotrexate (0.5 mg/ml MTX) was also observed with the haploid SE strains examined showing higher viability than the NE strains at this concentration. Our results emphasize the advantages of whole genome analysis to shed light on vital parasite processes in Leishmania.
Collapse
Affiliation(s)
- Arie Zackay
- Dept Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious & Tropical Diseases, IMRIC, Hebrew University–Hadassah Medical School, Jerusalem, Israel
| | - James A. Cotton
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Asrat Hailu
- Dept Microbiology, Immunology & Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abedelmajeed Nasereddin
- Dept Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious & Tropical Diseases, IMRIC, Hebrew University–Hadassah Medical School, Jerusalem, Israel
| | - Alon Warburg
- Dept Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious & Tropical Diseases, IMRIC, Hebrew University–Hadassah Medical School, Jerusalem, Israel
| | - Charles L. Jaffe
- Dept Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious & Tropical Diseases, IMRIC, Hebrew University–Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
18
|
Abstract
Leishmania tropica, a unicellular eukaryotic parasite present in North and East Africa, the Middle East, and the Indian subcontinent, has been linked to large outbreaks of cutaneous leishmaniasis in displaced populations in Iraq, Jordan, and Syria. Here, we report the genome sequence of this pathogen and 7,863 identified protein-coding genes, and we show that the majority of clinical isolates possess high levels of allelic diversity, genetic admixture, heterozygosity, and extensive aneuploidy. By utilizing paired genome-wide high-throughput DNA sequencing (DNA-seq) with RNA-seq, we found that gene dosage, at the level of individual genes or chromosomal "somy" (a general term covering disomy, trisomy, tetrasomy, etc.), accounted for greater than 85% of total gene expression variation in genes with a 2-fold or greater change in expression. High gene copy number variation (CNV) among membrane-bound transporters, a class of proteins previously implicated in drug resistance, was found for the most highly differentially expressed genes. Our results suggest that gene dosage is an adaptive trait that confers phenotypic plasticity among natural Leishmania populations by rapid down- or upregulation of transporter proteins to limit the effects of environmental stresses, such as drug selection.IMPORTANCELeishmania is a genus of unicellular eukaryotic parasites that is responsible for a spectrum of human diseases that range from cutaneous leishmaniasis (CL) and mucocutaneous leishmaniasis (MCL) to life-threatening visceral leishmaniasis (VL). Developmental and strain-specific gene expression is largely thought to be due to mRNA message stability or posttranscriptional regulatory networks for this species, whose genome is organized into polycistronic gene clusters in the absence of promoter-mediated regulation of transcription initiation of nuclear genes. Genetic hybridization has been demonstrated to yield dramatic structural genomic variation, but whether such changes in gene dosage impact gene expression has not been formally investigated. Here we show that the predominant mechanism determining transcript abundance differences (>85%) in Leishmania tropica is that of gene dosage at the level of individual genes or chromosomal somy.
Collapse
|
19
|
Akhoundi M, Downing T, Votýpka J, Kuhls K, Lukeš J, Cannet A, Ravel C, Marty P, Delaunay P, Kasbari M, Granouillac B, Gradoni L, Sereno D. Leishmania infections: Molecular targets and diagnosis. Mol Aspects Med 2017; 57:1-29. [PMID: 28159546 DOI: 10.1016/j.mam.2016.11.012] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 12/15/2022]
Abstract
Progress in the diagnosis of leishmaniases depends on the development of effective methods and the discovery of suitable biomarkers. We propose firstly an update classification of Leishmania species and their synonymies. We demonstrate a global map highlighting the geography of known endemic Leishmania species pathogenic to humans. We summarize a complete list of techniques currently in use and discuss their advantages and limitations. The available data highlights the benefits of molecular markers in terms of their sensitivity and specificity to quantify variation from the subgeneric level to species complexes, (sub) species within complexes, and individual populations and infection foci. Each DNA-based detection method is supplied with a comprehensive description of markers and primers and proposal for a classification based on the role of each target and primer in the detection, identification and quantification of leishmaniasis infection. We outline a genome-wide map of genes informative for diagnosis that have been used for Leishmania genotyping. Furthermore, we propose a classification method based on the suitability of well-studied molecular markers for typing the 21 known Leishmania species pathogenic to humans. This can be applied to newly discovered species and to hybrid strains originating from inter-species crosses. Developing more effective and sensitive diagnostic methods and biomarkers is vital for enhancing Leishmania infection control programs.
Collapse
Affiliation(s)
- Mohammad Akhoundi
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Nice, France; MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France.
| | - Tim Downing
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Jan Votýpka
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic; Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Katrin Kuhls
- Division of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic; Canadian Institute for Advanced Research, Toronto, Canada
| | - Arnaud Cannet
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France
| | - Christophe Ravel
- French National Reference Centre on Leishmaniasis, Montpellier University, Montpellier, France
| | - Pierre Marty
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Nice, France; Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France
| | - Pascal Delaunay
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Nice, France; Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France; MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France
| | - Mohamed Kasbari
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, ANSES, Laboratoire de Santé Animale, Maisons-Alfort, Cedex, France
| | - Bruno Granouillac
- IRD/UMI 233, INSERM U1175, Montpellier University, Montpellier, France; MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France
| | - Luigi Gradoni
- Unit of Vector-borne Diseases and International Health, Istituto Superiore di Sanità, Rome, Italy
| | - Denis Sereno
- MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France; Intertryp UMR IRD177, Centre IRD de Montpellier, Montpellier, France
| |
Collapse
|
20
|
Sechi S, Polli M, Marelli S, Talenti A, Crepaldi P, Fiore F, Spissu N, Dreger DL, Zedda M, Dimauro C, Ostrander EA, Di Cerbo A, Cocco R. Fonni’s dog: morphological and genetic characteristics for a breed standard definition. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.1080/1828051x.2016.1248867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sara Sechi
- Dipartimento di Medicina Veterinaria e Clinica Medica Veterinaria, University of Sassari, Sassari, Italy
| | | | | | | | | | - Filippo Fiore
- Dipartimento di Medicina Veterinaria e Clinica Medica Veterinaria, University of Sassari, Sassari, Italy
| | - Nicoletta Spissu
- Dipartimento di Medicina Veterinaria e Clinica Medica Veterinaria, University of Sassari, Sassari, Italy
| | - Dayna L. Dreger
- National Human Genome Research Institute National Institutes of Health, Bethesda, MD, USA
| | - Marco Zedda
- Dipartimento di Medicina Veterinaria, University of Sassari, Sassari, Italy
| | - Corrado Dimauro
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, University of Sassari, Sassari, Italy
| | - Elaine A. Ostrander
- National Human Genome Research Institute National Institutes of Health, Bethesda, MD, USA
| | - Alessandro Di Cerbo
- Scuola di Specializzazione in Biochimica Clinica, University of “G. d’Annunzio” Chieti - Pescara, Chieti, Italy
| | - Raffaella Cocco
- National Human Genome Research Institute National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Banu SS, Ahmed BN, Shamsuzzaman AKM, Lee R. Evaluation of recombinant K39 antigen and various promastigote antigens in sero-diagnosis of visceral leishmaniasis in Bangladesh. Parasite Epidemiol Control 2016; 1:219-228. [PMID: 29988192 PMCID: PMC5991841 DOI: 10.1016/j.parepi.2016.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 01/30/2023] Open
Abstract
Background Definitive diagnosis of visceral leishmaniasis (VL) by demonstrating parasites in tissue smears or by culture involves invasive procedures, technical expertise and adequate laboratory facilities. Endemic countries rely mainly on serological tests to diagnose VL. Currently, the immunochromatographic test incorporating the recombinant K39 antigen (rK39 ICT) is the reference test for rapid diagnosis of VL in the Indian subcontinent. The performance of serological tests using rK39 and other promastigote antigens can vary due to differences in antigen expression, the various hosts and environmental factors. To achieve elimination of VL, diagnostic accuracy will be necessary for active case detection especially in those who carry asymptomatic infections. We evaluated the performance of rK39 ICT, enzyme linked immunosorbent assay using mixed Leishmania promastigotes from different Leishmania species (p-ELISA) and indirect fluorescent antibody test (IFAT) utilizing whole promastigotes from the Leishmania donovani complex for sero-diagnosis of VL in Bangladesh. Methods The sensitivity of each serological test was evaluated on 155 patients who were diagnosed to have VL by microscopy and/or by culture methods. Test specificities were calculated on 706 healthy blood donors, 91 diagnostic sera from patients with a febrile illness and sera from patients positive for malaria (n = 91) and Chagas disease (n = 91). All statistical calculations were at 95% confidence intervals. Results The sensitivities of rK39 ICT, p-ELISA and IFAT were 100%, 86.5% and 92.3%, respectively. All three serological methods had a pooled sensitivity of 82.6%. The specificities of rK39 ICT, p-ELISA and IFAT from combined control groups were 100%, 93.1% and 99.9%, respectively. The respective positive and negative predictive values of the tests were both 100% for rK39 ICT, 66.3% and 97.8% for p-ELISA and 99.3% and 98.8% for IFAT. The p-ELISA showed cross reactivity with 36.3% of sera positive for malaria and 28.6% of sera positive for Chagas disease while rK39 ICT and IFAT showed no cross reactivity. Conclusion This study confirms the efficiency of rK39 ICT for rapid diagnosis of VL. The p-ELISA using mixed promastigote antigens did not perform well as a serological test for VL in Bangladesh. Due to high sensitivity and specificity of whole promastigote antigen of L. donovani complex utilized in IFAT, this test can be considered in combination with rK39 ICT to confirm VL diagnosis when clinical diagnosis cannot distinguish between other diseases.
Collapse
Affiliation(s)
- Sultana Shahana Banu
- Parasitology Department, Centre for Infectious Diseases and Microbiology (CIDM), ICPMR, Westmead Hospital, Westmead, NSW, Australia.,Discipline of Medicine, Sydney Medical School, University of Sydney, NSW, Australia.,Directorate General of Health Services (DGHS), Ministry of Health and Family Welfare (MOHFW), Dhaka, Bangladesh
| | - Be-Nazir Ahmed
- Directorate General of Health Services (DGHS), Ministry of Health and Family Welfare (MOHFW), Dhaka, Bangladesh
| | | | - Rogan Lee
- Parasitology Department, Centre for Infectious Diseases and Microbiology (CIDM), ICPMR, Westmead Hospital, Westmead, NSW, Australia.,Discipline of Medicine, Sydney Medical School, University of Sydney, NSW, Australia
| |
Collapse
|
22
|
Imamura H, Downing T, Van den Broeck F, Sanders MJ, Rijal S, Sundar S, Mannaert A, Vanaerschot M, Berg M, De Muylder G, Dumetz F, Cuypers B, Maes I, Domagalska M, Decuypere S, Rai K, Uranw S, Bhattarai NR, Khanal B, Prajapati VK, Sharma S, Stark O, Schönian G, De Koning HP, Settimo L, Vanhollebeke B, Roy S, Ostyn B, Boelaert M, Maes L, Berriman M, Dujardin JC, Cotton JA. Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. eLife 2016; 5. [PMID: 27003289 PMCID: PMC4811772 DOI: 10.7554/elife.12613] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/15/2016] [Indexed: 12/25/2022] Open
Abstract
Leishmania donovani causes visceral leishmaniasis (VL), the second most deadly vector-borne parasitic disease. A recent epidemic in the Indian subcontinent (ISC) caused up to 80% of global VL and over 30,000 deaths per year. Resistance against antimonial drugs has probably been a contributing factor in the persistence of this epidemic. Here we use whole genome sequences from 204 clinical isolates to track the evolution and epidemiology of L. donovani from the ISC. We identify independent radiations that have emerged since a bottleneck coincident with 1960s DDT spraying campaigns. A genetically distinct population frequently resistant to antimonials has a two base-pair insertion in the aquaglyceroporin gene LdAQP1 that prevents the transport of trivalent antimonials. We find evidence of genetic exchange between ISC populations, and show that the mutation in LdAQP1 has spread by recombination. Our results reveal the complexity of L. donovani evolution in the ISC in response to drug treatment. DOI:http://dx.doi.org/10.7554/eLife.12613.001 The parasite Leishmania donovani causes a disease called visceral leishmaniasis that affects many of the world's poorest people. Around half a million new cases develop every year, but health authorities lack safe and effective drugs to treat them. Up to 80% of these cases occur in the Indian subcontinent, where devastating epidemics have occurred in the last decades. One reason these epidemics continue to occur is that the parasites develop genetic mutations allowing them to adapt to and resist the drugs used to kill them. As there are few existing drugs that can kill L. donovani, it is crucial to understand how drug resistance emerges and spreads among parasite populations. Imamura, Downing, Van den Broeck et al. have now investigated the history of visceral leishmaniasis epidemics by characterising the complete genetic sequence – or genome – of 204 L. donovani parasite samples. This revealed that the majority of parasites in the Indian subcontinent first appeared in the nineteenth century, matching the first historical records of visceral leishmaniasis epidemics. The genomes show that most of the parasites are genetically similar and can be clustered into several closely related groups. These groups first appeared in the 1960s following the end of a regional campaign to eradicate malaria. The most common parasite group is particularly resistant to drugs called antimonials, which were the main treatment for leishmaniasis until recently. These parasites have a small genetic change that scrambles most of a protein known to be involved in the uptake of antimonials. Parasites may also be able to develop resistance to drugs through additional mechanisms that allow them to produce many copies of the same gene. These mechanisms could allow the parasites to rapidly adapt to new drugs or changes in the populations it infects. The work of Imamura et al. looks only at parasites isolated from patients then grown in the laboratory, so further research is now needed to explore how variable the Leishmania genome is in both of the parasite’s hosts: humans and sandflies. Imamura et al.’s study reveals how L. donovani has spread throughout the Indian subcontinent in fine detail. The genome data can be used to create simple molecular tools that could form an "early warning system" to track the success of disease control programs and to determine how well the current drugs are working. DOI:http://dx.doi.org/10.7554/eLife.12613.002
Collapse
Affiliation(s)
- Hideo Imamura
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Tim Downing
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom.,School of Maths, Applied Maths and Statistics, National University of Ireland Galway, Galway, Ireland
| | | | | | - Suman Rijal
- BP Koirala Institute of Health Sciences, Dharan, Nepal
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - An Mannaert
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Manu Vanaerschot
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Maya Berg
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Géraldine De Muylder
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Franck Dumetz
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bart Cuypers
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ilse Maes
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Saskia Decuypere
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Keshav Rai
- BP Koirala Institute of Health Sciences, Dharan, Nepal
| | | | | | | | - Vijay Kumar Prajapati
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Smriti Sharma
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Olivia Stark
- Institut für Mikrobiologie und Hygiene, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriele Schönian
- Institut für Mikrobiologie und Hygiene, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Harry P De Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Luca Settimo
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Department of Chemistry and Chemical Biology, Northeastern University, Boston, United States
| | - Benoit Vanhollebeke
- Laboratory of Molecular Parasitology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Syamal Roy
- Department of Infectious Diseases and Immunology, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, Kolkata, India
| | - Bart Ostyn
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Marleen Boelaert
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Louis Maes
- Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Jean-Claude Dujardin
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - James A Cotton
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
23
|
Hendrickx S, Leemans A, Mondelaers A, Rijal S, Khanal B, Dujardin JC, Delputte P, Cos P, Maes L. Comparative Fitness of a Parent Leishmania donovani Clinical Isolate and Its Experimentally Derived Paromomycin-Resistant Strain. PLoS One 2015; 10:e0140139. [PMID: 26469696 PMCID: PMC4607421 DOI: 10.1371/journal.pone.0140139] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022] Open
Abstract
Paromomycin has recently been introduced for the treatment of visceral leishmaniasis and emergence of drug resistance can only be appropriately judged upon its long term routine use in the field. Understanding alterations in parasite behavior linked to paromomycin-resistance may be essential to assess the propensity for emergence and spread of resistant strains. A standardized and integrated laboratory approach was adopted to define and assess parasite fitness of both promastigotes and amastigotes using an experimentally induced paromomycin-resistant Leishmania donovani strain and its paromomycin-susceptible parent wild-type clinical isolate. Primary focus was placed on parasite growth and virulence, two major components of parasite fitness. The combination of in vitro and in vivo approaches enabled detailed comparison of wild-type and resistant strains for which no differences could be demonstrated with regard to promastigote growth, metacyclogenesis, in vitro infectivity, multiplication in primary peritoneal mouse macrophages and infectivity for Balb/c mice upon infection with 2 x 107 metacyclic promastigotes. Monitoring of in vitro intracellular amastigote multiplication revealed a consistent decrease in parasite burden over time for both wild-type and resistant parasites, an observation that was subsequently also confirmed in a larger set of L. donovani clinical isolates. Though the impact of these findings should be further explored, the study results suggest that the epidemiological implications of acquired paromomycin-resistance may remain minimal other than the loss of one of the last remaining drugs effective against visceral leishmaniasis.
Collapse
Affiliation(s)
- Sarah Hendrickx
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Annelies Leemans
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Annelies Mondelaers
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Suman Rijal
- BP Koirala Institute of Health Sciences, Dharan, Nepal
| | | | - Jean-Claude Dujardin
- Molecular Parasitology Unit, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
- * E-mail:
| |
Collapse
|
24
|
Westrop GD, Williams RAM, Wang L, Zhang T, Watson DG, Silva AM, Coombs GH. Metabolomic Analyses of Leishmania Reveal Multiple Species Differences and Large Differences in Amino Acid Metabolism. PLoS One 2015; 10:e0136891. [PMID: 26368322 PMCID: PMC4569581 DOI: 10.1371/journal.pone.0136891] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/09/2015] [Indexed: 01/09/2023] Open
Abstract
Comparative genomic analyses of Leishmania species have revealed relatively minor heterogeneity amongst recognised housekeeping genes and yet the species cause distinct infections and pathogenesis in their mammalian hosts. To gain greater information on the biochemical variation between species, and insights into possible metabolic mechanisms underpinning visceral and cutaneous leishmaniasis, we have undertaken in this study a comparative analysis of the metabolomes of promastigotes of L. donovani, L. major and L. mexicana. The analysis revealed 64 metabolites with confirmed identity differing 3-fold or more between the cell extracts of species, with 161 putatively identified metabolites differing similarly. Analysis of the media from cultures revealed an at least 3-fold difference in use or excretion of 43 metabolites of confirmed identity and 87 putatively identified metabolites that differed to a similar extent. Strikingly large differences were detected in their extent of amino acid use and metabolism, especially for tryptophan, aspartate, arginine and proline. Major pathways of tryptophan and arginine catabolism were shown to be to indole-3-lactate and arginic acid, respectively, which were excreted. The data presented provide clear evidence on the value of global metabolomic analyses in detecting species-specific metabolic features, thus application of this technology should be a major contributor to gaining greater understanding of how pathogens are adapted to infecting their hosts.
Collapse
Affiliation(s)
- Gareth D. Westrop
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Roderick A. M. Williams
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley, United Kingdom
| | - Lijie Wang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Tong Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Ana Marta Silva
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Graham H. Coombs
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Harrabi M, Bettaieb J, Ghawar W, Toumi A, Zaâtour A, Yazidi R, Chaâbane S, Chalghaf B, Hide M, Bañuls AL, Ben Salah A. Spatio-temporal Genetic Structuring of Leishmania major in Tunisia by Microsatellite Analysis. PLoS Negl Trop Dis 2015; 9:e0004017. [PMID: 26302440 PMCID: PMC4547700 DOI: 10.1371/journal.pntd.0004017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/30/2015] [Indexed: 01/06/2023] Open
Abstract
In Tunisia, cases of zoonotic cutaneous leishmaniasis caused by Leishmania major are increasing and spreading from the south-west to new areas in the center. To improve the current knowledge on L. major evolution and population dynamics, we performed multi-locus microsatellite typing of human isolates from Tunisian governorates where the disease is endemic (Gafsa, Kairouan and Sidi Bouzid governorates) and collected during two periods: 1991–1992 and 2008–2012. Analysis (F-statistics and Bayesian model-based approach) of the genotyping results of isolates collected in Sidi Bouzid in 1991–1992 and 2008–2012 shows that, over two decades, in the same area, Leishmania parasites evolved by generating genetically differentiated populations. The genetic patterns of 2008–2012 isolates from the three governorates indicate that L. major populations did not spread gradually from the south to the center of Tunisia, according to a geographical gradient, suggesting that human activities might be the source of the disease expansion. The genotype analysis also suggests previous (Bayesian model-based approach) and current (F-statistics) flows of genotypes between governorates and districts. Human activities as well as reservoir dynamics and the effects of environmental changes could explain how the disease progresses. This study provides new insights into the evolution and spread of L. major in Tunisia that might improve our understanding of the parasite flow between geographically and temporally distinct populations. In Tunisia, zoonotic cutaneous leishmaniasis (ZCL) constitutes a significant public health problem. Since 1884, the Gafsa, Kairouan and Sidi Bouzid governorates are the most endemic areas of ZCL. This study used a multi-locus microsatellite typing approach to study the evolution and the population dynamics of Leishmania major in Tunisia. Within the same area, in twenty years, parasite populations evolved by producing a genetically differentiated population, probably better adapted to the ecosystem. In agreement with the reported human cases of ZCL, the genetic data on samples from the three governorates shows that the disease did not spread according to a geographical gradient. Furthermore, L. major flows seem to still occur between governorates and neighboring districts. This study suggests that environmental changes, human activities and reservoir systems have influenced the spread and evolution of L. major populations. Our findings provide important knowledge on the epidemiology of L. major in Tunisia and might help understanding why the disease is still spreading from the south to the center, despite the control measures that have been put into place.
Collapse
Affiliation(s)
- Myriam Harrabi
- Institut Pasteur, Tunis, Tunisia
- Faculté des Sciences de Bizerte-Université de Carthage, Tunis, Tunisia
- * E-mail:
| | | | | | | | | | | | | | | | - Mallorie Hide
- UMR MIVEGEC (IRD 224-CNRS5290-Universités Montpellier 1 et 2), Centre IRD, Montpellier, France
| | - Anne-Laure Bañuls
- UMR MIVEGEC (IRD 224-CNRS5290-Universités Montpellier 1 et 2), Centre IRD, Montpellier, France
| | | |
Collapse
|
26
|
The Genetic Relationship between Leishmania aethiopica and Leishmania tropica Revealed by Comparing Microsatellite Profiles. PLoS One 2015. [PMID: 26196393 PMCID: PMC4511230 DOI: 10.1371/journal.pone.0131227] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Leishmania (Leishmania) aethiopica and L. (L.) tropica cause cutaneous leishmaniases and appear to be related. L. aethiopica is geographically restricted to Ethiopia and Kenya; L. tropica is widely dispersed from the Eastern Mediterranean, through the Middle East into eastern India and in north, east and south Africa. Their phylogenetic inter-relationship is only partially revealed. Some studies indicate a close relationship. Here, eight strains of L. aethiopica were characterized genetically and compared with 156 strains of L. tropica from most of the latter species' geographical range to discern the closeness. METHODOLOGY/PRINCIPAL FINDINGS Twelve unlinked microsatellite markers previously used to genotype strains of L. tropica were successfully applied to the eight strains of L. aethiopica and their microsatellite profiles were compared to those of 156 strains of L. tropica from various geographical locations that were isolated from human cases of cutaneous and visceral leishmaniasis, hyraxes and sand fly vectors. All the microsatellite profiles were subjected to various analytical algorithms: Bayesian statistics, distance-based and factorial correspondence analysis, revealing: (i) the species L. aethiopica, though geographically restricted, is genetically very heterogeneous; (ii) the strains of L. aethiopica formed a distinct genetic cluster; and (iii) strains of L. aethiopica are closely related to strains of L. tropica and more so to the African ones, although, by factorial correspondence analysis, clearly separate from them. CONCLUSIONS/SIGNIFICANCE The successful application of the 12 microsatellite markers, originally considered species-specific for the species L. tropica, to strains of L. aethiopica confirmed the close relationship between these two species. The Bayesian and distance-based methods clustered the strains of L. aethiopica among African strains of L. tropica, while the factorial correspondence analysis indicated a clear separation between the two species. There was no correlation between microsatellite profiles of the eight strains of L. aethiopica and the type of leishmaniasis, localized (LCL) versus diffuse cutaneous leishmaniasis (DCL), displayed by the human cases.
Collapse
|
27
|
A Multiplatform Metabolomic Approach to the Basis of Antimonial Action and Resistance in Leishmania infantum. PLoS One 2015; 10:e0130675. [PMID: 26161866 PMCID: PMC4498920 DOI: 10.1371/journal.pone.0130675] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/25/2015] [Indexed: 12/20/2022] Open
Abstract
There is a rising resistance against antimony drugs, the gold-standard for treatment until some years ago. That is a serious problem due to the paucity of drugs in current clinical use. In a research to reveal how these drugs affect the parasite during treatment and to unravel the underlying basis for their resistance, we have employed metabolomics to study treatment in Leishmania infantum promastigotes. This was accomplished first through the untargeted analysis of metabolic snapshots of treated and untreated parasites both resistant and responders, utilizing a multiplatform approach to give the widest as possible coverage of the metabolome, and additionally through novel monitoring of the origin of the detected alterations through a 13C traceability experiment. Our data stress a multi-target metabolic alteration with treatment, affecting in particular the cell redox system that is essential to cope with detoxification and biosynthetic processes. Additionally, relevant changes were noted in amino acid metabolism. Our results are in agreement with other authors studying other Leishmania species.
Collapse
|
28
|
Aluru S, Hide M, Michel G, Bañuls AL, Marty P, Pomares C. Multilocus microsatellite typing of Leishmania and clinical applications: a review. ACTA ACUST UNITED AC 2015; 22:16. [PMID: 25950900 PMCID: PMC4423940 DOI: 10.1051/parasite/2015016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/17/2015] [Indexed: 12/03/2022]
Abstract
Microsatellite markers have been used for Leishmania genetic studies worldwide, giving useful insight into leishmaniasis epidemiology. Understanding the geographic distribution, dynamics of Leishmania populations, and disease epidemiology improved markedly with this tool. In endemic foci, the origins of antimony-resistant strains and multidrug treatment failures were explored with multilocus microsatellite typing (MLMT). High genetic variability was detected but no association between parasite genotypes and drug resistance was established. An association between MLMT profiles and clinical disease manifestations was highlighted in only three studies and this data needs further confirmation. At the individual level, MLMT provided information on relapse and reinfection when multiple leishmaniasis episodes occurred. This information could improve knowledge of epidemiology and guide therapeutic choices for active chronic visceral leishmaniasis, the disease form in some HIV-positive patients.
Collapse
Affiliation(s)
- Srikanth Aluru
- Aix-Marseille Université, Marseille, France - INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire, C3M, Toxines Microbiennes dans la Relation Hôte Pathogènes, 06204 Nice Cedex 3, France
| | - Mallorie Hide
- UMR MIVEGEC IRD 224-CNRS 5290, Universités Montpellier 1 et 2, Montpellier, France
| | - Gregory Michel
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire, C3M, Toxines Microbiennes dans la Relation Hôte Pathogènes, 06204 Nice Cedex 3, France - Université de Nice Sophia Antipolis, Faculté de Médecine, 06107 Nice Cedex 2, France
| | - Anne-Laure Bañuls
- UMR MIVEGEC IRD 224-CNRS 5290, Universités Montpellier 1 et 2, Montpellier, France
| | - Pierre Marty
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire, C3M, Toxines Microbiennes dans la Relation Hôte Pathogènes, 06204 Nice Cedex 3, France - Université de Nice Sophia Antipolis, Faculté de Médecine, 06107 Nice Cedex 2, France - Parasitologie-Mycologie, Centre Hospitalier Universitaire l'Archet, CS 23079, 06202 Nice Cedex 3, France
| | - Christelle Pomares
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire, C3M, Toxines Microbiennes dans la Relation Hôte Pathogènes, 06204 Nice Cedex 3, France - Université de Nice Sophia Antipolis, Faculté de Médecine, 06107 Nice Cedex 2, France - Parasitologie-Mycologie, Centre Hospitalier Universitaire l'Archet, CS 23079, 06202 Nice Cedex 3, France
| |
Collapse
|
29
|
Abstract
Leishmania is an infectious protozoan parasite related to African and American trypanosomes. All Leishmania species that are pathogenic to humans can cause dermal disease. When one is confronted with cutaneous leishmaniasis, identification of the causative species is relevant in both clinical and epidemiological studies, case management, and control. This review gives an overview of the currently existing and most used assays for species discrimination, with a critical appraisal of the limitations of each technique. The consensus taxonomy for the genus is outlined, including debatable species designations. Finally, a numerical literature analysis is presented that describes which methods are most used in various countries and regions in the world, and for which purposes.
Collapse
Affiliation(s)
- Gert Van der Auwera
- Institute of Tropical Medicine, Department of Biomedical Sciences, Antwerp, Belgium
| | - Jean-Claude Dujardin
- Institute of Tropical Medicine, Department of Biomedical Sciences, Antwerp, Belgium Antwerp University, Department of Biomedical Sciences, Antwerp, Belgium
| |
Collapse
|
30
|
Feasibility of mini-sequencing schemes based on nucleotide polymorphisms for microbial identification and population analyses. Appl Microbiol Biotechnol 2015; 99:2513-21. [DOI: 10.1007/s00253-015-6427-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 11/26/2022]
|
31
|
Mishra A, Jha AN, van Tong H, Singh VK, Gomes CEM, Singh L, Velavan TP, Thangaraj K. Analysis of genetic variants in the IL4 promoter and VNTR loci in Indian patients with Visceral Leishmaniasis. Hum Immunol 2014; 75:1177-81. [PMID: 25454624 DOI: 10.1016/j.humimm.2014.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/05/2014] [Accepted: 10/09/2014] [Indexed: 11/17/2022]
Abstract
Visceral Leishmaniasis (VL) is the most severest form of Leishmaniasis and resistance to infection is mediated by cellular immune responses. Interleukin 4 (IL-4) orchestrates of Th2 and Th1 immune responses during infections. In this study, we aimed to investigate possible association between three functional IL-4 polymorphisms -590C/T (rs2243250), -34C/T (rs2070874) and 70bp VNTR (rs79071878 in intron3) with VL in an Indian cohort comprising of 197 VL patients and 193 healthy controls. The three investigated IL-4 polymorphisms were in strong linkage disequilibrium. The investigated IL-4 alleles, genotypes and the reconstructed haplotypes were not significantly distributed between the VL patients and healthy controls. Our study signifies no possible association of functional IL-4 polymorphisms with Indian VL and postulate other vital genes involved in the IL-4 pathway may provide genetic clues to elucidate of IL-4 regulation and immune-pathogenesis during VL.
Collapse
Affiliation(s)
- Anshuman Mishra
- CSIR - Center for Cellular and Molecular Biology, Hyderabad, India
| | - Aditya Nath Jha
- CSIR - Center for Cellular and Molecular Biology, Hyderabad, India; Sickle Cell Institute Chattisgarh (SCIC), Raipur, India
| | - Hoang van Tong
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | | | | | - Lalji Singh
- CSIR - Center for Cellular and Molecular Biology, Hyderabad, India; Banaras Hindu University, Varanasi, India; Genome Foundation, Hyderabad, India
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Fondation Congolaise pour la Recherche Medicale, Brazzaville, People's Republic of Congo.
| | | |
Collapse
|
32
|
Leprohon P, Fernandez-Prada C, Gazanion É, Monte-Neto R, Ouellette M. Drug resistance analysis by next generation sequencing in Leishmania. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2014; 5:26-35. [PMID: 25941624 PMCID: PMC4412915 DOI: 10.1016/j.ijpddr.2014.09.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 12/30/2022]
Abstract
WGS revealed the complexity of resistance which is often polyclonal in Leishmania. An impressive variation in chromosome copy numbers exist between Leishmania species. The genotype heterogeneity complicates the analysis of resistance in field isolates.
The use of next generation sequencing has the power to expedite the identification of drug resistance determinants and biomarkers and was applied successfully to drug resistance studies in Leishmania. This allowed the identification of modulation in gene expression, gene dosage alterations, changes in chromosome copy numbers and single nucleotide polymorphisms that correlated with resistance in Leishmania strains derived from the laboratory and from the field. An impressive heterogeneity at the population level was also observed, individual clones within populations often differing in both genotypes and phenotypes, hence complicating the elucidation of resistance mechanisms. This review summarizes the most recent highlights that whole genome sequencing brought to our understanding of Leishmania drug resistance and likely new directions.
Collapse
Affiliation(s)
- Philippe Leprohon
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec, 2705 Laurier Blvd., Québec G1V 4G2, Canada
| | - Christopher Fernandez-Prada
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec, 2705 Laurier Blvd., Québec G1V 4G2, Canada
| | - Élodie Gazanion
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec, 2705 Laurier Blvd., Québec G1V 4G2, Canada
| | - Rubens Monte-Neto
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec, 2705 Laurier Blvd., Québec G1V 4G2, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec, 2705 Laurier Blvd., Québec G1V 4G2, Canada
| |
Collapse
|
33
|
Cortes S, Maurício IL, Kuhls K, Nunes M, Lopes C, Marcos M, Cardoso L, Schönian G, Campino L. Genetic diversity evaluation on Portuguese Leishmania infantum strains by multilocus microsatellite typing. INFECTION GENETICS AND EVOLUTION 2014; 26:20-31. [DOI: 10.1016/j.meegid.2014.04.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 04/23/2014] [Accepted: 04/29/2014] [Indexed: 11/24/2022]
|
34
|
Model-based investigations of different vector-related intervention strategies to eliminate visceral leishmaniasis on the Indian subcontinent. PLoS Negl Trop Dis 2014; 8:e2810. [PMID: 24762676 PMCID: PMC3998939 DOI: 10.1371/journal.pntd.0002810] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 03/10/2014] [Indexed: 01/19/2023] Open
Abstract
The elimination of infectious diseases requires reducing transmission below a certain threshold. The Visceral Leishmaniasis (VL) Elimination Initiative in Southeast Asia aims to reduce the annual VL incidence rate below 1 case per 10,000 inhabitants in endemic areas by 2015 via a combination of case management and vector control. Using a previously developed VL transmission model, we investigated transmission thresholds dependent on measures reducing the sand fly density either by killing sand flies (e.g., indoor residual spraying and long-lasting insecticidal nets) or by destroying breeding sites (e.g., environmental management). Model simulations suggest that elimination of VL is possible if the sand fly density can be reduced by 67% through killing sand flies, or if the number of breeding sites can be reduced by more than 79% through measures of environmental management. These results were compared to data from two recent cluster randomised controlled trials conducted in India, Nepal and Bangladesh showing a 72% reduction in sand fly density after indoor residual spraying, a 44% and 25% reduction through the use of long-lasting insecticidal nets and a 42% reduction after environmental management. Based on model predictions, we identified the parameters within the transmission cycle of VL that predominantly determine the prospects of intervention success. We suggest further research to refine model-based predictions into the elimination of VL. Visceral leishmaniasis is suspected to be the second largest parasitic killer in the world after malaria. On the Indian subcontinent, the vector-borne disease is caused by the protozoan flagellate Leishmania donovani and transmitted by the sand fly Phlebotomus argentipes. The regional elimination programme has suggested as a target line to reduce the annual incidence below 1 case in 10,000 by 2015. Using a previously developed mathematical model, we investigated to what extent the sand fly population must be controlled to achieve elimination. These calculated thresholds were compared to data from two recent trials conducted in India, Nepal and Bangladesh to evaluate the efficacy of different vector control measures. Our results indicate that elimination should be feasible because the evaluated effect of indoor residual spraying exceeds the threshold. However, emerging insecticide resistance may compromise the effectiveness of this measure. The observed effects of long lasting insecticidal nets and environmental management do not seem to be sufficient to reach either threshold. Integrated vector management based on indoor residual spraying combined with long lasting insecticidal nets and more effective environmental management may allow overcoming the limitations of the current vector control methods and should also prevent re-emergence of the infection after local extinction.
Collapse
|
35
|
Krayter L, Bumb RA, Azmi K, Wuttke J, Malik MD, Schnur LF, Salotra P, Schönian G. Multilocus microsatellite typing reveals a genetic relationship but, also, genetic differences between Indian strains of Leishmania tropica causing cutaneous leishmaniasis and those causing visceral leishmaniasis. Parasit Vectors 2014; 7:123. [PMID: 24666968 PMCID: PMC3987047 DOI: 10.1186/1756-3305-7-123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/11/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Leishmaniases are divided into cutaneous (CL) and visceral leishmaniasis (VL). In the Old World, CL is caused by Leishmania (L.) major, L. tropica and L. aethiopica. L. tropica can also visceralize and cause VL. In India, the large epidemics of VL are caused by L. donovani and cases of CL are caused by L. major and L. tropica. However, strains of L. tropica have also been isolated from Indian cases of VL.This study was done to see if Indian strains of L. tropica isolated from human cases of CL are genetically identical to or different from Indian strains of L. tropica isolated from human cases of VL and to see if any genetic differences found correlated with clinical outcome presenting as either CL or VL. METHODS Multilocus microsatellite typing (MLMT), employing 12 independent genetic markers specific to L. tropica, was used to characterize and identify eight strains of L. tropica isolated from human cases of CL examined in clinics in Bikaner City, Rajasthan State, north-west India. Their microsatellite profiles were compared to those of 156 previously typed strains of L. tropica from various geographical locations that were isolated from human cases of CL and VL, hyraxes and sand fly vectors. RESULTS Bayesian, distance-based and factorial correspondence analyses revealed two confirmed populations: India/Asia and Israel/Palestine that subdivided, respectively, into two and three subpopulations. A third population, Africa/Galilee, as proposed by Bayesian analysis was not supported by the other applied methods. The strains of L. tropica from Bikaner isolated from human cases of CL fell into one of the subpopulations in the population India/Asia together with strains from other Asian foci. Indian strains isolated from human cases of VL fell into the same sub-population but were not genetically identical to the Bikaner strains of L. tropica. CONCLUSIONS It seems that the genetic diversity encountered between the two groups of Indian strains is mainly owing to their geographical origins rather than their different times of isolation. Also, the genetic differences seen between the dermatotropic and viscerotropic strains might be connected with the difference in pathogenicity.
Collapse
Affiliation(s)
- Lena Krayter
- Institute of Microbiology and Hygiene, Charité-University Medicine Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Ram A Bumb
- Department of Dermatology, SP Medical College, Bikaner, India
| | - Kifaya Azmi
- Al-Quds Nutrition and Health Research Institute, Faculty of Medicine, Al-Quds University, Abu-Deis, P.O. Box 20760, West Bank, Palestine
| | - Julia Wuttke
- Institute of Microbiology and Hygiene, Charité-University Medicine Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Mariam D Malik
- Institute of Microbiology and Hygiene, Charité-University Medicine Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Lionel F Schnur
- Department of Parasitology, The Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Poonam Salotra
- National Institute of Pathology, Indian Council of Medical Research, Safdarjung Hospital Campus, New Delhi, India
| | - Gabriele Schönian
- Institute of Microbiology and Hygiene, Charité-University Medicine Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
36
|
Rogers MB, Downing T, Smith BA, Imamura H, Sanders M, Svobodova M, Volf P, Berriman M, Cotton JA, Smith DF. Genomic confirmation of hybridisation and recent inbreeding in a vector-isolated Leishmania population. PLoS Genet 2014; 10:e1004092. [PMID: 24453988 PMCID: PMC3894156 DOI: 10.1371/journal.pgen.1004092] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 11/20/2013] [Indexed: 12/02/2022] Open
Abstract
Although asexual reproduction via clonal propagation has been proposed as the principal reproductive mechanism across parasitic protozoa of the Leishmania genus, sexual recombination has long been suspected, based on hybrid marker profiles detected in field isolates from different geographical locations. The recent experimental demonstration of a sexual cycle in Leishmania within sand flies has confirmed the occurrence of hybridisation, but knowledge of the parasite life cycle in the wild still remains limited. Here, we use whole genome sequencing to investigate the frequency of sexual reproduction in Leishmania, by sequencing the genomes of 11 Leishmania infantum isolates from sand flies and 1 patient isolate in a focus of cutaneous leishmaniasis in the Çukurova province of southeast Turkey. This is the first genome-wide examination of a vector-isolated population of Leishmania parasites. A genome-wide pattern of patchy heterozygosity and SNP density was observed both within individual strains and across the whole group. Comparisons with other Leishmania donovani complex genome sequences suggest that these isolates are derived from a single cross of two diverse strains with subsequent recombination within the population. This interpretation is supported by a statistical model of the genomic variability for each strain compared to the L. infantum reference genome strain as well as genome-wide scans for recombination within the population. Further analysis of these heterozygous blocks indicates that the two parents were phylogenetically distinct. Patterns of linkage disequilibrium indicate that this population reproduced primarily clonally following the original hybridisation event, but that some recombination also occurred. This observation allowed us to estimate the relative rates of sexual and asexual reproduction within this population, to our knowledge the first quantitative estimate of these events during the Leishmania life cycle. Sexual reproduction is predicted to be a rare event in Leishmania parasites, as evidenced by detection of rare parasite hybrids in natural populations using molecular methods. Recently, a sexual cycle has been detected experimentally in parasites within the sand fly vector (that transmits this pathogenic microorganism to mammalian species including man, causing human leishmaniasis). In this study, we have used whole genome sequencing to investigate genetic variation at the highest level of resolution in Leishmania parasites isolated from sand flies in a defined focus of leishmaniasis in southeast Turkey. Using a range of analytical tools, we show that variation in these parasites arose following a single cross between two diverse strains and subsequent recombination between the progeny, despite mainly clonal reproduction in the parasite population. We have thus been able to derive quantitative estimates of the relative rates of sexual and asexual reproduction during the Leishmania life cycle for the first time, information that will be critical to our understanding of the epidemiology and evolution of this genus.
Collapse
Affiliation(s)
- Matthew B. Rogers
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| | - Tim Downing
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Barbara A. Smith
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| | - Hideo Imamura
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- Unit of Molecular Parasitology, Department of Parasitology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Milena Svobodova
- Department of Parasitology, Fac. Sci., Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Fac. Sci., Charles University, Prague, Czech Republic
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - James A. Cotton
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- * E-mail: (JAC); (DFS)
| | - Deborah F. Smith
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
- * E-mail: (JAC); (DFS)
| |
Collapse
|
37
|
Dujardin JC, Bhattarai NR, Rai K, Vanaerschot M, Uranw S, Ostyn BA, Boelaert M, Rijal S. Reply to Das. Clin Infect Dis 2013; 57:1365-6. [DOI: 10.1093/cid/cit510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Gilabert A, Wasmuth JD. Unravelling parasitic nematode natural history using population genetics. Trends Parasitol 2013; 29:438-48. [PMID: 23948430 DOI: 10.1016/j.pt.2013.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 01/01/2023]
Abstract
The health and economic importance of parasitic nematodes cannot be overstated. Moreover, they offer a complex and diverse array of life strategies, raising a multitude of evolutionary questions. Researchers are applying population genetics to parasitic nematodes in order to disentangle some aspects of their life strategies, improve our knowledge about disease epidemiology, and design control strategies. However, population genetics studies of nematodes have been constrained due to the difficulty in sampling nematodes and developing molecular markers. In this context, new computational and sequencing technologies represent promising tools to investigate population genomics of parasitic, non-model, nematode species in an epidemiological context.
Collapse
Affiliation(s)
- Aude Gilabert
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada
| | | |
Collapse
|
39
|
Vanaerschot M, Huijben S, Van den Broeck F, Dujardin JC. Drug resistance in vectorborne parasites: multiple actors and scenarios for an evolutionary arms race. FEMS Microbiol Rev 2013; 38:41-55. [PMID: 23815683 DOI: 10.1111/1574-6976.12032] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/17/2013] [Accepted: 06/25/2013] [Indexed: 12/14/2022] Open
Abstract
Drug-resistant pathogens emerge faster than new drugs come out of drug discovery pipelines. Current and future drug options should therefore be better protected, requiring a clear understanding of the factors that contribute to the natural history of drug resistance. Although many of these factors are relatively well understood for most bacteria, this proves to be more complex for vectorborne parasites. In this review, we discuss considering three key models (Plasmodium, Leishmania and Schistosoma) how drug resistance can emerge, spread and persist. We demonstrate a multiplicity of scenarios, clearly resulting from the biological diversity of the different organisms, but also from the different modes of action of the drugs used, the specific within- and between-host ecology of the parasites, and environmental factors that may have direct or indirect effects. We conclude that integrated control of drug-resistant vectorborne parasites is not dependent upon chemotherapy only, but also requires a better insight into the ecology of these parasites and how their transmission can be impaired.
Collapse
Affiliation(s)
- Manu Vanaerschot
- Unit of Molecular Parasitology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | | |
Collapse
|
40
|
El Baidouri F, Diancourt L, Berry V, Chevenet F, Pratlong F, Marty P, Ravel C. Genetic structure and evolution of the Leishmania genus in Africa and Eurasia: what does MLSA tell us. PLoS Negl Trop Dis 2013; 7:e2255. [PMID: 23785530 PMCID: PMC3681676 DOI: 10.1371/journal.pntd.0002255] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 04/25/2013] [Indexed: 11/23/2022] Open
Abstract
Leishmaniasis is a complex parasitic disease from a taxonomic, clinical and epidemiological point of view. The role of genetic exchanges has been questioned for over twenty years and their recent experimental demonstration along with the identification of interspecific hybrids in natura has revived this debate. After arguing that genetic exchanges were exceptional and did not contribute to Leishmania evolution, it is currently proposed that interspecific exchanges could be a major driving force for rapid adaptation to new reservoirs and vectors, expansion into new parasitic cycles and adaptation to new life conditions. To assess the existence of gene flows between species during evolution we used MLSA-based (MultiLocus Sequence Analysis) approach to analyze 222 Leishmania strains from Africa and Eurasia to accurately represent the genetic diversity of this genus. We observed a remarkable congruence of the phylogenetic signal and identified seven genetic clusters that include mainly independent lineages which are accumulating divergences without any sign of recent interspecific recombination. From a taxonomic point of view, the strong genetic structuration of the different species does not question the current classification, except for species that cause visceral forms of leishmaniasis (L. donovani, L. infantum and L. archibaldi). Although these taxa cause specific clinical forms of the disease and are maintained through different parasitic cycles, they are not clearly distinct and form a continuum, in line with the concept of species complex already suggested for this group thirty years ago. These results should have practical consequences concerning the molecular identification of parasites and the subsequent therapeutic management of the disease. The mechanisms of genomic and genetic evolution in the Leishmania order, a protozoan group that contains about twenty pathogenic species, are the focus of much debate. Although these parasites have been considered for years to reproduce clonally, recent works have demonstrated both experimental and in natura intra- and inter-specific hybrids. Interspecific exchanges should be sources of plasticity and adaptation to new parasitic cycles. In this work we used a MultiLocus Sequence Analysis approach to analyze 222 Leishmania strains that belong to different species and were isolated in African and Eurasian foci. This analysis classified the different strains in seven robust genetic clusters that showed remarkable congruence of the phylogenetic message between them. From a taxonomic point of view, the seven clusters overlapped with most of the biochemical taxonomic groups currently in use except for species causing visceral forms of leishmaniasis. Contrary to what expected, we did not detect traces of interspecific recombination and genetic exchanges between the different species. Finally, these results should have consequences on the taxonomy, on our understanding of the epidemiology and on the therapeutic management of these infections.
Collapse
Affiliation(s)
- Fouad El Baidouri
- Department of Parasitology, Montpellier University Hospital, Montpellier, France
| | - Laure Diancourt
- Pasteur Institute, Genotyping of Pathogens and Public Health, Paris, France
| | - Vincent Berry
- Méthodes et Algorithmes pour la Bioinformatique, LIRMM, UMR 5506 CNRS – Université Montpellier 2, Montpellier, France, Institut de Biologie Computationnelle, Montpellier, France
| | - François Chevenet
- Méthodes et Algorithmes pour la Bioinformatique, LIRMM, UMR 5506 CNRS – Université Montpellier 2, Montpellier, France, Institut de Biologie Computationnelle, Montpellier, France
- MIVEGEC, CNRS 5290, IRD 224, Universités Montpellier 1 et 2, Montpellier, France
| | - Francine Pratlong
- Department of Parasitology, Montpellier University Hospital, Montpellier, France
| | - Pierre Marty
- Parasitologie-Mycologie, Centre Hospitalier Universitaire de Nice et Faculté de Médecine, Université de Nice-Sophia Antipolis, Inserm U 1065, Nice, France
| | - Christophe Ravel
- Department of Parasitology, Montpellier University Hospital, Montpellier, France
- * E-mail:
| |
Collapse
|
41
|
Rijal S, Ostyn B, Uranw S, Rai K, Bhattarai NR, Dorlo TPC, Beijnen JH, Vanaerschot M, Decuypere S, Dhakal SS, Das ML, Karki P, Singh R, Boelaert M, Dujardin JC. Increasing Failure of Miltefosine in the Treatment of Kala-azar in Nepal and the Potential Role of Parasite Drug Resistance, Reinfection, or Noncompliance. Clin Infect Dis 2013; 56:1530-8. [DOI: 10.1093/cid/cit102] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
42
|
Tibayrenc M, Ayala FJ. Reproductive clonality of pathogens: a perspective on pathogenic viruses, bacteria, fungi, and parasitic protozoa. Proc Natl Acad Sci U S A 2012; 109:E3305-13. [PMID: 22949662 PMCID: PMC3511763 DOI: 10.1073/pnas.1212452109] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We propose that clonal evolution in micropathogens be defined as restrained recombination on an evolutionary scale, with genetic exchange scarce enough to not break the prevalent pattern of clonal population structure, a definition already widely used for all kinds of pathogens, although not clearly formulated by many scientists and rejected by others. The two main manifestations of clonal evolution are strong linkage disequilibrium (LD) and widespread genetic clustering ("near-clading"). We hypothesize that this pattern is not mainly due to natural selection, but originates chiefly from in-built genetic properties of pathogens, which could be ancestral and could function as alternative allelic systems to recombination genes ("clonality/sexuality machinery") to escape recombinational load. The clonal framework of species of pathogens should be ascertained before any analysis of biomedical phenotypes (phylogenetic character mapping). In our opinion, this model provides a conceptual framework for the population genetics of any micropathogen.
Collapse
Affiliation(s)
- Michel Tibayrenc
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, Institut de Rercherche pour le Développement 224, Centre National de la Recherche Scientifique 5290, Universités Montpellier 1 and 2, 34394 Montpellier Cedex 5, France; and
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| | - Francisco J. Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| |
Collapse
|
43
|
Geographical distribution and epidemiological features of Old World Leishmania infantum and Leishmania donovani foci, based on the isoenzyme analysis of 2277 strains. Parasitology 2012; 140:423-34. [PMID: 23146283 DOI: 10.1017/s0031182012001825] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A series of 2277 Leishmania strains from Old World visceral leishmaniasis foci, isolated between 1973 and 2008, were studied by isoenzyme analysis. The strains were obtained from humans, domestic and wild carnivores, rodents and phlebotomine sandflies, and came from 36 countries. In all, 60 different zymodemes were identified and clustered by a phenetic analysis into 3 different groups corresponding to the typically visceralizing species L. donovani (20 zymodemes, 169 strains), L. archibaldi (3 zymodemes, 46 strains) and L. infantum (37 zymodemes, 2,062 strains). The taxonomic position of these isoenzymatic groups is discussed in view of contradictory results obtained from recent molecular studies.
Collapse
|
44
|
Vanaerschot M, Decuypere S, Berg M, Roy S, Dujardin JC. Drug-resistant microorganisms with a higher fitness--can medicines boost pathogens? Crit Rev Microbiol 2012; 39:384-94. [PMID: 22950457 DOI: 10.3109/1040841x.2012.716818] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Drug-resistant microorganisms (DRMs) are generally thought to suffer from a fitness cost associated with their drug-resistant trait, inflicting them a disadvantage when the drug pressure reduces. However, Leishmania resistant to pentavalent antimonies shows traits of a higher fitness compared to its sensitive counterparts. This is likely due the combination of an intracellular pathogen and a drug that targets the parasite's general defense mechanisms while at the same time stimulating the host's immune system, resulting in a DRM that is better adapted to withstand the host's immune response. This review aims to highlight how this fitter DRM has emerged and how it might affect the control of leishmaniasis. However, this unprecedented example of fitter antimony-resistant Leishmania donovani is also of significance for the control of other microorganisms, warranting more caution when applying or designing drugs that attack their general defense mechanisms or interact with the host's immune system.
Collapse
Affiliation(s)
- Manu Vanaerschot
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp , Antwerpen , Belgium
| | | | | | | | | |
Collapse
|
45
|
Vanaerschot M, Decuypere S, Downing T, Imamura H, Stark O, De Doncker S, Roy S, Ostyn B, Maes L, Khanal B, Boelaert M, Schönian G, Berriman M, Chappuis F, Dujardin JC, Sundar S, Rijal S. Genetic markers for SSG resistance in Leishmania donovani and SSG treatment failure in visceral leishmaniasis patients of the Indian subcontinent. J Infect Dis 2012; 206:752-5. [PMID: 22753945 DOI: 10.1093/infdis/jis424] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The current standard to assess pentavalent antimonial (SSG) susceptibility of Leishmania is a laborious in vitro assay of which the result has little clinical value because SSG-resistant parasites are also found in SSG-cured patients. Candidate genetic markers for clinically relevant SSG-resistant parasites identified by full genome sequencing were here validated on a larger set of clinical strains. We show that 3 genomic locations suffice to specifically detect the SSG-resistant parasites found only in patients experiencing SSG treatment failure. This finding allows the development of rapid assays to monitor the emergence and spread of clinically relevant SSG-resistant Leishmania parasites.
Collapse
Affiliation(s)
- Manu Vanaerschot
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Decuypere S, Vanaerschot M, Brunker K, Imamura H, Müller S, Khanal B, Rijal S, Dujardin JC, Coombs GH. Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background. PLoS Negl Trop Dis 2012; 6:e1514. [PMID: 22389733 PMCID: PMC3289598 DOI: 10.1371/journal.pntd.0001514] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/19/2011] [Indexed: 11/24/2022] Open
Abstract
The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L.) donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread applicability. Drug resistance is a serious problem that strikes at the core of infectious disease control. The mechanisms developed by pathogens to become resistant against existing drug treatments have been studied for many years but these studies have frequently scrutinized a few lines of the pathogen and rarely is it known whether the mechanisms identified occur in all pathogen populations present in endemic regions. In this study we assessed the diversity amongst drug-resistant parasites which emerged under treatment pressure in a natural parasite population. An extensive molecular and phenotypic characterisation of a collection of Leishmania donovani parasites isolated from leishmaniasis patients revealed that the parasites which are resistant to treatment have heterogeneous characters. The results provide evidence that how a parasite develops resistance under treatment pressure depends upon its genetic background. These findings provide key insights into the challenge that drug resistance poses for the control of infectious diseases like leishmaniasis.
Collapse
Affiliation(s)
- Saskia Decuypere
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, United Kingdom
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Manu Vanaerschot
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Kirstyn Brunker
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, United Kingdom
| | - Hideo Imamura
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, England, United Kingdom
| | - Sylke Müller
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Basudha Khanal
- B.P. Koirala Institute of Health Sciences, Ghopa, Dharan, Nepal
| | - Suman Rijal
- B.P. Koirala Institute of Health Sciences, Ghopa, Dharan, Nepal
| | - Jean-Claude Dujardin
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- * E-mail:
| | - Graham H. Coombs
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, United Kingdom
| |
Collapse
|