1
|
Girault G, Freddi L, Jay M, Perrot L, Dremeau A, Drapeau A, Delannoy S, Fach P, Ferreira Vicente A, Mick V, Ponsart C, Djokic V. Combination of in silico and molecular techniques for discrimination and virulence characterization of marine Brucella ceti and Brucella pinnipedialis. Front Microbiol 2024; 15:1437408. [PMID: 39360323 PMCID: PMC11444999 DOI: 10.3389/fmicb.2024.1437408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Mammals are the main hosts for Brucella sp., agents of worldwide zoonosis. Marine cetaceans and pinnipeds can be infected by Brucella ceti and B. pinnipedialis, respectively. Besides classical bacteriological typing, molecular approaches such as MLVA, MLSA, and whole-genome sequencing (WGS) can differentiate these species but are cumbersome to perform. Methods We compared the DNA and genome sequences of 12 strains isolated from nine marine mammals, with highly zoonotic B. melitensis, B. abortus, and B. suis, and the publicly available genomes of B. ceti and B. pinnipedialis. In silico pipelines were used to detect the antimicrobial resistance (AMR), plasmid, and virulence genes (VGs) by screening six open-source and one home-made library. Results and discussion Our results show that easier-to-use HRM-PCR, Bruce-ladder, and Suis-ladder can separate marine Brucella sp., and the results are fully concordant with other molecular methods, such as WGS. However, the restriction fragment length polymorphism (RFLP) method cannot discriminate between B. pinnipedialis and B. ceti B1-94-like isolates. MLVA-16 results divided the investigated strains into three clades according to their preferred host, which was confirmed in WGS. In silico analysis did not find any AMR and plasmid genes, suggesting antimicrobial susceptibility of marine Brucella, while the presence of the VGs btpA gene was variable dependent on the clade. Conclusion The HRM-PCR and Suis-ladder are quick, easy, and cost-effective methods to identify marine Brucella sp. Moreover, in silico genome analyses can give useful insights into the genetic virulence and pathogenicity potential of marine Brucella strains.
Collapse
Affiliation(s)
- Guillaume Girault
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Luca Freddi
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Maryne Jay
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Ludivine Perrot
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Alexandre Dremeau
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Antoine Drapeau
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Sabine Delannoy
- IdentyPath Genomics Platform, Food Safety Laboratory, ANSES, Maisons-Alfort, France
| | - Patrick Fach
- IdentyPath Genomics Platform, Food Safety Laboratory, ANSES, Maisons-Alfort, France
| | - Acacia Ferreira Vicente
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Virginie Mick
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Claire Ponsart
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| | - Vitomir Djokic
- Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France
| |
Collapse
|
2
|
Mabe L, Onyiche TE, Thekisoe O, Suleman E. Accuracy of molecular diagnostic methods for the detection of bovine brucellosis: A systematic review and meta-analysis. Vet World 2022; 15:2151-2163. [PMID: 36341063 PMCID: PMC9631377 DOI: 10.14202/vetworld.2022.2151-2163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/21/2022] [Indexed: 11/27/2022] Open
Abstract
Background and Aim: Bovine brucellosis is a disease of global socio-economic importance caused by Brucella abortus. Diagnosis is mainly based on bacterial culture and serology. However, these methods often lack sensitivity and specificity. A range of molecular diagnostic methods has been developed to address these challenges. Therefore, this study aims to investigate the diagnostic accuracy of molecular tools, in comparison to gold standard bacterial isolation and serological assays for the diagnosis of bovine brucellosis. Materials and Methods: The systematic review and meta-analysis were conducted based on analyses of peer-reviewed journal articles published between January 1, 1990, and June 6, 2020, in the PubMed, Science Direct, Scopus, and Springer Link databases. Data were extracted from studies reporting the use of molecular diagnostic methods for the detection of B. abortus infections in animals according to Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. The quality of included journal articles was assessed using the quality assessment of diagnostic-accuracy studies assessment tool and meta-analysis was carried out using Review Manager. Results: From a total of 177 studies, only 26 articles met the inclusion criteria based on PRISMA guidelines. Data from 35 complete studies were included in the meta-analysis and used to construct 2 × 2 contingency tables. Improved diagnostic performance was observed when tissue (sensitivity 92.7% [95% confidence interval (CI) 82.0–98.0%]) and serum samples (sensitivity 91.3% [95% CI 86.0–95.0%]) were used, while the BruAb2_0168 locus was the gene of preference for optimal assay performance (sensitivity 92.3% [95% CI 87.0–96.0%] and specificity 99.3% [95% CI 98.0–100.0%]). Loop-mediated isothermal amplification (LAMP) had a higher diagnostic accuracy than polymerase chain reaction (PCR) and real-time quantitative PCR with sensitivity of 92.0% (95% CI 78.0–98.0%) and specificity of 100.0% (95% CI 97.0–100.0%). Conclusion: The findings of this study assign superior diagnostic performance in the detection of B. abortus to LAMP. However, due to limitations associated with decreased specificity and a limited number of published articles on LAMP, the alternative use of PCR-based assays including those reported in literature is recommended while the use of LAMP for the detection of bovine brucellosis gains traction and should be evaluated more comprehensively in future.
Collapse
Affiliation(s)
- Lerato Mabe
- NextGen Health Cluster, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria, 0001, South Africa; Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
| | - ThankGod E. Onyiche
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa; Department of Veterinary Parasitology and Entomology, University of Maiduguri, P. M. B. 1069, Maiduguri 600230, Nigeria
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Essa Suleman
- NextGen Health Cluster, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria, 0001, South Africa
| |
Collapse
|
3
|
Moreno E, Blasco JM, Letesson JJ, Gorvel JP, Moriyón I. Pathogenicity and Its Implications in Taxonomy: The Brucella and Ochrobactrum Case. Pathogens 2022; 11:377. [PMID: 35335701 PMCID: PMC8954888 DOI: 10.3390/pathogens11030377] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
The intracellular pathogens of the genus Brucella are phylogenetically close to Ochrobactrum, a diverse group of free-living bacteria with a few species occasionally infecting medically compromised patients. A group of taxonomists recently included all Ochrobactrum organisms in the genus Brucella based on global genome analyses and alleged equivalences with genera such as Mycobacterium. Here, we demonstrate that such equivalencies are incorrect because they overlook the complexities of pathogenicity. By summarizing Brucella and Ochrobactrum divergences in lifestyle, structure, physiology, population, closed versus open pangenomes, genomic traits, and pathogenicity, we show that when they are adequately understood, they are highly relevant in taxonomy and not unidimensional quantitative characters. Thus, the Ochrobactrum and Brucella differences are not limited to their assignments to different "risk-groups", a biologically (and hence, taxonomically) oversimplified description that, moreover, does not support ignoring the nomen periculosum rule, as proposed. Since the epidemiology, prophylaxis, diagnosis, and treatment are thoroughly unrelated, merging free-living Ochrobactrum organisms with highly pathogenic Brucella organisms brings evident risks for veterinarians, medical doctors, and public health authorities who confront brucellosis, a significant zoonosis worldwide. Therefore, from taxonomical and practical standpoints, the Brucella and Ochrobactrum genera must be maintained apart. Consequently, we urge researchers, culture collections, and databases to keep their canonical nomenclature.
Collapse
Affiliation(s)
- Edgardo Moreno
- Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40101, Costa Rica
| | - José María Blasco
- Centro de Investigación y Tecnología Agroalimentaria, Instituto Agroalimentario de Aragón, Universidad de Zaragoza, 50059 Zaragoza, Spain;
| | - Jean Jacques Letesson
- Unité de Recherche en Biologie des Microorganismes, Faculty of Science, University of Namur, 5000 Namur, Belgium;
| | - Jean Pierre Gorvel
- Centre d’Immunologie de Marseille-Luminy, Aix-Marseille Université, CNRS, INSERM, CIML, 13009 Marseille, France
| | - Ignacio Moriyón
- Instituto de Salud Tropical y Departamento de Microbiología y Parasitología, Universidad de Navarra, 31008 Pamplona, Spain;
| |
Collapse
|
4
|
Khurana SK, Sehrawat A, Tiwari R, Prasad M, Gulati B, Shabbir MZ, Chhabra R, Karthik K, Patel SK, Pathak M, Iqbal Yatoo M, Gupta VK, Dhama K, Sah R, Chaicumpa W. Bovine brucellosis - a comprehensive review. Vet Q 2021; 41:61-88. [PMID: 33353489 PMCID: PMC7833053 DOI: 10.1080/01652176.2020.1868616] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Brucellosis is a zoonotic disease of great animal welfare and economic implications worldwide known since ancient times. The emergence of brucellosis in new areas as well as transmission of brucellosis from wild and domestic animals is of great significance in terms of new epidemiological dimensions. Brucellosis poses a major public health threat by the consumption of non-pasteurized milk and milk products produced by unhygienic dairy farms in endemic areas. Regular and meticulous surveillance is essentially required to determine the true picture of brucellosis especially in areas with continuous high prevalence. Additionally, international migration of humans, animals and trade of animal products has created a challenge for disease spread and diagnosis in non-endemic areas. Isolation and identification remain the gold standard test, which requires expertise. The advancement in diagnostic strategies coupled with screening of newly introduced animals is warranted to control the disease. Of note, the diagnostic value of miRNAs for appropriate detection of B. abortus infection has been shown. The most widely used vaccine strains to protect against Brucella infection and related abortions in cattle are strain 19 and RB51. Moreover, it is very important to note that no vaccine, which is highly protective, safe and effective is available either for bovines or human beings. Research results encourage the use of bacteriophage lysates in treatment of bovine brucellosis. One Health approach can aid in control of this disease, both in animals and man.
Collapse
Affiliation(s)
| | - Anju Sehrawat
- ICAR-Central Institute for Research on Buffaloes, Hisar, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadyaya Pashu Chikitsa Vigyan Vishwavidyalya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, India
| | - Minakshi Prasad
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, India
| | - Baldev Gulati
- ICAR-National Research Centre on Equine, Hisar, India
| | - Muhammad Zubair Shabbir
- Quality Operations Laboratory, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Rajesh Chhabra
- Department of Veterinary Microbiology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamilnadu, India
| | - Shailesh Kumar Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Mamta Pathak
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Vivek Kumar Gupta
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Ranjit Sah
- Department of Microbiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu, Nepal
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Rajendhran J. Genomic insights into Brucella. INFECTION GENETICS AND EVOLUTION 2020; 87:104635. [PMID: 33189905 DOI: 10.1016/j.meegid.2020.104635] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 01/21/2023]
Abstract
Brucellosis is a zoonotic disease caused by certain species of Brucella. Each species has its preferred host animal, though it can infect other animals too. For a longer period, only six classical species were recognized in the genus Brucella. No vaccine is available for human brucellosis. Therefore, human brucellosis can be controlled only by controlling brucellosis in animals. The genus is now expanding with the newly isolated atypical strains from various animals, including marine mammals. Presently, 12 species of Brucella have been recognized. The first genome of Brucella was released in 2002, and today, we have more than 1500 genomes of Brucella spp. isolated worldwide. Multiple genome sequences are available for the major zoonotic species, B. abortus, B. melitensis, and B. suis. The Brucella genome has two chromosomes with the approximate sizes of 2.1 and 1.2 Mbp. The genome of Brucella is highly conserved across all the species at the nucleotide level. One of the unanswered questions is what makes host preference in different species of Brucella. Here, I summarize the recent advancements in the Brucella genomics research.
Collapse
Affiliation(s)
- Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India.
| |
Collapse
|
6
|
Association between the IL-10 and IL-6 polymorphisms and brucellosis susceptibility: a meta-analysis. BMC MEDICAL GENETICS 2020; 21:63. [PMID: 32228609 PMCID: PMC7104517 DOI: 10.1186/s12881-020-01006-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 03/20/2020] [Indexed: 02/07/2023]
Abstract
Background Brucellosis is a quite normal zoonotic infection, which is caused by immediate contact with animals infected with Brucella or its products. IL-10 (− 1082 G/A, − 819 C/T, − 592C/A) and IL-6 -174 G/C polymorphisms have a great relationship with IL-10 and IL-6 production, which brings about Brucellosis pathogenesis and development. So far, the results of published literatures were controversial. Now, we perform a meta-analysis in different ethnic populations to get a more precise estimate of above polymorphisms with Brucellosis susceptibility. Methods Both OR and corresponding 95%CI were enrolled to make an assessment of the association strength through extracting genotyping frequency of cases and controls. The χ2-test based Q-statistic and I2 statistics were applied. If there was no evident heterogeneity, the fixed-effects model would be applied. If not, the random-effects model would be used. Results The significant associations were only found in Asian population of − 819 loci under three genetic models as follows: (Allele model: OR = 0.60, 95%CI = 0.44–0.82, P = 0.001), (homozygote comparison: OR = 0.24, 95%CI = 0.09–0.62, P = 0.003), (recessive genetic model: OR = 0.22, 95%CI = 0.05–0.91, P = 0.036). Conclusion In conclusion, IL-10 − 819 loci polymorphism contributes no risk to Caucasian population but may be associated with decreased risk in Asian population. And IL-10 -1082 G/A, 592 loci and IL-6 -174 G/C polymorphism are not associated with Brucellosis risk.
Collapse
|
7
|
Pelerito A, Nunes A, Núncio MS, Gomes JP. Genome-scale approach to study the genetic relatedness among Brucella melitensis strains. PLoS One 2020; 15:e0229863. [PMID: 32150564 PMCID: PMC7062273 DOI: 10.1371/journal.pone.0229863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/15/2020] [Indexed: 11/18/2022] Open
Abstract
Brucellosis is an important zoonotic disease that affects both humans and animals. To date, laboratory surveillance is still essentially based on the traditional MLVA-16 methodology and the associated epidemiological information is frequently scarce. Our goal was to contribute to the improvement of Brucella spp. surveillance through the implementation of a whole genome sequencing (WGS) approach. We created a curated ready-to-use species-specific wgMLST scheme enrolling a panel of 2656 targets (http://doi.org/10.5281/zenodo.3575026) and used this schema to perform a retrospective analysis of the genetic relatedness among B. melitensis strains causing human infection in Portugal (a country where brucellosis is an endemic disease) from 2010 to 2018. The strains showed a phylogenetic clustering within genotype II (25 out of 36) and IV (4 out of 36), and shared clades with strains isolated from countries with which Portugal has intense food trading, tourism and similar eating habits, such as Spain, Italy and Greece. In addition, our results point to the identification of strong associations between B. melitensis strains, likely underlying missed "outbreaks" as 22 out of the 36 strains showed genetic linkage with others. In fact, the applied gene-by-gene approach grouped these strains into six genetic clusters each one containing putative epidemiological links. Nevertheless, more studies will be needed in order to define the appropriate range of cut-offs (probable non-static cut-offs) that best illustrate the association between genetic linkage and epidemiological information and may serve as alerts for the health authorities. The release of this freely available and scalable schema contributes to the required technological transition for laboratorial surveillance of brucellosis and will facilitate the assessment of ongoing and future outbreaks in order to prevent the transmission spread.
Collapse
Affiliation(s)
- Ana Pelerito
- Department of Infectious Diseases, Emergency Response and Biopreparedness Unit, National Institute of Health, Lisbon, Portugal
| | - Alexandra Nunes
- Department of Infectious Diseases, Bioinformatics Unit, National Institute of Health (INSA), Lisbon, Portugal
| | - Maria Sofia Núncio
- Department of Infectious Diseases, Emergency Response and Biopreparedness Unit, National Institute of Health, Lisbon, Portugal
| | - João Paulo Gomes
- Department of Infectious Diseases, Bioinformatics Unit, National Institute of Health (INSA), Lisbon, Portugal
| |
Collapse
|