1
|
Kim YC, Watanabe Y, Arlen-Celina L, Song X, de Oliveira Souza R, Stass R, Azar SR, Rossi SL, Claser C, Kümmerer BM, Crispin M, Bowden TA, Huiskonen JT, Reyes-Sandoval A. Immunogenic recombinant Mayaro virus-like particles present natively assembled glycoprotein. NPJ Vaccines 2024; 9:243. [PMID: 39690153 DOI: 10.1038/s41541-024-01021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/10/2024] [Indexed: 12/19/2024] Open
Abstract
Virus-like particles (VLPs) are an established vaccine platform and can be strong immunogens capable of eliciting both humoral and cellular immune responses against a range of pathogens. Here, we show by cryo-electron microscopy that VLPs of Mayaro virus, which contain envelope glycoproteins E1-E2 and capsid, exhibit an architecture that closely resembles native virus. In contrast to monomeric and soluble envelope 2 (E2) glycoprotein, both VLPs as well as the adenovirus and modified vaccinia virus Ankara (MVA) vaccine platforms expressing the equivalent envelope glycoproteins E1-E2, and capsid induced highly neutralising antibodies after immunisation. The levels of neutralising antibodies elicited by the viral-vectored vaccines of structural proteins and VLPs increased significantly upon boosting. Immunisation of Mayaro virus VLPs in mice with or without an adjuvant (poly:IC) yielded similar levels of neutralising antibodies suggesting that the VLPs may be used for immunisation without the need for an adjuvant. A single or two doses of non-adjuvanted 5 µg of MAYV VLP vaccination provided significant protection against viremia and MAYV-induced foot swelling in the C57BL/6 mouse challenge model. MAYV VLPs represent a non-infectious vaccine candidate, which may constitute a complementary option for future immunisation strategies against this important emerging alphavirus.
Collapse
Affiliation(s)
- Young Chan Kim
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford, Oxford, UK.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Yasunori Watanabe
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lücke Arlen-Celina
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Xiyong Song
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Raquel de Oliveira Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Robert Stass
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sasha R Azar
- Department of Pathology and the Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Shannan L Rossi
- Department of Pathology and the Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Carla Claser
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Beate Mareike Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), Partner Site-Bonn-Cologne, Bonn, Germany
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Juha T Huiskonen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Arturo Reyes-Sandoval
- Instituto Politécnico Nacional, IPN. Av. Luis Enrique Erro s/n. Unidad Adolfo López Mateos, Mexico City, Mexico
| |
Collapse
|
2
|
Awal SK, Swu AK. Beyond the Bite: Detailed findings on Chikungunya and Dengue co-detection in Punjab, North India - clinical insights and diagnostic challenges. Braz J Microbiol 2024; 55:3711-3719. [PMID: 39222222 PMCID: PMC11711412 DOI: 10.1007/s42770-024-01493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES The co-circulation of Chikungunya virus (CHIKV) and Dengue virus (DENV) in India poses a challenge for the diagnosing clinician, as they share similar clinical signs and symptoms and geographical distribution. Both arthropod-borne viruses are maintained in the environment by the Aedes mosquito, commonly found in tropical countries including India. Here we aim to investigate the clinical and laboratory aspects of Chikungunya/Dengue suspected cases in Punjab, India during 2021-2022, focusing on the differential diagnosis of Dengue. METHODS All suspected cases were submitted to serological differential diagnosis approaches to arboviruses like Chikungunya and Dengue. For the detection of Chikungunya Infection, CHIK IgM Capture ELISA was employed. Whereas, for Dengue NS1 antigen ELISA and IgM Capture ELISA assays were employed. RESULTS A total of 370 cases suspected of arboviral infection were investigated and 38.3% (142/370) were confirmed as Chikungunya. Chikungunya cases were slightly more prevalent in males (54%) and the most frequently affected age group was adults between 16 and 30 years old (45.7%). Polyarthralgia affected 79.5% of patients, 63.3% exhibited headache and 50% presented with retro-orbital pain. 28.9% (107/370) had serological evidence of DENV exposure by detection of specific anti-DENV IgM or NS1 and 9.1% (34/370) cases of co-detection of Chikungunya and Dengue were reported. Urban populations had a higher infection rate of co-detection of Chikungunya and Dengue than rural populations with 83% versus 17%, respectively. CONCLUSIONS Despite an initial clinical diagnosis of Dengue, most patients with fever and arthralgia were serologically confirmed as Chikungunya cases, with a notable prevalence of CHIKV/DENV co-detection. Strengthening differential diagnosis of circulating arboviruses is crucial for improving patient care and enhancing vector control and environmental management strategies.
Collapse
Affiliation(s)
- Sampreet Kaur Awal
- Department of Microbiology, Manipal Tata Medical College, Manipal Academy of Higher Education, Manipal, India.
| | - Anato K Swu
- Consultant Microbiologist & Head of Laboratory Services Putuonuo Hospital, Kohima, Nagaland, India
| |
Collapse
|
3
|
Sinha A, Savargaonkar D, De A, Tiwari A, Yadav CP, Anvikar AR. Joint Involvement Can Predict Chikungunya in a Dengue Syndemic Setting in India. J Epidemiol Glob Health 2023; 13:895-901. [PMID: 37962782 PMCID: PMC10686949 DOI: 10.1007/s44197-023-00163-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Dengue and chikungunya have been endemic in India but have the tendency to cause periodic epidemics, often together, wherein they are termed 'syndemic'. Such a syndemic was observed in 2016 in India which resulted in a further scarcity of already resource-poor specific diagnostic infrastructure even in many urban conglomerates. A cross-sectional study was thus conducted, on 978 fever patients that consulted the ICMR-NIMR fever clinic, New Delhi, in September 2016, with an objective to identify symptom/s that could predict chikungunya with certainty. The overall aim was to rationally channelize the most clinically suitable patients for the required specific diagnosis of chikungunya. Based on their clinical profile, febrile patients attending NIMR's clinic, appropriate laboratory tests and their association analyses were performed. Bivariate analysis on 34 clinical parameters revealed that joint pain, joint swelling, rashes, red spots, weakness, itching, loss of taste, red eyes, and bleeding gums were found to be statistically significantly associated predictors of chikungunya as compared to dengue. While, in multivariate analysis, only four symptoms (joint pain in elbows, joint swelling, itching and bleeding gums) were found in statistically significant association with chikungunya. Hence, based on the results, a clinician may preferably channelize febrile patients with one or more of these four symptoms for chikungunya-specific diagnosis and divert the rest for dengue lab diagnosis in a dengue-chikungunya syndemic setting.
Collapse
Affiliation(s)
- Abhinav Sinha
- ICMR-National Institute of Malaria Research, New Delhi, India.
| | | | - Auley De
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Aparna Tiwari
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - C P Yadav
- ICMR-National Institute of Malaria Research, New Delhi, India
| | | |
Collapse
|
4
|
Saha A, Acharya BN, Parida M, Saxena N, Rajaiya J, Dash PK. Identification of 2,4-Diaminoquinazoline Derivative as a Potential Small-Molecule Inhibitor against Chikungunya and Ross River Viruses. Viruses 2023; 15:2194. [PMID: 38005871 PMCID: PMC10674894 DOI: 10.3390/v15112194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Alphaviruses are serious zoonotic threats responsible for significant morbidity, causing arthritis or encephalitis. So far, no licensed drugs or vaccines are available to combat alphaviral infections. About 300,000 chikungunya virus (CHIKV) infections have been reported in 2023, with more than 300 deaths, including reports of a few cases in the USA as well. The discovery and development of small-molecule drugs have been revolutionized over the last decade. Here, we employed a cell-based screening approach using a series of in-house small-molecule libraries to test for their ability to inhibit CHIKV replication. DCR 137, a quinazoline derivative, was found to be the most potent inhibitor of CHIKV replication in our screening assay. Both, the cytopathic effect, and immunofluorescence of infected cells were reduced in a dose-dependent manner with DCR 137 post-treatment. Most importantly, DCR 137 was more protective than the traditional ribavirin drug and reduced CHIKV plaque-forming units by several log units. CHIKV-E2 protein levels were also reduced in a dose-dependent manner. Further, DCR 137 was probed for its antiviral activity against another alphavirus, the Ross River virus, which revealed effective inhibition of viral replication. These results led to the identification of a potential quinazoline candidate for future optimization that might act as a pan-alphavirus inhibitor.
Collapse
Affiliation(s)
- Amrita Saha
- Virology Division, Defence Research & Development Establishment, Gwalior 474002, India; (A.S.); (M.P.)
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
| | - Badri Narayan Acharya
- Synthetic Chemistry Division, Defence Research & Development Establishment, Gwalior 474002, India;
| | - Manmohan Parida
- Virology Division, Defence Research & Development Establishment, Gwalior 474002, India; (A.S.); (M.P.)
| | - Nandita Saxena
- Pharmacology & Toxicology Division, Defence Research & Development Establishment, Gwalior 474002, India;
| | - Jaya Rajaiya
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA;
| | - Paban Kumar Dash
- Virology Division, Defence Research & Development Establishment, Gwalior 474002, India; (A.S.); (M.P.)
| |
Collapse
|
5
|
Puhl AC, Fernandes RS, Godoy AS, Gil LHVG, Oliva G, Ekins S. The protein disulfide isomerase inhibitor 3-methyltoxoflavin inhibits Chikungunya virus. Bioorg Med Chem 2023; 83:117239. [PMID: 36940609 PMCID: PMC10150329 DOI: 10.1016/j.bmc.2023.117239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Chikungunya virus (CHIKV) is the etiological agent of chikungunya fever, a (re)emerging arbovirus infection, that causes severe and often persistent arthritis, as well as representing a serious health concern worldwide for which no antivirals are currently available. Despite efforts over the last decade to identify and optimize new inhibitors or to reposition existing drugs, no compound has progressed to clinical trials for CHIKV and current prophylaxis is based on vector control, which has shown limited success in containing the virus. Our efforts to rectify this situation were initiated by screening 36 compounds using a replicon system and ultimately identified the natural product derivative 3-methyltoxoflavin with activity against CHIKV using a cell-based assay (EC50 200 nM, SI = 17 in Huh-7 cells). We have additionally screened 3-methyltoxoflavin against a panel of 17 viruses and showed that it only additionally demonstrated inhibition of the yellow fever virus (EC50 370 nM, SI = 3.2 in Huh-7 cells). We have also showed that 3-methyltoxoflavin has excellent in vitro human and mouse microsomal metabolic stability, good solubility and high Caco-2 permeability and it is not likely to be a P-glycoprotein substrate. In summary, we demonstrate that 3-methyltoxoflavin has activity against CHIKV, good in vitro absorption, distribution, metabolism and excretion (ADME) properties as well as good calculated physicochemical properties and may represent a valuable starting point for future optimization to develop inhibitors for this and other related viruses.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Rafaela S. Fernandes
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, SP, 13563-120, Brazil
| | - Andre S. Godoy
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, SP, 13563-120, Brazil
| | - Laura H. V. G. Gil
- Department of Virology, Oswaldo Cruz Foundation, Aggeu Magalhães Institute, Av. Prof. Moraes Rego, s/n - Cidade Universitaria, Recife, PE, 50670-420, Brazil
| | - Glaucius Oliva
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, SP, 13563-120, Brazil
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| |
Collapse
|
6
|
Cottis S, Blisnick AA, Failloux AB, Vernick KD. Determinants of Chikungunya and O'nyong-Nyong Virus Specificity for Infection of Aedes and Anopheles Mosquito Vectors. Viruses 2023; 15:589. [PMID: 36992298 PMCID: PMC10051923 DOI: 10.3390/v15030589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Mosquito-borne diseases caused by viruses and parasites are responsible for more than 700 million infections each year. Anopheles and Aedes are the two major vectors for, respectively, malaria and arboviruses. Anopheles mosquitoes are the primary vector of just one known arbovirus, the alphavirus o'nyong-nyong virus (ONNV), which is closely related to the chikungunya virus (CHIKV), vectored by Aedes mosquitoes. However, Anopheles harbor a complex natural virome of RNA viruses, and a number of pathogenic arboviruses have been isolated from Anopheles mosquitoes in nature. CHIKV and ONNV are in the same antigenic group, the Semliki Forest virus complex, are difficult to distinguish via immunodiagnostic assay, and symptomatically cause essentially the same human disease. The major difference between the arboviruses appears to be their differential use of mosquito vectors. The mechanisms governing this vector specificity are poorly understood. Here, we summarize intrinsic and extrinsic factors that could be associated with vector specificity by these viruses. We highlight the complexity and multifactorial aspect of vectorial specificity of the two alphaviruses, and evaluate the level of risk of vector shift by ONNV or CHIKV.
Collapse
Affiliation(s)
- Solène Cottis
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris Cité, CNRS UMR2000, F-75015 Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Université UPMC Paris VI, 75252 Paris, France
| | - Adrien A. Blisnick
- Arboviruses and Insect Vectors Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Anna-Bella Failloux
- Arboviruses and Insect Vectors Unit, Department of Virology, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Kenneth D. Vernick
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris Cité, CNRS UMR2000, F-75015 Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Université UPMC Paris VI, 75252 Paris, France
| |
Collapse
|
7
|
Sofyantoro F, Frediansyah A, Priyono DS, Putri WA, Septriani NI, Wijayanti N, Ramadaningrum WA, Turkistani SA, Garout M, Aljeldah M, Al Shammari BR, Alwashmi ASS, Alfaraj AH, Alawfi A, Alshengeti A, Aljohani MH, Aldossary S, Rabaan AA. Growth in chikungunya virus-related research in ASEAN and South Asian countries from 1967 to 2022 following disease emergence: a bibliometric and graphical analysis. Global Health 2023; 19:9. [PMID: 36747262 PMCID: PMC9901127 DOI: 10.1186/s12992-023-00906-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND ASEAN (Association of Southeast Asian Nations) is composed of ten Southeast Asian countries bound by socio-cultural ties that promote regional peace and stability. South Asia, located in the southern subregion of Asia, includes nine countries sharing similarities in geographical and ethno-cultural factors. Chikungunya is one of the most significant problems in Southeast and South Asian countries. Much of the current chikungunya epidemic in Southeast Asia is caused by the emergence of a virus strain that originated in Africa and spread to Southeast Asia. Meanwhile, in South Asia, three confirmed lineages are in circulation. Given the positive correlation between research activity and the improvement of the clinical framework of biomedical research, this article aimed to examine the growth of chikungunya virus-related research in ASEAN and South Asian countries. METHODS The Scopus database was used for this bibliometric analysis. The retrieved publications were subjected to a number of analyses, including those for the most prolific countries, journals, authors, institutions, and articles. Co-occurrence mapping of terms and keywords was used to determine the current state, emerging topics, and future prospects of chikungunya virus-related research. Bibliometrix and VOSviewer were used to analyze the data and visualize the collaboration network mapping. RESULTS The Scopus search engine identified 1280 chikungunya-related documents published by ASEAN and South Asian countries between 1967 and 2022. According to our findings, India was the most productive country in South Asia, and Thailand was the most productive country in Southeast Asia. In the early stages of the study, researchers investigated the vectors and outbreaks of the chikungunya virus. In recent years, the development of antivirus agents has emerged as a prominent topic. CONCLUSIONS Our study is the first to present the growth of chikungunya virus-related research in ASEAN and South Asian countries from 1967 to 2022. In this study, the evaluation of the comprehensive profile of research on chikungunya can serve as a guide for future studies. In addition, a bibliometric analysis may serve as a resource for healthcare policymakers.
Collapse
Affiliation(s)
- Fajar Sofyantoro
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Center for Tropical Biodiversity, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Andri Frediansyah
- PRTPP, National Research and Innovation Agency (BRIN), Yogyakarta, 55861, Indonesia.
| | - Dwi Sendi Priyono
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
- Center for Tropical Biodiversity, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | | | | | - Nastiti Wijayanti
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
| | | | | | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin, 39831, Saudi Arabia
| | - Basim R Al Shammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin, 39831, Saudi Arabia
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Amal H Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq, 33261, Saudi Arabia
| | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah, 41491, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah, 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah, 41491, Saudi Arabia
| | - Maha H Aljohani
- Department of infectious diseases, King Fahad Hospital, Madinah, 42351, Saudi Arabia
| | - Sahar Aldossary
- Pediatric Infectious Diseases, Women and Children's Health Institute, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia.
- College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia.
- Department of Public Health and Nutrition, The University of Haripur, Haripur, 22610, Pakistan.
| |
Collapse
|
8
|
Clinical markers of post-Chikungunya chronic inflammatory joint disease: A Brazilian cohort. PLoS Negl Trop Dis 2023; 17:e0011037. [PMID: 36608155 PMCID: PMC9851532 DOI: 10.1371/journal.pntd.0011037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/19/2023] [Accepted: 12/18/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Chikungunya-fever (CHIKF) remains a public health major issue. It is clinically divided into three phases: acute, post-acute and chronic. Chronic cases correspond to 25-40% individuals and, though most of them are characterized by long-lasting arthralgia alone, many of them exhibit persistent or recurrent inflammatory signs that define post-Chikungunya chronic inflammatory joint disease (pCHIKV-CIJD). We aimed to identify early clinical markers of evolution to pCHIKV-CIJD during acute and post-acute phases. METHODOLOGY/PRINCIPAL FINDINGS We studied a prospective cohort of CHIKF-confirmed volunteers with longitudinal clinical data collection from symptoms onset up to 90 days, including a 21-day visit (D21). Of 169 patients with CHIKF, 86 (50.9%) completed the follow-up, from whom 39 met clinical criteria for pCHIKV-CIJD (45.3%). The relative risk of chronification was higher in women compared to men (RR = 1.52; 95% CI = 1.15-1.99; FDR = 0.03). None of the symptoms or signs presented at D0 behaved as an early predictor of pCHIKV-CIJD, while being symptomatic at D21 was a risk factor for chronification (RR = 1.31; 95% CI = 1.09-1.55; FDR = 0.03). Significance was also observed for joint pain (RR = 1.35; 95% CI = 1.12-1.61; FDR = 0.02), reported edema (RR = 3.61; 95% CI = 1.44-9.06; FDR = 0.03), reported hand and/or feet small joints edema (RR = 4.22; 95% CI = 1.51-11.78; FDR = 0.02), and peri-articular edema observed during physical examination (RR = 2.89; 95% CI = 1.58-5.28; FDR = 0.002). Furthermore, patients with no findings in physical examination at D21 were at lower risk of chronic evolution (RR = 0.41, 95% CI = 0.24-0.70, FDR = 0.01). Twenty-nine pCHIKV-CIJD patients had abnormal articular ultrasonography (90.6% of the examined). The most common findings were synovitis (65.5%) and joint effusion (58.6%). CONCLUSION This cohort has provided important insights into the prognostic evaluation of CHIKF. Symptomatic sub-acute disease is a relevant predictor of evolution to chronic arthritis with synovitis, drawing attention to joint pain, edema, multiple articular involvement including small hand and feet joints as risk factors for chronification beyond three months, especially in women. Future studies are needed to accomplish the identification of accurate and early biomarkers of poor clinical prognosis, which would allow better understanding of the disease's evolution and improve patients' management, modifying CHIKF burden on global public health.
Collapse
|
9
|
Computer-Aided Design and Synthesis of (Functionalized quinazoline)–(α-substituted coumarin)–arylsulfonate Conjugates against Chikungunya Virus. Int J Mol Sci 2022; 23:ijms23147646. [PMID: 35886992 PMCID: PMC9322071 DOI: 10.3390/ijms23147646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
Chikungunya virus (CHIKV) has repeatedly spread via the bite of an infected mosquito and affected more than 100 countries. The disease poses threats to public health and the economy in the infected locations. Many efforts have been devoted to identifying compounds that could inhibit CHIKV. Unfortunately, successful clinical candidates have not been found yet. Computations through the simulating recognition process were performed on complexation of the nsP3 protein of CHIKV with the structures of triply conjugated drug lead candidates. The outcomes provided the aid on rational design of functionalized quinazoline-(α-substituted coumarin)-arylsulfonate compounds to inhibit CHIKV in Vero cells. The molecular docking studies showed a void space around the β carbon atom of coumarin when a substituent was attached at the α position. The formed vacancy offered a good chance for a Michael addition to take place owing to steric and electronic effects. The best conjugate containing a quinazolinone moiety exhibited potency with EC50 = 6.46 μM, low toxicity with CC50 = 59.7 μM, and the selective index (SI) = 9.24. Furthermore, the corresponding 4-anilinoquinazoline derivative improved the anti-CHIKV potency to EC50 = 3.84 μM, CC50 = 72.3 μM, and SI = 18.8. The conjugate with 4-anilinoquinazoline exhibited stronger binding affinity towards the macro domain than that with quinazolinone via hydrophobic and hydrogen bond interactions.
Collapse
|
10
|
Was It Chikungunya? Laboratorial and Clinical Investigations of Cases Occurred during a Triple Arboviruses’ Outbreak in Rio de Janeiro, Brazil. Pathogens 2022; 11:pathogens11020245. [PMID: 35215188 PMCID: PMC8879879 DOI: 10.3390/pathogens11020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
The co-circulation of chikungunya virus (CHIKV), dengue virus (DENV) and Zika virus (ZIKV) in Rio de Janeiro (RJ), Brazil, caused a challenging triple epidemic, as they share similar clinical signs and symptoms and geographical distribution. Here, we aimed to investigate the clinical and laboratorial aspects of chikungunya suspected cases assisted in RJ during the 2018 outbreak, focusing on the differential diagnosis with dengue and zika. All suspected cases were submitted to molecular and/or serological differential diagnostic approaches to arboviruses. A total of 242 cases suspected of arbovirus infection were investigated and 73.6% (178/242) were molecular and/or serologically confirmed as chikungunya. In RT-qPCR confirmed cases, cycle threshold (Ct) values ranged from 15.46 to 35.13, with acute cases presenting lower values. Chikungunya cases were mainly in females (64%) and the most frequently affected age group was adults between 46 to 59 years old (27%). Polyarthralgia affected 89% of patients, especially in hands and feet. No dengue virus (DENV) and Zika virus (ZIKV) infections were confirmed by molecular diagnosis, but 9.5% (23/242) had serological evidence of DENV exposure by the detection of specific anti-DENV IgM or NS1, and 42.7% (76/178) of chikungunya positive cases also presented recent DENV exposure reflected by a positive anti-DENV IgM or NS1 result. A significantly higher frequency of arthritis (p = 0.023) and limb edema (p < 0.001) was found on patients with CHIKV monoinfection compared to dengue patients and patients exposed to both viruses. Lastly, phylogenetic analysis showed that the chikungunya cases were caused by the ECSA genotype. Despite the triple arboviruses’ epidemic in the state of RJ, most patients with fever and arthralgia investigated here were diagnosed as chikungunya cases, and the incidence of CHIKV/DENV co-detection was higher than that reported in other studies.
Collapse
|
11
|
Familiar-Macedo D, Gama BE, Emmel VE, Vera-Lozada G, Abdelhay E, Martins IS, Hassan R. Molecular aspects of Chikungunya virus infections in cancer patients. Mem Inst Oswaldo Cruz 2022; 117:e210383. [PMID: 35475905 PMCID: PMC9037814 DOI: 10.1590/0074-02760210383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/24/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) is an arbovirus that can cause chronic and debilitating manifestations. The first autochthonous case in Rio de Janeiro state was diagnosed in 2015, and an outbreak was declared in 2016. OBJECTIVE The aim of this work was to evaluate CHIKV viral load in serum, plasma and urine in cancer patients to determine the best sample for diagnosis, as well as perform molecular characterisation and phylogenetic analysis of circulating strains. METHODS Paired serum, plasma and urine collected from 31 cancer patients were tested by real-time quantitative polymerase chain reaction (qPCR) and a segment of the CHIKV E1 gene was sequenced. FINDINGS We detected 11 CHIKV+ oncological patients. Paired samples analyses of nine patients showed a different pattern of detection. Also, a higher viral load in plasma (6.84 log10) and serum (6.07 log10) vs urine (3.76 log10) was found. Phylogenetic analysis and molecular characterisation revealed East/Central/Southern Africa (ECSA) genotype circulation and three amino acids substitutions (E1-K211T, E1-M269V, E1-T288I) in positive patients. MAIN CONCLUSION The results indicate the bioequivalence of serum and plasma for CHIKV diagnosis, with urine being an important complement. ECSA genotype was circulating among patients in the period of the 2016 outbreak with K211T, M269V and T288I substitution.
Collapse
|
12
|
Rodríguez-Aguilar ED, Martínez-Barnetche J, González-Bonilla CR, Tellez-Sosa JM, Argotte-Ramos R, Rodríguez MH. Genetic Diversity and Spatiotemporal Dynamics of Chikungunya Infections in Mexico during the Outbreak of 2014-2016. Viruses 2021; 14:v14010070. [PMID: 35062275 PMCID: PMC8779743 DOI: 10.3390/v14010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022] Open
Abstract
Chikungunya virus (CHIKV) is an alphavirus transmitted by Aedes mosquitoes, which causes Chikungunya fever. Three CHIKV genotypes have been identified: West African, East-Central-South African and Asian. In 2014, CHIKV was detected for the first time in Mexico, accumulating 13,569 confirmed cases in the following three years. Studies on the molecular diversification of CHIKV in Mexico focused on limited geographic regions or investigated only one structural gene of the virus. To describe the dynamics of this outbreak, we analyzed 309 serum samples from CHIKV acute clinical cases from 15 Mexican states. Partial NSP3, E1, and E2 genes were sequenced, mutations were identified, and their genetic variability was estimated. The evolutionary relationship with CHIKV sequences sampled globally were analyzed. Our sequences grouped with the Asian genotype within the Caribbean lineage, suggesting that the Asian was the only circulating genotype during the outbreak. Three non-synonymous mutations (E2 S248F and NSP3 A437T and L451F) were present in our sequences, which were also identified in sequences of the Caribbean lineage and in one Philippine sequence. Based on the phylogeographic analysis, the viral spread was reconstructed, suggesting that after the introduction through the Mexican southern border (Chiapas), CHIKV dispersed to neighboring states before reaching the center and north of the country through the Pacific Ocean states and Quintana Roo. This is the first viral phylogeographic reconstruction in Mexico characterizing the CHIKV outbreak across the country.
Collapse
Affiliation(s)
- Eduardo D. Rodríguez-Aguilar
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca 62100, Mexico; (E.D.R.-A.); (J.M.-B.); (J.M.T.-S.); (R.A.-R.)
| | - Jesús Martínez-Barnetche
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca 62100, Mexico; (E.D.R.-A.); (J.M.-B.); (J.M.T.-S.); (R.A.-R.)
| | | | - Juan M. Tellez-Sosa
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca 62100, Mexico; (E.D.R.-A.); (J.M.-B.); (J.M.T.-S.); (R.A.-R.)
| | - Rocío Argotte-Ramos
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca 62100, Mexico; (E.D.R.-A.); (J.M.-B.); (J.M.T.-S.); (R.A.-R.)
| | - Mario H. Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, Cuernavaca 62100, Mexico; (E.D.R.-A.); (J.M.-B.); (J.M.T.-S.); (R.A.-R.)
- Correspondence: ; Tel.: +52-1-777-3293087 (ext. 1109)
| |
Collapse
|
13
|
Sharif N, Sarkar MK, Ferdous RN, Ahmed SN, Billah MB, Talukder AA, Zhang M, Dey SK. Molecular Epidemiology, Evolution and Reemergence of Chikungunya Virus in South Asia. Front Microbiol 2021; 12:689979. [PMID: 34163459 PMCID: PMC8215147 DOI: 10.3389/fmicb.2021.689979] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/10/2021] [Indexed: 11/23/2022] Open
Abstract
Chikungunya virus (CHIKV) is a vector (mosquito)-transmitted alphavirus (family Togaviridae). CHIKV can cause fever and febrile illness associated with severe arthralgia and rash. Genotypic and phylogenetic analysis are important to understand the spread of CHIKV during epidemics and the diversity of circulating strains for the prediction of effective control measures. Molecular epidemiologic analysis of CHIKV is necessary to understand the complex interaction of vectors, hosts and environment that influences the genotypic evolution of epidemic strains. In this study, different works published during 1950s to 2020 concerning CHIKV evolution, epidemiology, vectors, phylogeny, and clinical outcomes were analyzed. Outbreaks of CHIKV have been reported from Bangladesh, Bhutan, India, Pakistan, Sri Lanka, Nepal, and Maldives in South Asia during 2007–2020. Three lineages- Asian, East/Central/South African (ECSA), and Indian Ocean Lineage (IOL) are circulating in South Asia. Lineage, ECSA and IOL became predominant over Asian lineage in South Asian countries during 2011–2020 epidemics. Further, the mutant E1-A226V is circulating in abundance with Aedes albopictus in India, Bangladesh, Nepal, and Bhutan. CHIKV is underestimated as clinical symptoms of CHIKV infection merges with the symptoms of dengue fever in South Asia. Failure to inhibit vector mediated transmission and predict epidemics of CHIKV increase the risk of larger global epidemics in future. To understand geographical spread of CHIKV, most of the studies focused on CHIKV outbreak, biology, pathogenesis, infection, transmission, and treatment. This updated study will reveal the collective epidemiology, evolution and phylogenies of CHIKV, supporting the necessity to investigate the circulating strains and vectors in South Asia.
Collapse
Affiliation(s)
- Nadim Sharif
- Department of Microbiology, Jahangirnagar University, Savar, Bangladesh
| | | | - Rabeya Nahar Ferdous
- Department of Microbiology, Bangladesh University of Health Sciences, Dhaka, Bangladesh
| | | | - Md Baki Billah
- Department of Zoology, Jahangirnagar University, Savar, Bangladesh
| | - Ali Azam Talukder
- Department of Microbiology, Jahangirnagar University, Savar, Bangladesh
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA, United States
| | - Shuvra Kanti Dey
- Department of Microbiology, Jahangirnagar University, Savar, Bangladesh
| |
Collapse
|
14
|
Abdellahoum Z, Maurin M, Bitam I. Tularemia as a Mosquito-Borne Disease. Microorganisms 2020; 9:microorganisms9010026. [PMID: 33374861 PMCID: PMC7823759 DOI: 10.3390/microorganisms9010026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 01/14/2023] Open
Abstract
Francisella tularensis (Ft) is the etiological agent of tularemia, a disease known for over 100 years in the northern hemisphere. Ft includes four subspecies, of which two are the etiologic agents of tularemia: Ft subsp. tularensis (Ftt) and Ft subsp. holarctica (Fth), mainly distributed in North America and the whole northern hemisphere, respectively. Several routes of human infection with these bacteria exist, notably through bites of Ixodidae ticks. However, mosquitoes represent the main vectors of Fth in Scandinavia, where large tularemia outbreaks have occurred, usually during the warm season. The mechanisms making mosquitoes vectors of Fth are still unclear. This review covers the inventory of research work and epidemiological data linking tularemia to mosquitoes in Scandinavia and highlights the gaps in understanding mosquitoes and Ft interactions.
Collapse
Affiliation(s)
- Zakaria Abdellahoum
- Laboratoire Biodiversité et Environnement: Interaction Génome, Faculté des Sciences Biologique, Université des Sciences et de la Technologie Houari Boumediene, Alger 16111, Algeria;
| | - Max Maurin
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, 38043 Grenoble, France
- Centre National de la Recherche Scientifique, TIMC-IMAG, UMR5525, Université Grenoble Alpes, 38400 Saint Martin d’Heres, France
- Correspondence: (M.M.); (I.B.); Tel.: +33-476-769-594 (M.M.); +213-559-775-322 (I.B.)
| | - Idir Bitam
- Laboratoire Biodiversité et Environnement: Interaction Génome, Faculté des Sciences Biologique, Université des Sciences et de la Technologie Houari Boumediene, Alger 16111, Algeria;
- Ecole Supérieure des Sciences de l’Aliment et des Industries Alimentaires, Alger 16004, Algeria
- Correspondence: (M.M.); (I.B.); Tel.: +33-476-769-594 (M.M.); +213-559-775-322 (I.B.)
| |
Collapse
|
15
|
Roy A. Commentary: The Value of Failure in Science: The Story of Grandmother Cells in Neuroscience. Front Neurosci 2020; 14:59. [PMID: 32116507 PMCID: PMC7025548 DOI: 10.3389/fnins.2020.00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/15/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Asim Roy
- Department of Information Systems, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
16
|
Maljkovic Berry I, Eyase F, Pollett S, Konongoi SL, Joyce MG, Figueroa K, Ofula V, Koka H, Koskei E, Nyunja A, Mancuso JD, Jarman RG, Sang R. Global Outbreaks and Origins of a Chikungunya Virus Variant Carrying Mutations Which May Increase Fitness for Aedes aegypti: Revelations from the 2016 Mandera, Kenya Outbreak. Am J Trop Med Hyg 2020; 100:1249-1257. [PMID: 30860010 PMCID: PMC6493958 DOI: 10.4269/ajtmh.18-0980] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In 2016, a chikungunya virus (CHIKV) outbreak was reported in Mandera, Kenya. This was the first major CHIKV outbreak in the country since the global reemergence of this virus in Kenya in 2004. We collected samples and sequenced viral genomes from this outbreak. All Kenyan genomes contained two mutations, E1:K211E and E2:V264A, recently reported to have an association with increased infectivity, dissemination, and transmission in the Aedes aegypti vector. Phylogeographic inference of temporal and spatial virus relationships showed that this variant emerged within the East, Central, and South African lineage between 2005 and 2008, most probably in India. It was also in India where the first large outbreak caused by this virus appeared, in New Delhi, 2010. More importantly, our results also showed that this variant is no longer contained to India. We found it present in several major outbreaks, including the 2016 outbreaks in Pakistan and Kenya, and the 2017 outbreak in Bangladesh. Thus, this variant may have a capability of driving large CHIKV outbreaks in different regions of the world. Our results point to the importance of continued genomic-based surveillance and prompt urgent vector competence studies to assess the level of vector susceptibility and virus transmission, and the impact this might have on this variant's epidemic potential and global spread.
Collapse
Affiliation(s)
- Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Fredrick Eyase
- United States Army Medical Research Directorate - Kenya, Nairobi, Kenya
| | - Simon Pollett
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Samson Limbaso Konongoi
- Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya.,United States Army Medical Research Directorate - Kenya, Nairobi, Kenya
| | - Michael Gordon Joyce
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland.,Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Katherine Figueroa
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Victor Ofula
- United States Army Medical Research Directorate - Kenya, Nairobi, Kenya
| | - Helen Koka
- United States Army Medical Research Directorate - Kenya, Nairobi, Kenya
| | - Edith Koskei
- United States Army Medical Research Directorate - Kenya, Nairobi, Kenya
| | - Albert Nyunja
- United States Army Medical Research Directorate - Kenya, Nairobi, Kenya
| | - James D Mancuso
- United States Army Medical Research Directorate - Kenya, Nairobi, Kenya
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Rosemary Sang
- United States Army Medical Research Directorate - Kenya, Nairobi, Kenya
| |
Collapse
|
17
|
Rahman MM, Been Sayed SJ, Moniruzzaman M, Kabir AKMH, Mallik MU, Hasan MR, Siddique AB, Hossain MA, Uddin N, Hassan MM, Chowdhury FR. Clinical and Laboratory Characteristics of an Acute Chikungunya Outbreak in Bangladesh in 2017. Am J Trop Med Hyg 2019; 100:405-410. [PMID: 30526743 PMCID: PMC6367608 DOI: 10.4269/ajtmh.18-0636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
From April to September 2017, Bangladesh experienced a huge outbreak of acute Chikungunya virus infection in Dhaka. This series describes the clinical and laboratory features of a large number of cases (690; 399 confirmed and 291 probable) suffered during that period. This observational study was carried out at Dhaka Medical College Hospital, Bangladesh. The median age of the patients at presentation was 38 years (IQR 30–50) with a male (57.3%) predominance. Hypertension and diabetes were the most common comorbidities. The mean (±SD) duration of fever was 3.7 (±1.4) days. Other common manifestations were arthralgia (99.2%), maculopapular rash (50.2%), morning stiffness (49.7%), joint swelling (48.5%), and headache (37.6%). Cases were confirmed by anti-chikungunya IgG (173; 43.3%), IgM (165; 42.3%), and reverse transcription polymerase chain reaction (44; 11.0%). Important laboratory findings include high erythrocyte sedimentation rate (156; 22.6%), raised serum glutamic pyruvic transaminase (73; 10.5%), random blood sugar (54; 7.8%), leukopenia (72; 10.4%), thrombocytopenia (41; 5.9%), and others. The oligo-articular (453; 66.1%) variety of joint involvement was significantly more common compared with the poly-articular (237; 34.5%) variety. Commonly involved joints were the wrist (371; 54.1%), small joints of the hand (321; 46.8%), ankle (251; 36.6%), knee (240; 35.0%), and elbow (228; 33.2%). Eleven cases were found to be complicated with neurological involvement and two of them died. Another patient died due to myocarditis. Public health experts, clinicians, and policymakers could use the results of this study to construct the future strategy tackling chikungunya in Bangladesh and other epidemic countries.
Collapse
Affiliation(s)
| | | | | | | | - Md Uzzwal Mallik
- Director General of Health Services, Dhaka, Bangladesh.,Department of Medicine, Dhaka Medical College, Dhaka, Bangladesh
| | - Md Rockyb Hasan
- Department of Medicine, Dhaka Medical College, Dhaka, Bangladesh
| | | | - Md Arman Hossain
- Department of Medicine, Dhaka Medical College, Dhaka, Bangladesh
| | - Nazim Uddin
- Department of Medicine, Dhaka Medical College, Dhaka, Bangladesh
| | - Md Mehedi Hassan
- Department of Medicine, Dhaka Medical College, Dhaka, Bangladesh
| | - Fazle Rabbi Chowdhury
- Department of Internal Medicine, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Barwich AS. The Value of Failure in Science: The Story of Grandmother Cells in Neuroscience. Front Neurosci 2019; 13:1121. [PMID: 31708726 PMCID: PMC6822296 DOI: 10.3389/fnins.2019.01121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/04/2019] [Indexed: 11/13/2022] Open
Abstract
The annals of science are filled with successes. Only in footnotes do we hear about the failures, the cul-de-sacs, and the forgotten ideas. Failure is how research advances. Yet it hardly features in theoretical perspectives on science. That is a mistake. Failures, whether clear-cut or ambiguous, are heuristically fruitful in their own right. Thinking about failure questions our measures of success, including the conceptual foundations of current practice, that can only be transient in an experimental context. This article advances the heuristics of failure analysis, meaning the explicit treatment of certain ideas or models as failures. The value of failures qua being a failure is illustrated with the example of grandmother cells; the contested idea of a hypothetical neuron that encodes a highly specific but complex stimulus, such as the image of one's grandmother. Repeatedly evoked in popular science and maintained in textbooks, there is sufficient reason to critically review the theoretical and empirical background of this idea.
Collapse
Affiliation(s)
- Ann-Sophie Barwich
- Department of History and Philosophy of Science and Medicine, Cognitive Science Program, Indiana University Bloomington, Bloomington, IN, United States
| |
Collapse
|
19
|
Pérez-Pérez MJ, Delang L, Ng LFP, Priego EM. Chikungunya virus drug discovery: still a long way to go? Expert Opin Drug Discov 2019; 14:855-866. [DOI: 10.1080/17460441.2019.1629413] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Leen Delang
- KU Leuven Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Lisa F. P. Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
20
|
Benvenuto D, Cella E, Fogolari M, De Florio L, Borsetti A, Donati D, Garilli F, Spoto S, Ceccarelli G, Angeletti S, Ciccozzi M. The transmission dynamic of Madariaga Virus by bayesian phylogenetic analysis: Molecular surveillance of an emergent pathogen. Microb Pathog 2019; 132:80-86. [PMID: 31029717 DOI: 10.1016/j.micpath.2019.04.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/06/2019] [Accepted: 04/24/2019] [Indexed: 11/16/2022]
Abstract
Madariaga Virus (MADV) is an emergent Alphavirus of the eastern equine encephalitis virus (EEEV) strain complex causing epizootic epidemics. In this study the genetic diversity and the transmission dynamics of Madariaga virus has been investigated by Bayesian phylogenetics and phylodynamic analysis. A database of 32 sequences of MADV group structural polyprotein were downloaded from GenBank, aligned manually edited by Bioedit Software. ModelTest v. 3.7 was used to select the simplest evolutionary model that adequately fitted the sequence data. Neighbor-joining tree was generated using MEGA7. The phylogenetic signal of the dataset was tested by the likelihood mapping analysis. The Bayesian phylogenetic tree was built using BEAST. Selective pressure analysis revealed one positive selection site. The phylogenetic trees showed two main clusters. In particular, Lineage II showed an epizootic infection in monkeys and Lineage III, including 2 main clusters (IIIa and IIIB), revealing an epizootic infection in humans in Haiti and an epizootic infection in humans in Venezuela during the 2016, respectively. The Bayesian maximum clade credibility tree and the time of the most common recent ancestor estimates, showed that the root of the tree dated back to the year 346 with the probable origin in Brazil. Gene flow analysis revealed viral exchanges between different neighbor countries of South America. In conclusion, Bayesian phylogenetic and phylodynamic represent useful tools to follow the transmission dynamic of emergent pathogens to prevent new epidemics spreading worldwide.
Collapse
Affiliation(s)
- Domenico Benvenuto
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Italy
| | - Eleonora Cella
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Italy
| | - Marta Fogolari
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Italy
| | - Lucia De Florio
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Italy
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Roma, Italy
| | - Daniele Donati
- School of Nursing, Faculty of Medicine, Department of Biomedicine and Prevention, Tor Vergata University, Via Montpellier 1, 00133, Rome, Italy
| | - Francesco Garilli
- Faculty of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Silvia Spoto
- Internal Medicine Department, University Campus Bio-Medico of Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University of Rome, Sapienza, Policlinico "Umberto I", Rome, Italy; Migrant and Global Health Research Organisation, Centro di ricerca sulla salute globale e delle popolazioni mobili (Mi-Hero), Italy
| | - Silvia Angeletti
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Italy.
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Italy
| |
Collapse
|
21
|
Assessment of Immunogenicity and Neutralisation Efficacy of Viral-Vectored Vaccines Against Chikungunya Virus. Viruses 2019; 11:v11040322. [PMID: 30987160 PMCID: PMC6521086 DOI: 10.3390/v11040322] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 12/22/2022] Open
Abstract
Chikungunya virus (CHIKV) has caused extensive outbreaks in several countries within the Americas, Asia, Oceanic/Pacific Islands, and Europe. In humans, CHIKV infections cause a debilitating disease with acute febrile illness and long-term polyarthralgia. Acute and chronic symptoms impose a major economic burden to health systems and contribute to poverty in affected countries. An efficacious vaccine would be an important step towards decreasing the disease burden caused by CHIKV infection. Despite no licensed vaccine is yet available for CHIKV, there is strong evidence of effective asymptomatic viral clearance due to neutralising antibodies against the viral structural proteins. We have designed viral-vectored vaccines to express the structural proteins of CHIKV, using the replication-deficient chimpanzee adenoviral platform, ChAdOx1. Expression of the CHIKV antigens results in the formation of chikungunya virus-like particles. Our vaccines induce high frequencies of anti-chikungunya specific T-cell responses as well as high titres of anti-CHIKV E2 antibodies with high capacity for in vitro neutralisation. Our results indicate the potential for further clinical development of the ChAdOx1 vaccine platform in CHIKV vaccinology.
Collapse
|
22
|
Abstract
Chikungunya and Zika virus infections are emerging diseases in the Americas, and dengue continues to be the most prevalent arthropod-borne virus in the world. These arbovirus diseases may spread by endemic transmission or as travel-related infections and have rapidly expanded their geographic distribution secondary to vector spread. All 3 share a similar clinical picture that includes a maculopapular rash. Zika is characterized by pruritic rash, low-grade fever, and arthralgia. Congenital nervous system malformations are a growing public-health concern. Chikungunya distinctive dermatologic manifestations include facial melanosis and bullous eruption. Dengue bleeding complications may be life-threatening and require inpatient management.
Collapse
Affiliation(s)
- Jose Dario Martinez
- Department of Internal Medicine, University Hospital "Dr. José E. González", UANL, Mitras Centro, Avenida Gonzalitos y Madero S/N, Monterrey 64460, Mexico.
| | - Jesus Alberto Cardenas-de la Garza
- Department of Dermatology, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Mitras Centro, Avenida Gonzalitos y Madero S/N, Monterrey 64460, Mexico
| | - Adrian Cuellar-Barboza
- Department of Dermatology, University Hospital "Dr. José E. González", Universidad Autónoma de Nuevo León, Mitras Centro, Avenida Gonzalitos y Madero S/N, Monterrey 64460, Mexico
| |
Collapse
|
23
|
Gerke C, Frantz PN, Ramsauer K, Tangy F. Measles-vectored vaccine approaches against viral infections: a focus on Chikungunya. Expert Rev Vaccines 2019; 18:393-403. [PMID: 30601074 DOI: 10.1080/14760584.2019.1562908] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION The large global burden of viral infections and especially the rapidly spreading vector-borne diseases and other emerging viral diseases show the need for new approaches in vaccine development. Several new vaccine technology platforms have been developed and are under evaluation. Areas covered: This article discusses the measles vector platform technology derived from the safe and highly efficacious measles virus vaccine. The pipeline of measles-vectored vaccine candidates against viral diseases is reviewed. Particular focus is given to the Chikungunya vaccine candidate as the first measles-vectored vaccine that demonstrated safety, immunogenicity, and functionality of the technology in humans even in the presence of pre-existing anti-measles immunity and thus achieved proof of concept for the technology. Expert commentary: Demonstrating no impact of pre-existing anti-measles immunity in humans on the response to the transgene was fundamental for the technology and indicates that the technology is suitable for large-scale immunization in measles pre-immune populations. The proof of concept in humans combined with a large preclinical track record of safety, immunogenicity, and efficacy for a variety of pathogens suggest the measles vector platform as promising plug-and-play vaccine platform technology for rapid development of effective preventive vaccines against viral and other infectious diseases.
Collapse
Affiliation(s)
| | - Phanramphoei N Frantz
- b Viral Genomics and Vaccination Unit, UMR-3569 CNRS, Department of Virology , Institut Pasteur , Paris , France.,c Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC) , National Science and Technology Development Agency , Pathumthani , Thailand
| | | | - Frédéric Tangy
- b Viral Genomics and Vaccination Unit, UMR-3569 CNRS, Department of Virology , Institut Pasteur , Paris , France
| |
Collapse
|
24
|
Riemersma KK, Steiner C, Singapuri A, Coffey LL. Chikungunya Virus Fidelity Variants Exhibit Differential Attenuation and Population Diversity in Cell Culture and Adult Mice. J Virol 2019; 93:e01606-18. [PMID: 30429348 PMCID: PMC6340026 DOI: 10.1128/jvi.01606-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
Chikungunya virus (CHIKV) is a reemerging global health threat that produces debilitating arthritis in people. Like other RNA viruses with high mutation rates, CHIKV produces populations of genetically diverse genomes within a host. While several known CHIKV mutations influence disease severity in vertebrates and transmission by mosquitoes, the role of intrahost diversity in chikungunya arthritic disease has not been studied. In this study, high- and low-fidelity CHIKV variants, previously characterized by altered in vitro population mutation frequencies, were used to evaluate how intrahost diversity influences clinical disease, CHIKV replication, and antibody neutralization in immunocompetent adult mice inoculated in the rear footpads. Both high- and low-fidelity mutations were hypothesized to attenuate CHIKV arthritic disease, replication, and neutralizing antibody levels compared to wild-type (WT) CHIKV. Unexpectedly, high-fidelity mutants elicited more severe arthritic disease than the WT despite comparable CHIKV replication, whereas a low-fidelity mutant produced attenuated disease and replication. Serum antibody developed against both high- and low-fidelity CHIKV exhibited reduced neutralization of WT CHIKV. Using next-generation sequencing (NGS), the high-fidelity mutations were demonstrated to be genetically stable but produced more genetically diverse populations than WT CHIKV in mice. This enhanced diversification was subsequently reproduced after serial in vitro passage. The NGS results contrast with previously reported population diversities for fidelity variants, which focused mainly on part of the E1 gene, and highlight the need for direct measurements of mutation rates to clarify CHIKV fidelity phenotypes.IMPORTANCE CHIKV is a reemerging global health threat that elicits debilitating arthritis in humans. There are currently no commercially available CHIKV vaccines. Like other RNA viruses, CHIKV has a high mutation rate and is capable of rapid intrahost diversification during an infection. In other RNA viruses, virus population diversity associates with disease progression; however, potential impacts of intrahost viral diversity on CHIKV arthritic disease have not been studied. Using previously characterized CHIKV fidelity variants, we addressed whether CHIKV population diversity influences the severity of arthritis and host antibody response in an arthritic mouse model. Our findings show that CHIKV populations with greater genetic diversity can cause more severe disease and stimulate antibody responses with reduced neutralization of low-diversity virus populations in vitro The discordant high-fidelity phenotypes in this study highlight the complexity of inferring replication fidelity indirectly from population diversity.
Collapse
Affiliation(s)
- Kasen K Riemersma
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Cody Steiner
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Anil Singapuri
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Lark L Coffey
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
25
|
Simo Tchetgna H, Sem Ouilibona R, Nkili-Meyong AA, Caron M, Labouba I, Selekon B, Njouom R, Leroy EM, Nakoune E, Berthet N. Viral Exploration of Negative Acute Febrile Cases Observed during Chikungunya Outbreaks in Gabon. Intervirology 2019; 61:174-184. [PMID: 30625488 DOI: 10.1159/000495136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/28/2018] [Indexed: 11/19/2022] Open
Abstract
Non-malarial febrile illness outbreaks were documented in 2007 and 2010 in Gabon. After investigation, these outbreaks were attributed to the chikungunya and dengue viruses (CHIKV and DENV). However, for more than half of the samples analyzed, the causative agent was not identified. Given the geographical and ecological position of Gabon, where there is a great animal and microbial diversity, the circulation of other emerging viruses was suspected in these samples lacking aetiology. A total of 436 undiagnosed samples, collected between 2007 and 2013, and originating from 14 urban, suburban, and rural Gabonese locations were selected. These samples were used for viral isolation on newborn mice and VERO cells. In samples with signs of viral replication, cell supernatants and brain suspensions were used to extract nucleic acids and perform real-time RT-PCR targeting specific arboviruses, i.e., CHIKV, DENV, yellow fever, Rift Valley fever, and West Nile and Zika viruses. Virus isolation was conclusive for 43 samples either on newborn mice or by cell culture. Virus identification by RT-PCR led to the identification of CHIKV in 37 isolates. A total of 18 complete genomes and 19 partial sequences containing the E2 and E1 genes of CHIKV were sequenced using next-generation sequencing technology or the Sanger method. Phylogenetic analysis of the complete genomes showed that all the sequences belong to the East Central South Africa lineage. Furthermore, we identified 2 distinct clusters. The first cluster was made up of sequences from the western part of Gabon, whereas the second cluster was made up of sequences from the southern regions, reflecting the way CHIKV spread across the country following its initial introduction in 2007. Similar results were obtained when analyzing the CHIKV genes of the E2 and E1 structural proteins. Moreover, study of the mutations found in the E2 and E1 structural proteins revealed the presence of several mutations that facilitate the adaptation to the Aedes albopictus mosquito, such as E2 I211T and E1 A226V, in all the Gabonese CHIKV strains. Finally, sequencing of 6 additional viral isolates failed to lead to any conclusive identification.
Collapse
Affiliation(s)
| | | | | | - Melanie Caron
- Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Ingrid Labouba
- Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | | | | | - Eric M Leroy
- Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon.,Unité Mixte de Recherche Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (IRD 224 - CNRS 5290 - UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France
| | | | - Nicolas Berthet
- Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon, .,Cellule d'Intervention Biologique d'Urgence, Unité Environnement et risques infectieux, Institut Pasteur, Paris, France, .,Centre National de Recherche Scientifique (CNRS) UMR3569, Paris, France,
| |
Collapse
|
26
|
de Souza TMA, Ribeiro ED, Corrêa VCE, Damasco PV, Santos CC, de Bruycker-Nogueira F, Chouin-Carneiro T, Faria NRDC, Nunes PCG, Heringer M, Lima MDRQ, Badolato-Corrêa J, Cipitelli MDC, Azeredo ELD, Nogueira RMR, Dos Santos FB. Following in the Footsteps of the Chikungunya Virus in Brazil: The First Autochthonous Cases in Amapá in 2014 and Its Emergence in Rio de Janeiro during 2016. Viruses 2018; 10:v10110623. [PMID: 30424530 PMCID: PMC6266966 DOI: 10.3390/v10110623] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 12/19/2022] Open
Abstract
Currently, Brazil lives a triple arboviruses epidemic (DENV, ZIKV and CHIKV) making the differential diagnosis difficult for health professionals. Here, we aimed to investigate chikungunya cases and the possible occurrence of co-infections during the epidemic in Amapá (AP) that started in 2014 when the first autochthonous cases were reported and in Rio de Janeiro (RJ) in 2016. We further performed molecular characterization and genotyping of representative strains. In AP, 51.4% of the suspected cases were confirmed for CHIKV, 71.0% (76/107). Of those, 24 co-infections by CHIKV/DENV, two by CHIKV/DENV-1, and two by CHIKV/DENV-4 were observed. In RJ, 76.9% of the suspected cases were confirmed for CHIKV and co-infections by CHIKV/DENV (n = 8) and by CHIKV/ZIKV (n = 17) were observed. Overall, fever, arthralgia, myalgia, prostration, edema, exanthema, conjunctival hyperemia, lower back pain, dizziness, nausea, retroorbital pain, and anorexia were the predominating chikungunya clinical symptoms described. All strains analyzed from AP belonged to the Asian genotype and no amino acid changes were observed. In RJ, the East-Central-South-African genotype (ECSA) circulation was demonstrated and no E1-A226V mutation was observed. Despite this, an E1-V156A substitution was characterized in two samples and for the first time, the E1-K211T mutation was reported in all samples analyzed.
Collapse
Affiliation(s)
| | | | | | - Paulo Vieira Damasco
- Rio-Laranjeiras Hospital, 22240-000 Rio de Janeiro, Brazil.
- Gaffrée Guinle University Hospital, Federal University of the State of Rio de Janeiro, 20270-003 Rio de Janeiro, Brazil.
- Pedro Ernesto University Hospital, University of the State of Rio de Janeiro, 20551-030 Rio de Janeiro, Brazil.
| | | | | | - Thaís Chouin-Carneiro
- Viral Immunology Laboratory, Oswaldo Cruz Institute, 21040-360 Rio de Janeiro, Brazil.
| | | | | | - Manoela Heringer
- Viral Immunology Laboratory, Oswaldo Cruz Institute, 21040-360 Rio de Janeiro, Brazil.
| | | | | | | | | | | | | |
Collapse
|
27
|
Mahroum N, Adawi M, Sharif K, Waknin R, Mahagna H, Bisharat B, Mahamid M, Abu-Much A, Amital H, Luigi Bragazzi N, Watad A. Public reaction to Chikungunya outbreaks in Italy-Insights from an extensive novel data streams-based structural equation modeling analysis. PLoS One 2018; 13:e0197337. [PMID: 29795578 PMCID: PMC5968406 DOI: 10.1371/journal.pone.0197337] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/28/2018] [Indexed: 11/19/2022] Open
Abstract
The recent outbreak of Chikungunya virus in Italy represents a serious public health concern, which is attracting media coverage and generating public interest in terms of Internet searches and social media interactions. Here, we sought to assess the Chikungunya-related digital behavior and the interplay between epidemiological figures and novel data streams traffic. Reaction to the recent outbreak was analyzed in terms of Google Trends, Google News and Twitter traffic, Wikipedia visits and edits, and PubMed articles, exploiting structural modelling equations. A total of 233,678 page-views and 150 edits on the Italian Wikipedia page, 3,702 tweets, 149 scholarly articles, and 3,073 news articles were retrieved. The relationship between overall Chikungunya cases, as well as autochthonous cases, and tweets production was found to be fully mediated by Chikungunya-related web searches. However, in the allochthonous/imported cases model, tweet production was not found to be significantly mediated by epidemiological figures, with web searches still significantly mediating tweet production. Inconsistent relationships were detected in mediation models involving Wikipedia usage as a mediator variable. Similarly, the effect between news consumption and tweets production was suppressed by the Wikipedia usage. A further inconsistent mediation was found in the case of the effect between Wikipedia usage and tweets production, with web searches as a mediator variable. When adjusting for the Internet penetration index, similar findings could be obtained, with the important exception that in the adjusted model the relationship between GN and Twitter was found to be partially mediated by Wikipedia usage. Furthermore, the link between Wikipedia usage and PubMed/MEDLINE was fully mediated by GN, differently from what was found in the unadjusted model. In conclusion-a significant public reaction to the current Chikungunya outbreak was documented. Health authorities should be aware of this, recognizing the role of new technologies for collecting public concerns and replying to them, disseminating awareness and avoid misleading information.
Collapse
Affiliation(s)
- Naim Mahroum
- Department of Medicine 'B', Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Mohammad Adawi
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefat, Israel
- Padeh and Ziv Medical Centers, Zefat, Israel
| | - Kassem Sharif
- Department of Medicine 'B', Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - Roy Waknin
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Hussein Mahagna
- Department of Medicine 'B', Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Bishara Bisharat
- Society for Health Promotion of the Arab Community, Nazareth, Israel
| | - Mahmud Mahamid
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefat, Israel
- Endoscopy Unit of the Nazareth Hospital EMMS, Nazareth, Israel
| | - Arsalan Abu-Much
- Department of Medicine 'B', Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Howard Amital
- Department of Medicine 'B', Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - Nicola Luigi Bragazzi
- Society for Health Promotion of the Arab Community, Nazareth, Israel
- School of Public Health, Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Abdulla Watad
- Department of Medicine 'B', Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
28
|
Cella E, Riva E, Salemi M, Spoto S, Vita S, Fogolari M, Angeletti S, Ciccozzi M. The new Chikungunya virus outbreak in Italy possibly originated from a single introduction from Asia. Pathog Glob Health 2017; 112:93-95. [PMID: 29182057 DOI: 10.1080/20477724.2017.1406565] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Eleonora Cella
- a Unit of Clinical of Laboratory Science , University Campus Bio-Medico of Rome , Rome , Italy.,b Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | - Elisabetta Riva
- c Unit of Virology , University Campus Bio-Medico of Rome , Rome , Italy
| | - Marco Salemi
- d Department of Pathology, Immunology and Laboratory Science, College of Medicine , University of Florida , Gainesville , FL , USA
| | - Silvia Spoto
- e Internal Medicine Department , University Campus Bio-Medico of Rome , Rome , Italy
| | - Serena Vita
- b Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | - Marta Fogolari
- a Unit of Clinical of Laboratory Science , University Campus Bio-Medico of Rome , Rome , Italy
| | - Silvia Angeletti
- a Unit of Clinical of Laboratory Science , University Campus Bio-Medico of Rome , Rome , Italy
| | - Massimo Ciccozzi
- a Unit of Clinical of Laboratory Science , University Campus Bio-Medico of Rome , Rome , Italy
| |
Collapse
|
29
|
Glushakova LG, Alto BW, Kim MS, Bradley A, Yaren O, Benner SA. Detection of chikungunya viral RNA in mosquito bodies on cationic (Q) paper based on innovations in synthetic biology. J Virol Methods 2017; 246:104-111. [PMID: 28457785 PMCID: PMC5967251 DOI: 10.1016/j.jviromet.2017.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/23/2017] [Indexed: 10/19/2022]
Abstract
Chikungunya virus (CHIKV) represents a growing and global concern for public health that needs inexpensive and convenient methods to collect mosquitoes as potential carriers so that they can be preserved, stored and transported for later and/or remote analysis. Reported here is a cellulose-based paper, derivatized with quaternary ammonium groups ("Q-paper") that meets these needs. In a series of tests, infected mosquito bodies were squashed directly on Q-paper. Aqueous ammonia was then added on the mosquito bodies to release viral RNA that adsorbed on the cationic surface via electrostatic interactions. The samples were then stored (frozen) or transported. For analysis, the CHIKV nucleic acids were eluted from the Q-paper and PCR amplified in a workflow, previously developed, that also exploited two nucleic acid innovations, ("artificially expanded genetic information systems", AEGIS, and "self-avoiding molecular recognition systems", SAMRS). The amplicons were then analyzed by a Luminex hybridization assay. This procedure detected CHIKV RNA, if present, in each infected mosquito sample, but not in non-infected counterparts or ddH2O samples washes, with testing one week or ten months after sample collection.
Collapse
Affiliation(s)
- Lyudmyla G Glushakova
- Firebird Biomolecular Sciences LLC,13709 Progress Blvd, Box 17, Alachua, FL 32615, United States
| | - Barry W Alto
- Florida Medical Entomology Laboratory, University of Florida, 200 9th Street SE, Vero Beach, FL 32962, United States
| | - Myong Sang Kim
- Firebird Biomolecular Sciences LLC,13709 Progress Blvd, Box 17, Alachua, FL 32615, United States
| | - Andrea Bradley
- Firebird Biomolecular Sciences LLC,13709 Progress Blvd, Box 17, Alachua, FL 32615, United States
| | - Ozlem Yaren
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Box 7, Alachua, FL 32615, United States
| | - Steven A Benner
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd, Box 7, Alachua, FL 32615, United States; Firebird Biomolecular Sciences LLC,13709 Progress Blvd, Box 17, Alachua, FL 32615, United States.
| |
Collapse
|
30
|
Antiviral activity of [1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones against chikungunya virus targeting the viral capping nsP1. Antiviral Res 2017; 144:216-222. [PMID: 28619679 DOI: 10.1016/j.antiviral.2017.06.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/27/2017] [Accepted: 06/08/2017] [Indexed: 12/27/2022]
Abstract
Chikungunya virus (CHIKV) is a re-emerging alphavirus transmitted to humans by Aedes mosquitoes. Since 2005, CHIKV has been spreading worldwide resulting in epidemics in Africa, the Indian Ocean islands, Asia and more recently in the Americas. CHIKV is thus considered as a global health concern. There is no specific vaccine or drug available for the treatment of this incapacitating viral infection. We previously identified 3-aryl-[1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones as selective inhibitors of CHIKV replication and proposed the viral capping enzyme nsP1 as a target. This work describes the synthesis of novel series of related compounds carrying at the aryl moiety a methylketone and related oximes combined with an ethyl or an ethyl-mimic at 5-position of the triazolopyrimidinone. These compounds have shown antiviral activity against different CHIKV isolates in the very low μM range based on both virus yield reduction and virus-induced cell-killing inhibition assays. Moreover, these antivirals inhibit the in vitro guanylylation of alphavirus nsP1, as determined by Western blot using an anti-cap antibody. Thus, the data obtained seem to indicate that the anti-CHIKV activity might be related to the inhibition of this crucial step in the viral RNA capping machinery.
Collapse
|
31
|
Abdelnabi R, Neyts J, Delang L. Chikungunya virus infections: time to act, time to treat. Curr Opin Virol 2017; 24:25-30. [DOI: 10.1016/j.coviro.2017.03.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/16/2017] [Accepted: 03/30/2017] [Indexed: 01/31/2023]
|
32
|
Kiely P, Gambhir M, Cheng AC, McQuilten ZK, Seed CR, Wood EM. Emerging Infectious Diseases and Blood Safety: Modeling the Transfusion-Transmission Risk. Transfus Med Rev 2017; 31:154-164. [PMID: 28545882 PMCID: PMC7126009 DOI: 10.1016/j.tmrv.2017.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 12/28/2022]
Abstract
While the transfusion-transmission (TT) risk associated with the major transfusion-relevant viruses such as HIV is now very low, during the last 20 years there has been a growing awareness of the threat to blood safety from emerging infectious diseases, a number of which are known to be, or are potentially, transfusion transmissible. Two published models for estimating the transfusion-transmission risk from EIDs, referred to as the Biggerstaff-Petersen model and the European Upfront Risk Assessment Tool (EUFRAT), respectively, have been applied to several EIDs in outbreak situations. We describe and compare the methodological principles of both models, highlighting their similarities and differences. We also discuss the appropriateness of comparing results from the two models. Quantitating the TT risk of EIDs can inform decisions about risk mitigation strategies and their cost-effectiveness. Finally, we present a qualitative risk assessment for Zika virus (ZIKV), an EID agent that has caused several outbreaks since 2007. In the latest and largest ever outbreak, several probable cases of transfusion-transmission ZIKV have been reported, indicating that it is transfusion-transmissible and therefore a risk to blood safety. We discuss why quantitative modeling the TT risk of ZIKV is currently problematic. During the last 20 years there has been a growing awareness of the threat to blood safety from emerging infectious diseases (EIDs), a number of which are known to be, or are potentially, transfusion-transmissible. The transfusion-transmission risk of EID agents can be estimated by risk modeling which can form an important part of risk assessments and inform decisions regarding risk mitigation strategies. We describe and compare the methodological principles of two published risk models for estimating the transfusion transmission risk of EIDs. We use Zika virus as a case study to demonstrate that reliable risk modeling for EID agents can be problematic due to the uncertainty of the input parameters.
Collapse
Affiliation(s)
- Philip Kiely
- Australian Red Cross Blood Service, Melbourne, VIC, Australia; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
| | - Manoj Gambhir
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Allen C Cheng
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia; Department of Infectious Diseases, Alfred Health, Australia
| | - Zoe K McQuilten
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Clive R Seed
- Australian Red Cross Blood Service, Melbourne, VIC, Australia
| | - Erica M Wood
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
33
|
Characterization of β-d- N4-Hydroxycytidine as a Novel Inhibitor of Chikungunya Virus. Antimicrob Agents Chemother 2017; 61:AAC.02395-16. [PMID: 28137799 DOI: 10.1128/aac.02395-16] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/23/2017] [Indexed: 12/31/2022] Open
Abstract
Chikungunya virus (CHIKV) represents a reemerging global threat to human health. Recent outbreaks across Asia, Europe, Africa, and the Caribbean have prompted renewed scientific interest in this mosquito-borne alphavirus. There are currently no vaccines against CHIKV, and treatment has been limited to nonspecific antiviral agents, with suboptimal outcomes. Herein, we have identified β-d-N4-hydroxycytidine (NHC) as a novel inhibitor of CHIKV. NHC behaves as a pyrimidine ribonucleoside and selectively inhibits CHIKV replication in cell culture.
Collapse
|
34
|
Beesu M, Salyer ACD, Brush MJH, Trautman KL, Hill JK, David SA. Identification of High-Potency Human TLR8 and Dual TLR7/TLR8 Agonists in Pyrimidine-2,4-diamines. J Med Chem 2017; 60:2084-2098. [PMID: 28146629 DOI: 10.1021/acs.jmedchem.6b01860] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The induction of toll-like receptor 7 (TLR7)-dependent type I interferons (IFN-α/β) from plasmacytoid dendritic cells as well as the production of TLR8-dependent type II interferon (IFN-γ), TNF-α, and IL-12 in myeloid dendritic cells are of importance in generating T helper-1 biased adaptive immune responses. In an effort to identify novel dual TLR7/TLR8-active compounds, we undertook structure-activity relationship studies in pyrimidine 2,4-diamines, focusing on substituents at C5. Several analogues substituted with aminopropyl appendages at C5 displayed dominant TLR8-agonistic activity. N4-Butyl-6-methyl-5-(3-morpholinopropyl)pyrimidine-2,4-diamine was found to be a very potent dual TLR7/TLR8 agonist. Employing novel cytokine reporter cell assays, we verified that potency at TLR7 correlates with IFN-α/β production in human blood, whereas IFN-γ and TNF-α induction is largely TLR8-dependent. Dual TLR7/TLR8 agonists markedly upregulate CD80 expression in multiple dendritic cell subsets, providing insight into the immunological basis for the superior adjuvantic properties of such innate immune stimuli.
Collapse
Affiliation(s)
- Mallesh Beesu
- Department of Medicinal Chemistry, University of Minnesota , Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Alex C D Salyer
- Department of Medicinal Chemistry, University of Minnesota , Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Michael J H Brush
- Department of Medicinal Chemistry, University of Minnesota , Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Kathryn L Trautman
- Department of Medicinal Chemistry, University of Minnesota , Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Justin K Hill
- Department of Medicinal Chemistry, University of Minnesota , Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Sunil A David
- Department of Medicinal Chemistry, University of Minnesota , Sixth Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
35
|
Exon-Enriched Libraries Reveal Large Genic Differences Between Aedes aegypti from Senegal, West Africa, and Populations Outside Africa. G3-GENES GENOMES GENETICS 2017; 7:571-582. [PMID: 28007834 PMCID: PMC5295602 DOI: 10.1534/g3.116.036053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aedes aegypti is one of the most studied mosquito species, and the principal vector of several arboviruses pathogenic to humans. Recently failure to oviposit, low fecundity, and poor egg-to-adult survival were observed when Ae. aegypti from Senegal (SenAae) West Africa were crossed with Ae. aegypti (Aaa) from outside of Africa, and in SenAae intercrosses. Fluorescent in situ hybridization analyses indicated rearrangements on chromosome 1, and pericentric inversions on chromosomes 2 and 3. Herein, high throughput sequencing (HTS) of exon-enriched libraries was used to compare chromosome-wide genetic diversity among Aaa collections from rural Thailand and Mexico, a sylvatic collection from southeastern Senegal (PK10), and an urban collection from western Senegal (Kaolack). Sex-specific polymorphisms were analyzed in Thailand and PK10 to assess genetic differences between sexes. Expected heterozygosity was greatest in SenAae FST distributions of 15,735 genes among all six pairwise comparisons of the four collections indicated that Mexican and Thailand collections are genetically similar, while FST distributions between PK10 and Kaolack were distinct. All four comparisons of SenAae with Aaa indicated extreme differentiation. FST was uniform between sexes across all chromosomes in Thailand, but were different, especially on the sex autosome 1, in PK10. These patterns correlate with the reproductive isolation noted earlier. We hypothesize that cryptic Ae. aegypti taxa may exist in West Africa, and the large genic differences between Aaa and SenAae detected in the present study have accumulated over a long period following the evolution of chromosome rearrangements in allopatric populations that subsequently cause reproductive isolation when these populations became sympatric.
Collapse
|
36
|
Cella E, Ceccarelli G, Vita S, Lai A, Presti AL, Blasi A, Palco ML, Guarino MPL, Zehender G, Angeletti S, Ciccozzi M. First epidemiological and phylogenetic analysis of Hepatitis B virus infection in migrants from Mali. J Med Virol 2016; 89:639-646. [PMID: 27576107 DOI: 10.1002/jmv.24671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2016] [Indexed: 12/17/2022]
Abstract
The armed conflict in Mali caused a migration crisis since 2012. Most Malian refugees were in Italy. In Sub-Saharan Africa, the seroprevalence of anti-HBV antibodies is particularly high. Genotype E is the most prevalent throughout a crescent covering area from Angola to Senegal, including Mali. We report 16 HBV positive individual from 136 Malian asylum seekers in order to investigate the genetic diversity of HBV in this population. Sequencing and phylogenetic analysis has been used. The HBV genotype E isolates from Mali did not cluster together but were intermixed, with the other African sequences. Only three supported clade were evidenced and closely related to sequences from Burkina Faso. The estimated evolutionary rate was 9.29 × 104 . The root of the tree dated back to February 2008 in (95% HPD: 2006-2011). From this ancestor six main statistically supported clusters (pp > 0.80) were identified. The most recent Clade dated back to May 2015. The BSP showed that the effective number of infections softly increased from 2011 to the 2015. Phylogenetic analysis helped in understanding how two on sixteen individuals, have been infected in Italy, and give an important improvement in prevention campaigns and monitoring of the viral infection in migrants. J. Med. Virol. 89:639-646, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eleonora Cella
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Epidemiology Unit, Istituto Superiore di Sanità, Rome, Italy.,Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Giancarlo Ceccarelli
- Public Health and Infectious Diseases, Sapienza University, Rome, Italy.,Migrant Health Research Organisation (Mi-HeRO) - Centro di Ricerca sulla Salute delle Popolazioni Mobili e Globale, Italy
| | - Serena Vita
- Public Health and Infectious Diseases, Sapienza University, Rome, Italy.,Migrant Health Research Organisation (Mi-HeRO) - Centro di Ricerca sulla Salute delle Popolazioni Mobili e Globale, Italy
| | - Alessia Lai
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Alessandra Lo Presti
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Epidemiology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Aletheia Blasi
- Clinical Pathology and Microbiology Unit, University Campus Bio-Medico of Rome, Italy
| | - Maurizio Lo Palco
- Sanitary Bureau of Asylum Seekers Center of Castelnuovo di Porto, Rome, Italy.,Auxilium Società Cooperativa Sociale, Senise (PZ), Italy
| | | | - Gianguglielmo Zehender
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Silvia Angeletti
- Clinical Pathology and Microbiology Unit, University Campus Bio-Medico of Rome, Italy
| | - Massimo Ciccozzi
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Epidemiology Unit, Istituto Superiore di Sanità, Rome, Italy.,Clinical Pathology and Microbiology Unit, University Campus Bio-Medico of Rome, Italy
| | | |
Collapse
|
37
|
Comparative analysis of the anti-chikungunya virus activity of novel bryostatin analogs confirms the existence of a PKC-independent mechanism. Biochem Pharmacol 2016; 120:15-21. [PMID: 27664855 DOI: 10.1016/j.bcp.2016.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/20/2016] [Indexed: 11/22/2022]
Abstract
Previously, we reported that salicylate-based analogs of bryostatin protect cells from chikungunya virus (CHIKV)-induced cell death. Interestingly, 'capping' the hydroxyl group at C26 of a lead bryostatin analog, a position known to be crucial for binding to and modulation of protein kinase C (PKC), did not abrogate the anti-CHIKV activity of the scaffold, putatively indicating the involvement of a pathway independent of PKC. The work detailed in this study demonstrates that salicylate-derived analog 1 and two capped analogs (2 and 3) are not merely cytoprotective compounds, but act as selective and specific inhibitors of CHIKV replication. Further, a detailed comparative analysis of the effect of the non-capped versus the two capped analogs revealed that compound 1 acts both at early and late stages in the chikungunya virus replication cycle, while the capped analogs only interfere with a later stage process. Co-dosing with the PKC inhibitors sotrastaurin and Gö6976 counteracts the antiviral activity of compound 1 without affecting that of capped analogs 2 and 3, providing further evidence that the latter elicit their anti-CHIKV activity independently of PKC. Remarkably, treatment of CHIKV-infected cells with a combination of compound 1 and a capped analog resulted in a pronounced synergistic antiviral effect. Thus, these salicylate-based bryostatin analogs can inhibit CHIKV replication through a novel, yet still elusive, non-PKC dependent pathway.
Collapse
|