1
|
Ishengoma DS, Mandara CI, Madebe RA, Warsame M, Ngasala B, Kabanywanyi AM, Mahende MK, Kamugisha E, Kavishe RA, Muro F, Mandike R, Mkude S, Chacky F, Njau R, Martin T, Mohamed A, Bailey JA, Fola AA. Microsatellites reveal high polymorphism and high potential for use in anti-malarial efficacy studies in areas with different transmission intensities in mainland Tanzania. Malar J 2024; 23:79. [PMID: 38491359 PMCID: PMC10943981 DOI: 10.1186/s12936-024-04901-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Tanzania is currently implementing therapeutic efficacy studies (TES) in areas of varying malaria transmission intensities as per the World Health Organization (WHO) recommendations. In TES, distinguishing reinfection from recrudescence is critical for the determination of anti-malarial efficacy. Recently, the WHO recommended genotyping polymorphic coding genes, merozoite surface proteins 1 and 2 (msp1 and msp2), and replacing the glutamate-rich protein (glurp) gene with one of the highly polymorphic microsatellites in Plasmodium falciparum to adjust the efficacy of antimalarials in TES. This study assessed the polymorphisms of six neutral microsatellite markers and their potential use in TES, which is routinely performed in Tanzania. METHODS Plasmodium falciparum samples were obtained from four TES sentinel sites, Kibaha (Pwani), Mkuzi (Tanga), Mlimba (Morogoro) and Ujiji (Kigoma), between April and September 2016. Parasite genomic DNA was extracted from dried blood spots on filter papers using commercial kits. Genotyping was done using six microsatellites (Poly-α, PfPK2, TA1, C3M69, C2M34 and M2490) by capillary method, and the data were analysed to determine the extent of their polymorphisms and genetic diversity at the four sites. RESULTS Overall, 83 (88.3%) of the 94 samples were successfully genotyped (with positive results for ≥ 50.0% of the markers), and > 50.0% of the samples (range = 47.6-59.1%) were polyclonal, with a mean multiplicity of infection (MOI) ranging from 1.68 to 1.88 among the four sites. There was high genetic diversity but limited variability among the four sites based on mean allelic richness (RS = 7.48, range = 7.27-8.03, for an adjusted minimum sample size of 18 per site) and mean expected heterozygosity (He = 0.83, range = 0.80-0.85). Cluster analysis of haplotypes using STRUCTURE, principal component analysis, and pairwise genetic differentiation (FST) did not reveal population structure or clustering of parasites according to geographic origin. Of the six markers, Poly-α was the most polymorphic, followed by C2M34, TA1 and C3M69, while M2490 was the least polymorphic. CONCLUSION Microsatellite genotyping revealed high polyclonality and genetic diversity but no significant population structure. Poly-α, C2M34, TA1 and C3M69 were the most polymorphic markers, and Poly-α alone or with any of the other three markers could be adopted for use in TES in Tanzania.
Collapse
Affiliation(s)
- Deus S Ishengoma
- National Institute for Medical Research, Dar es Salaam, Tanzania.
- Faculty of Pharmaceutical Sciences, Monash University, Melbourne, Australia.
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| | - Celine I Mandara
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Rashid A Madebe
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | | | - Billy Ngasala
- Department of Parasitology, School of Public Health, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | | | | | - Erasmus Kamugisha
- Bugando Medical Centre, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Reginald A Kavishe
- Kilimanjaro Christian Medical Centre, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Florida Muro
- Kilimanjaro Christian Medical Centre, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Renata Mandike
- National Malaria Control Programme, Ministry of Health, Dodoma, Tanzania
| | - Sigsbert Mkude
- National Malaria Control Programme, Ministry of Health, Dodoma, Tanzania
| | - Frank Chacky
- National Malaria Control Programme, Ministry of Health, Dodoma, Tanzania
| | - Ritha Njau
- Malariologist and Public Health Specialist, Dar es Salaam, Tanzania
| | - Troy Martin
- HIV Vaccine Trials Network, Fred Hutch Cancer Research Centre, Seattle, WA, USA
| | - Ally Mohamed
- National Malaria Control Programme, Ministry of Health, Dodoma, Tanzania
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Abebe A Fola
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
2
|
Millat-Martínez P, Baro B, Kasian B, Lorry L, Sanz S, Wali C, Raulo S, Elizah A, Koleala T, Kaius-Ome M, Karl S, Mitjà O, Laman M, Pomat W, Bassat Q. A cross-sectional study to ascertain malaria prevalence among asymptomatic travellers arriving on the Lihir Group of Islands, Papua New Guinea: implications for elimination efforts. Malar J 2023; 22:364. [PMID: 38031175 PMCID: PMC10688477 DOI: 10.1186/s12936-023-04804-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The Lihir Islands of Papua New Guinea host a mining operation that has resulted in a mine-impacted zone (MIZ) with reduced malaria transmission and a substantial influx of mine employees, informal cross-country traders, returning locals, and visitors. Prevalence of malaria parasites was assessed in travellers arriving on the Lihir Group of Islands to evaluate the risk of parasite importation. METHODS In 2018, a cross-sectional study at the airport and main wharf was conducted, targeting asymptomatic travellers who had been away from Lihir for at least 12 days. Microscopy, rapid diagnostic tests (RDTs), and quantitative PCR (qPCR) were used to determine Plasmodium parasite prevalence, employing logistic regression models to identify factors associated with qPCR positivity. RESULTS 398 travellers arriving by plane and 402 arriving by boat were included. Both cohorts were significantly different. Mean age among travellers arriving by plane was 40.1 years (SD ± 10.1), 93% were male and 96% were employed at the mine. In contrast, among travellers arriving by boat, the mean age was 31.7 years (SD ± 14.0), 68% were male and 36% were employed at the mine. The prevalence of malaria infection among travellers arriving by plane was 1% by RDT and microscopy, and increased to 5% by qPCR. In contrast, those arriving by boat showed a prevalence of 8% by RDT and microscopy, and 17% by qPCR. Risk factors for infection were arriving by boat (OR 4.2; 95%CI 2.45,7.21), arriving from nearby provinces with high malaria incidence (OR 5.02; 95%CI 1.80, 14.01), and having been away from Lihir for 91 days or more (OR 4.15; 95%CI 2.58, 6.66). Being mine worker staying at the mine accommodation was related with less infection risk (OR 0.24; 95% CI 0.14, 0.43); while Lihirian residents returning from a trip, VFRs, or people with trading unrelated to mining had higher risks (p = 0.0066). CONCLUSIONS Travellers arriving by boat faced increased risk of malaria infection than those arriving by plane. This subpopulation poses an import risk to the MIZ and the rest of Lihir Islands. Screening of high-risk groups at wharfs, and collaboration with nearby Islands, could sustain reduced transmission and facilitate malaria elimination strategies.
Collapse
Affiliation(s)
| | - Bàrbara Baro
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.
| | - Bernadine Kasian
- Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Lina Lorry
- Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Sergi Sanz
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Chilaka Wali
- Lihir Malaria Elimination Programme, Lihir Island, Papua New Guinea
| | - Sylvia Raulo
- Lihir Malaria Elimination Programme, Lihir Island, Papua New Guinea
| | - Arthur Elizah
- Lihir Malaria Elimination Programme, Lihir Island, Papua New Guinea
| | - Tamarah Koleala
- Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Maria Kaius-Ome
- Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Stephan Karl
- Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Oriol Mitjà
- Fight Infectious Diseases Foundation, Hospital Germans Trias I Pujol, Badalona, Spain
- School of Medicine and Health Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic - Central University of Catalonia (UVic - UCC), Vic, Catalonia, Spain
- Lihir Medical Centre, International SOS, Lihir Island, Papua New Guinea
| | - Moses Laman
- Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - William Pomat
- Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Quique Bassat
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Barcelona, Spain
- Centro de Investigação Em Saúde de Manhiça (CISM), Maputo, Mozambique
- CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Fola AA, Moser KA, Aydemir O, Hennelly C, Kobayashi T, Shields T, Hamapumbu H, Musonda M, Katowa B, Matoba J, Stevenson JC, Norris DE, Thuma PE, Wesolowski A, Moss WJ, Bailey JA, Juliano JJ. Temporal and spatial analysis of Plasmodium falciparum genomics reveals patterns of parasite connectivity in a low-transmission district in Southern Province, Zambia. Malar J 2023; 22:208. [PMID: 37420265 PMCID: PMC10327325 DOI: 10.1186/s12936-023-04637-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Understanding temporal and spatial dynamics of malaria transmission will help to inform effective interventions and strategies in regions approaching elimination. Parasite genomics are increasingly used to monitor epidemiologic trends, including assessing residual transmission across seasons and importation of malaria into these regions. METHODS In a low and seasonal transmission setting of southern Zambia, a total of 441 Plasmodium falciparum samples collected from 8 neighbouring health centres between 2012 and 2018 were genotyped using molecular inversion probes (MIPs n = 1793) targeting a total of 1832 neutral and geographically informative SNPs distributed across the parasite genome. After filtering for quality and missingness, 302 samples and 1410 SNPs were retained and used for downstream population genomic analyses. RESULTS The analyses revealed most (67%, n = 202) infections harboured one clone (monogenomic) with some variation at local level suggesting low, but heterogenous malaria transmission. Relatedness identity-by-descent (IBD) analysis revealed variable distribution of IBD segments across the genome and 6% of pairs were highly-related (IBD ≥ 0.25). Some of the highly-related parasite populations persisted across multiple seasons, suggesting that persistence of malaria in this low-transmission region is fueled by parasites "seeding" across the dry season. For recent years, clusters of clonal parasites were identified that were dissimilar to the general parasite population, suggesting parasite populations were increasingly fragmented at small spatial scales due to intensified control efforts. Clustering analysis using PCA and t-SNE showed a lack of substantial parasite population structure. CONCLUSION Leveraging both genomic and epidemiological data provided comprehensive picture of fluctuations in parasite populations in this pre-elimination setting of southern Zambia over 7 years.
Collapse
Affiliation(s)
- Abebe A. Fola
- Department of Pathology and Laboratory Medicine, Brown University, 55 Claverick Street, Providence, RI 02906 USA
| | - Kara A. Moser
- University of North Carolina Institute for Global Health and Infectious Diseases, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - Ozkan Aydemir
- Department of Pathology and Laboratory Medicine, Brown University, 55 Claverick Street, Providence, RI 02906 USA
| | - Chris Hennelly
- University of North Carolina Institute for Global Health and Infectious Diseases, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - Tamaki Kobayashi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Timothy Shields
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | | | | | - Ben Katowa
- Macha Research Trust, Choma District, Choma, Zambia
| | | | | | - Douglas E. Norris
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | | | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - William J. Moss
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Jeffrey A. Bailey
- Department of Pathology and Laboratory Medicine, Brown University, 55 Claverick Street, Providence, RI 02906 USA
| | - Jonathan J. Juliano
- University of North Carolina Institute for Global Health and Infectious Diseases, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
- Division of Infectious Diseases, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - the Southern, Central Africa International Center of Excellence for Malaria Research (ICEMR)
- Department of Pathology and Laboratory Medicine, Brown University, 55 Claverick Street, Providence, RI 02906 USA
- University of North Carolina Institute for Global Health and Infectious Diseases, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
- Macha Research Trust, Choma District, Choma, Zambia
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
- Division of Infectious Diseases, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
4
|
Kattenberg JH, Fernandez-Miñope C, van Dijk NJ, Llacsahuanga Allcca L, Guetens P, Valdivia HO, Van geertruyden JP, Rovira-Vallbona E, Monsieurs P, Delgado-Ratto C, Gamboa D, Rosanas-Urgell A. Malaria Molecular Surveillance in the Peruvian Amazon with a Novel Highly Multiplexed Plasmodium falciparum AmpliSeq Assay. Microbiol Spectr 2023; 11:e0096022. [PMID: 36840586 PMCID: PMC10101074 DOI: 10.1128/spectrum.00960-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/02/2022] [Indexed: 02/24/2023] Open
Abstract
Molecular surveillance for malaria has great potential to support national malaria control programs (NMCPs). To bridge the gap between research and implementation, several applications (use cases) have been identified to align research, technology development, and public health efforts. For implementation at NMCPs, there is an urgent need for feasible and cost-effective tools. We designed a new highly multiplexed deep sequencing assay (Pf AmpliSeq), which is compatible with benchtop sequencers, that allows high-accuracy sequencing with higher coverage and lower cost than whole-genome sequencing (WGS), targeting genomic regions of interest. The novelty of the assay is its high number of targets multiplexed into one easy workflow, combining population genetic markers with 13 nearly full-length resistance genes, which is applicable for many different use cases. We provide the first proof of principle for hrp2 and hrp3 deletion detection using amplicon sequencing. Initial sequence data processing can be performed automatically, and subsequent variant analysis requires minimal bioinformatic skills using any tabulated data analysis program. The assay was validated using a retrospective sample collection (n = 254) from the Peruvian Amazon between 2003 and 2018. By combining phenotypic markers and a within-country 28-single-nucleotide-polymorphism (SNP) barcode, we were able to distinguish different lineages with multiple resistance haplotypes (in dhfr, dhps, crt and mdr1) and hrp2 and hrp3 deletions, which have been increasing in recent years. We found no evidence to suggest the emergence of artemisinin (ART) resistance in Peru. These findings indicate a parasite population that is under drug pressure but is susceptible to current antimalarials and demonstrate the added value of a highly multiplexed molecular tool to inform malaria strategies and surveillance systems. IMPORTANCE While the power of next-generation sequencing technologies to inform and guide malaria control programs has become broadly recognized, the integration of genomic data for operational incorporation into malaria surveillance remains a challenge in most countries where malaria is endemic. The main obstacles include limited infrastructure, limited access to high-throughput sequencing facilities, and the need for local capacity to run an in-country analysis of genomes at a large-enough scale to be informative for surveillance. In addition, there is a lack of standardized laboratory protocols and automated analysis pipelines to generate reproducible and timely results useful for relevant stakeholders. With our standardized laboratory and bioinformatic workflow, malaria genetic surveillance data can be readily generated by surveillance researchers and malaria control programs in countries of endemicity, increasing ownership and ensuring timely results for informed decision- and policy-making.
Collapse
Affiliation(s)
| | - Carlos Fernandez-Miñope
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Norbert J. van Dijk
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| | - Lidia Llacsahuanga Allcca
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Pieter Guetens
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| | - Hugo O. Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | | | - Eduard Rovira-Vallbona
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| | - Pieter Monsieurs
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| | - Christopher Delgado-Ratto
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anna Rosanas-Urgell
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| |
Collapse
|
5
|
Bourke C, Takashima E, Chan LJ, Dietrich MH, Mazhari R, White M, Sattabongkot J, Tham WH, Tsuboi T, Mueller I, Longley R. Comparison of total immunoglobulin G antibody responses to different protein fragments of Plasmodium vivax Reticulocyte binding protein 2b. Malar J 2022; 21:71. [PMID: 35246142 PMCID: PMC8896302 DOI: 10.1186/s12936-022-04085-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/13/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Plasmodium vivax is emerging as the dominant and prevalent species causing malaria in near-elimination settings outside of Africa. Hypnozoites, the dormant liver stage parasite of P. vivax, are undetectable to any currently available diagnostic test, yet are a major reservoir for transmission. Advances have been made to harness the naturally acquired immune response to identify recent exposure to P. vivax blood-stage parasites and, therefore, infer the presence of hypnozoites. This in-development diagnostic is currently able to detect infections within the last 9-months with 80% sensitivity and 80% specificity. Further work is required to optimize protein expression and protein constructs used for antibody detection. METHODS The antibody response against the top performing predictor of recent infection, P. vivax reticulocyte binding protein 2b (PvRBP2b), was tested against multiple fragments of different sizes and from different expression systems. The IgG induced against the recombinant PvRBP2b fragments in P. vivax infected individuals was measured at the time of infection and in a year-long observational cohort; both conducted in Thailand. RESULTS The antibody responses to some but not all different sized fragments of PvRBP2b protein are highly correlated with each other, significantly higher 1-week post-P. vivax infection, and show potential for use as predictors of recent P. vivax infection. CONCLUSIONS To achieve P. vivax elimination goals, novel diagnostics are required to aid in detection of hidden parasite reservoirs. PvRBP2b was previously shown to be the top candidate for single-antigen classification of recent P. vivax exposure and here, it is concluded that several alternative recombinant PvRBP2b fragments can achieve equal sensitivity and specificity at predicting recent P. vivax exposure.
Collapse
Affiliation(s)
- Caitlin Bourke
- The Walter and Eliza Hall Institute of Medical Research, 3052, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, 3052, Parkville, Australia
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Li-Jin Chan
- The Walter and Eliza Hall Institute of Medical Research, 3052, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, 3052, Parkville, Australia
| | - Melanie H Dietrich
- The Walter and Eliza Hall Institute of Medical Research, 3052, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, 3052, Parkville, Australia
| | - Ramin Mazhari
- The Walter and Eliza Hall Institute of Medical Research, 3052, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, 3052, Parkville, Australia
| | - Michael White
- Infectious Disease Epidemiology and Analytics G5 Unit, Institut Pasteur, Paris, France
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, 3052, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, 3052, Parkville, Australia
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Ivo Mueller
- The Walter and Eliza Hall Institute of Medical Research, 3052, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, 3052, Parkville, Australia
| | - Rhea Longley
- The Walter and Eliza Hall Institute of Medical Research, 3052, Parkville, Australia.
- Department of Medical Biology, The University of Melbourne, 3052, Parkville, Australia.
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
6
|
Kattenberg JH, Razook Z, Keo R, Koepfli C, Jennison C, Lautu-Gumal D, Fola AA, Ome-Kaius M, Barnadas C, Siba P, Felger I, Kazura J, Mueller I, Robinson LJ, Barry AE. Monitoring Plasmodium falciparum and Plasmodium vivax using microsatellite markers indicates limited changes in population structure after substantial transmission decline in Papua New Guinea. Mol Ecol 2020; 29:4525-4541. [PMID: 32985031 PMCID: PMC10008436 DOI: 10.1111/mec.15654] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/27/2020] [Indexed: 02/01/2023]
Abstract
Monitoring the genetic structure of pathogen populations may be an economical and sensitive approach to quantify the impact of control on transmission dynamics, highlighting the need for a better understanding of changes in population genetic parameters as transmission declines. Here we describe the first population genetic analysis of two major human malaria parasites, Plasmodium falciparum (Pf) and Plasmodium vivax (Pv), following nationwide distribution of long-lasting insecticide-treated nets (LLINs) in Papua New Guinea (PNG). Parasite isolates from pre- (2005-2006) and post-LLIN (2010-2014) were genotyped using microsatellite markers. Despite parasite prevalence declining substantially (East Sepik Province: Pf = 54.9%-8.5%, Pv = 35.7%-5.6%, Madang Province: Pf = 38.0%-9.0%, Pv: 31.8%-19.7%), genetically diverse and intermixing parasite populations remained. Pf diversity declined modestly post-LLIN relative to pre-LLIN (East Sepik: Rs = 7.1-6.4, HE = 0.77-0.71; Madang: Rs = 8.2-6.1, HE = 0.79-0.71). Unexpectedly, population structure present in pre-LLIN populations was lost post-LLIN, suggesting that more frequent human movement between provinces may have contributed to higher gene flow. Pv prevalence initially declined but increased again in one province, yet diversity remained high throughout the study period (East Sepik: Rs = 11.4-9.3, HE = 0.83-0.80; Madang: Rs = 12.2-14.5, HE = 0.85-0.88). Although genetic differentiation values increased between provinces over time, no significant population structure was observed at any time point. For both species, a decline in multiple infections and increasing clonal transmission and significant multilocus linkage disequilibrium post-LLIN were positive indicators of impact on the parasite population using microsatellite markers. These parameters may be useful adjuncts to traditional epidemiological tools in the early stages of transmission reduction.
Collapse
Affiliation(s)
- Johanna Helena Kattenberg
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea
| | - Zahra Razook
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Raksmei Keo
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Cristian Koepfli
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Charlie Jennison
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Dulcie Lautu-Gumal
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Abebe A Fola
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Maria Ome-Kaius
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Céline Barnadas
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Peter Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - James Kazura
- Centre for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Ivo Mueller
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Leanne J Robinson
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Disease Elimination, Burnet Institute, Melbourne, VIC, Australia
| | - Alyssa E Barry
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Hedtke SM, Zendejas-Heredia PA, Graves PM, Sheridan S, Sheel M, Fuimaono SD, Lau CL, Grant WN. Genetic epidemiology of lymphatic filariasis in American Samoa after mass drug administration. Int J Parasitol 2020; 51:137-147. [PMID: 33166540 DOI: 10.1016/j.ijpara.2020.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 11/18/2022]
Abstract
Over 892 million people in 48 countries are at risk of infection by nematodes that cause lymphatic filariasis. As part of the Global Programme to Eliminate Lymphatic Filariasis, mass drug administration is distributed to communities until surveillance indicates infection rates are below target prevalence thresholds. In some countries, including American Samoa, lymphatic filariasis transmission persists despite years of mass drug administration and/or has resurged after cessation. Nothing is known about the population genetics of Wuchereria bancrofti worms in Polynesia, or whether local transmission is persisting and/or increasing due to inadequate mass drug administration coverage, expansion from residual hotspots, reintroduction from elsewhere, or a combination. We extracted DNA from microfilariae on blood slides collected during prevalence surveys in 2014 and 2016, comprising 31 pools of five microfilariae from 22 persons living in eight villages. We sequenced 1104 bp across three mitochondrial markers (ND4, COI, CYTB). We quantified parasite genetic differentiation using variant calls and estimated haplotypes using principal components analysis, F-statistics, and haplotype networks. Of the variants called, all but eight were shared across the main island of Tutuila, and three of those were from a previously described hotspot village, Fagali'i. Genotypic data did not support population genetic structure among regions or villages in 2016, although differences were observed between worms collected in Fagali'i in 2014 and those from 2016. Because estimated haplotype frequency varied between villages, these statistics suggested genetic differentiation, but were not consistent among villages. Finally, haplotype networks demonstrated American Samoan sequence clusters were related to previously published sequences from Papua New Guinea. These are, to our knowledge, the first reports of W. bancrofti genetic variation in Polynesia. The resurgent parasites circulating on the main island of American Samoa represent a single population. This study is the first step towards investigating how parasite population structure might inform strategies to manage resurgence and elimination of lymphatic filariasis.
Collapse
Affiliation(s)
- Shannon M Hedtke
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia.
| | - Patsy A Zendejas-Heredia
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Patricia M Graves
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland, Australia
| | - Sarah Sheridan
- Department of Global Health, Research School of Population Health, The Australian National University, Acton, Australian Capital Territory, Australia
| | - Meru Sheel
- National Centre for Epidemiology and Population Health, Research School of Population Health, The Australian National University, Acton, Australian Capital Territory, Australia
| | | | - Colleen L Lau
- Department of Global Health, Research School of Population Health, The Australian National University, Acton, Australian Capital Territory, Australia
| | - Warwick N Grant
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
8
|
Fola AA, Kattenberg E, Razook Z, Lautu-Gumal D, Lee S, Mehra S, Bahlo M, Kazura J, Robinson LJ, Laman M, Mueller I, Barry AE. SNP barcodes provide higher resolution than microsatellite markers to measure Plasmodium vivax population genetics. Malar J 2020; 19:375. [PMID: 33081815 PMCID: PMC7576724 DOI: 10.1186/s12936-020-03440-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/03/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Genomic surveillance of malaria parasite populations has the potential to inform control strategies and to monitor the impact of interventions. Barcodes comprising large numbers of single nucleotide polymorphism (SNP) markers are accurate and efficient genotyping tools, however may need to be tailored to specific malaria transmission settings, since 'universal' barcodes can lack resolution at the local scale. A SNP barcode was developed that captures the diversity and structure of Plasmodium vivax populations of Papua New Guinea (PNG) for research and surveillance. METHODS Using 20 high-quality P. vivax genome sequences from PNG, a total of 178 evenly spaced neutral SNPs were selected for development of an amplicon sequencing assay combining a series of multiplex PCRs and sequencing on the Illumina MiSeq platform. For initial testing, 20 SNPs were amplified in a small number of mono- and polyclonal P. vivax infections. The full barcode was then validated by genotyping and population genetic analyses of 94 P. vivax isolates collected between 2012 and 2014 from four distinct catchment areas on the highly endemic north coast of PNG. Diversity and population structure determined from the SNP barcode data was then benchmarked against that of ten microsatellite markers used in previous population genetics studies. RESULTS From a total of 28,934,460 reads generated from the MiSeq Illumina run, 87% mapped to the PvSalI reference genome with deep coverage (median = 563, range 56-7586) per locus across genotyped samples. Of 178 SNPs assayed, 146 produced high-quality genotypes (minimum coverage = 56X) in more than 85% of P. vivax isolates. No amplification bias was introduced due to either polyclonal infection or whole genome amplification (WGA) of samples before genotyping. Compared to the microsatellite panels, the SNP barcode revealed greater variability in genetic diversity between populations and geographical population structure. The SNP barcode also enabled assignment of genotypes according to their geographic origins with a significant association between genetic distance and geographic distance at the sub-provincial level. CONCLUSIONS High-throughput SNP barcoding can be used to map variation of malaria transmission dynamics at sub-national resolution. The low cost per sample and genotyping strategy makes the transfer of this technology to field settings highly feasible.
Collapse
Affiliation(s)
- Abebe A Fola
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Eline Kattenberg
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Malariology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Zahra Razook
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- IMPACT Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Dulcie Lautu-Gumal
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, Australia
- IMPACT Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Stuart Lee
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Somya Mehra
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, Australia
- IMPACT Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - James Kazura
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, Australia
- Centre for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA
| | - Leanne J Robinson
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, Australia
| | - Moses Laman
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Ivo Mueller
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Alyssa E Barry
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, Australia.
- IMPACT Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC, 3216, Australia.
| |
Collapse
|
9
|
Noviyanti R, Miotto O, Barry A, Marfurt J, Siegel S, Thuy-Nhien N, Quang HH, Anggraeni ND, Laihad F, Liu Y, Sumiwi ME, Trimarsanto H, Coutrier F, Fadila N, Ghanchi N, Johora FT, Puspitasari AM, Tavul L, Trianty L, Utami RAS, Wang D, Wangchuck K, Price RN, Auburn S. Implementing parasite genotyping into national surveillance frameworks: feedback from control programmes and researchers in the Asia-Pacific region. Malar J 2020; 19:271. [PMID: 32718342 PMCID: PMC7385952 DOI: 10.1186/s12936-020-03330-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/09/2020] [Indexed: 01/13/2023] Open
Abstract
The Asia-Pacific region faces formidable challenges in achieving malaria elimination by the proposed target in 2030. Molecular surveillance of Plasmodium parasites can provide important information on malaria transmission and adaptation, which can inform national malaria control programmes (NMCPs) in decision-making processes. In November 2019 a parasite genotyping workshop was held in Jakarta, Indonesia, to review molecular approaches for parasite surveillance and explore ways in which these tools can be integrated into public health systems and inform policy. The meeting was attended by 70 participants from 8 malaria-endemic countries and partners of the Asia Pacific Malaria Elimination Network. The participants acknowledged the utility of multiple use cases for parasite genotyping including: quantifying the prevalence of drug resistant parasites, predicting risks of treatment failure, identifying major routes and reservoirs of infection, monitoring imported malaria and its contribution to local transmission, characterizing the origins and dynamics of malaria outbreaks, and estimating the frequency of Plasmodium vivax relapses. However, the priority of each use case varies with different endemic settings. Although a one-size-fits-all approach to molecular surveillance is unlikely to be applicable across the Asia-Pacific region, consensus on the spectrum of added-value activities will help support data sharing across national boundaries. Knowledge exchange is needed to establish local expertise in different laboratory-based methodologies and bioinformatics processes. Collaborative research involving local and international teams will help maximize the impact of analytical outputs on the operational needs of NMCPs. Research is also needed to explore the cost-effectiveness of genetic epidemiology for different use cases to help to leverage funding for wide-scale implementation. Engagement between NMCPs and local researchers will be critical throughout this process.
Collapse
Affiliation(s)
| | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Alyssa Barry
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Burnet Institute, Melbourne, VIC, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Sasha Siegel
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Nguyen Thuy-Nhien
- Centre for Tropical Medicine, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Huynh Hong Quang
- Institute of Malariology, Parasitology and Entomology, Quy Nhon, Vietnam
| | | | | | - Yaobao Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, China
| | | | | | - Farah Coutrier
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Nadia Fadila
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Najia Ghanchi
- Pathology, Aga Khan University Hospital, Karachi, Pakistan
| | - Fatema Tuj Johora
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh Mohakhali, Dhaka, Bangladesh
| | | | - Livingstone Tavul
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Leily Trianty
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | - Duoquan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Kesang Wangchuck
- Royal Center for Disease Control, Department of Public Health, Ministry of Health, Thimphu, Bhutan
| | - Ric N Price
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah Auburn
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Liu Y, Tessema SK, Murphy M, Xu S, Schwartz A, Wang W, Cao Y, Lu F, Tang J, Gu Y, Zhu G, Zhou H, Gao Q, Huang R, Cao J, Greenhouse B. Confirmation of the absence of local transmission and geographic assignment of imported falciparum malaria cases to China using microsatellite panel. Malar J 2020; 19:244. [PMID: 32660491 PMCID: PMC7359230 DOI: 10.1186/s12936-020-03316-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/04/2020] [Indexed: 11/15/2022] Open
Abstract
Background Current methods to classify local and imported malaria infections depend primarily on patient travel history, which can have limited accuracy. Genotyping has been investigated as a complementary approach to track the spread of malaria and identify the origin of imported infections. Methods An extended panel of 26 microsatellites (16 new microsatellites) for Plasmodium falciparum was evaluated in 602 imported infections from 26 sub-Saharan African countries to the Jiangsu Province of People’s Republic of China. The potential of the 26 microsatellite markers to assign imported parasites to their geographic origin was assessed using a Bayesian method with Markov Chain Monte Carlo (MCMC) as implemented in the program Smoothed and Continuous Assignments (SCAT) with a modification to incorporate haploid genotype data. Results The newly designed microsatellites were polymorphic and are not in linkage disequilibrium with the existing microsatellites, supporting previous findings of high rate of recombination in sub-Saharan Africa. Consistent with epidemiology inferred from patients’ travel history, no evidence for local transmission was found; nearly all genetically related infections were identified in people who travelled to the same country near the same time. The smoothing assignment method assigned imported cases to their likely geographic origin with an accuracy (Angola: 59%; Nigeria: 51%; Equatorial Guinea: 40%) higher than would be achieved at random, reaching statistical significance for Angola and Equatorial Guinea. Conclusions Genotyping using an extended microsatellite panel is valuable for malaria case classification and programme evaluation in an elimination setting. A Bayesian method for assigning geographic origin of mammals based on genetic data was adapted for malaria and showed potential for identification of the origin of imported infections.
Collapse
Affiliation(s)
- Yaobao Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China.,Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Sofonias K Tessema
- EPPI Center Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Maxwell Murphy
- EPPI Center Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Sui Xu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Alanna Schwartz
- EPPI Center Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Weiming Wang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Yuanyuan Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Feng Lu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China.,Department of Parasitology, Institute of Translational Medicine, Medical College, Yangzhou University, Jiangsu Key Laboratory of Experimental & Translational Non- coding RNA Research, Yangzhou, Jiangsu, China
| | - Jianxia Tang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Yaping Gu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Guoding Zhu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Huayun Zhou
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Qi Gao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Rui Huang
- Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China. .,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China. .,Public Health Research Center, Jiangnan University, Wuxi, China.
| | - Bryan Greenhouse
- EPPI Center Program, Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
11
|
Li Y, Hu Y, Zhao Y, Wang Q, Ngassa Mbenda HG, Kittichai V, Lawpoolsri S, Sattabongkot J, Menezes L, Liu X, Cui L, Cao Y. Dynamics of Plasmodium vivax populations in border areas of the Greater Mekong sub-region during malaria elimination. Malar J 2020; 19:145. [PMID: 32268906 PMCID: PMC7140319 DOI: 10.1186/s12936-020-03221-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022] Open
Abstract
Background Countries within the Greater Mekong Sub-region (GMS) of Southeast Asia have committed to eliminating malaria by 2030. Although the malaria situation has greatly improved, malaria transmission remains at international border regions. In some areas, Plasmodium vivax has become the predominant parasite. To gain a better understanding of transmission dynamics, knowledge on the changes of P. vivax populations after the scale-up of control interventions will guide more effective targeted control efforts. Methods This study investigated genetic diversity and population structures in 206 P. vivax clinical samples collected at two time points in two international border areas: the China-Myanmar border (CMB) (n = 50 in 2004 and n = 52 in 2016) and Thailand-Myanmar border (TMB) (n = 50 in 2012 and n = 54 in 2015). Parasites were genotyped using 10 microsatellite markers. Results Despite intensified control efforts, genetic diversity remained high (HE = 0.66–0.86) and was not significantly different among the four populations (P > 0.05). Specifically, HE slightly decreased from 0.76 in 2004 to 0.66 in 2016 at the CMB and increased from 0.80 in 2012 to 0.86 in 2015 at the TMB. The proportions of polyclonal infections varied significantly among the four populations (P < 0.05), and showed substantial decreases from 48.0% in 2004 to 23.7 at the CMB and from 40.0% in 2012 to 30.7% in 2015 at the TMB, with corresponding decreases in the multiplicity of infection. Consistent with the continuous decline of malaria incidence in the GMS over time, there were also increases in multilocus linkage disequilibrium, suggesting more fragmented and increasingly inbred parasite populations. There were considerable genetic differentiation and sub-division among the four tested populations. Temporal genetic differentiation was observed at each site (FST = 0.081 at the CMB and FST = 0.133 at the TMB). Various degrees of clustering were evident between the older parasite samples collected in 2004 at the CMB and the 2016 CMB and 2012 TMB populations, suggesting some of these parasites had shared ancestry. In contrast, the 2015 TMB population was genetically distinctive, which may reflect a process of population replacement. Whereas the effective population size (Ne) at the CMB showed a decrease from 4979 in 2004 to 3052 in 2016 with the infinite allele model, the Ne at the TMB experienced an increase from 6289 to 10,259. Conclusions With enhanced control efforts on malaria, P. vivax at the TMB and CMB showed considerable spatial and temporal differentiation, but the presence of large P. vivax reservoirs still sustained genetic diversity and transmission. These findings provide new insights into P. vivax transmission dynamics and population structure in these border areas of the GMS. Coordinated and integrated control efforts on both sides of international borders are essential to reach the goal of regional malaria elimination.
Collapse
Affiliation(s)
- Yuling Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.,Emergency Department, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Yubing Hu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Qinghui Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Huguette Gaelle Ngassa Mbenda
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Veerayuth Kittichai
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Saranath Lawpoolsri
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Lynette Menezes
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Xiaoming Liu
- Center for Global Health and Infectious Disease Research, College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Liwang Cui
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA. .,Center for Global Health and Infectious Disease Research, College of Public Health, University of South Florida, Tampa, FL, 33612, USA.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
12
|
Hedtke SM, Kuesel AC, Crawford KE, Graves PM, Boussinesq M, Lau CL, Boakye DA, Grant WN. Genomic Epidemiology in Filarial Nematodes: Transforming the Basis for Elimination Program Decisions. Front Genet 2020; 10:1282. [PMID: 31998356 PMCID: PMC6964045 DOI: 10.3389/fgene.2019.01282] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022] Open
Abstract
Onchocerciasis and lymphatic filariasis are targeted for elimination, primarily using mass drug administration at the country and community levels. Elimination of transmission is the onchocerciasis target and global elimination as a public health problem is the end point for lymphatic filariasis. Where program duration, treatment coverage, and compliance are sufficiently high, elimination is achievable for both parasites within defined geographic areas. However, transmission has re-emerged after apparent elimination in some areas, and in others has continued despite years of mass drug treatment. A critical question is whether this re-emergence and/or persistence of transmission is due to persistence of local parasites-i.e., the result of insufficient duration or drug coverage, poor parasite response to the drugs, or inadequate methods of assessment and/or criteria for determining when to stop treatment-or due to re-introduction of parasites via human or vector movement from another endemic area. We review recent genetics-based research exploring these questions in Onchocerca volvulus, the filarial nematode that causes onchocerciasis, and Wuchereria bancrofti, the major pathogen for lymphatic filariasis. We focus in particular on the combination of genomic epidemiology and genome-wide associations to delineate transmission zones and distinguish between local and introduced parasites as the source of resurgence or continuing transmission, and to identify genetic markers associated with parasite response to chemotherapy. Our ultimate goal is to assist elimination efforts by developing easy-to-use tools that incorporate genetic information about transmission and drug response for more effective mass drug distribution, surveillance strategies, and decisions on when to stop interventions to improve sustainability of elimination.
Collapse
Affiliation(s)
- Shannon M. Hedtke
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Annette C. Kuesel
- Unicef/UNDP/World Bank/World Health Organization Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, Geneva, Switzerland
| | - Katie E. Crawford
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Patricia M. Graves
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, QLD, Australia
| | - Michel Boussinesq
- Unité Mixte Internationale 233 "TransVIHMI", Institut de Recherche pour le Développement (IRD), INSERM U1175, University of Montpellier, Montpellier, France
| | - Colleen L. Lau
- Department of Global Health, Research School of Population Health, Australian National University, Acton, ACT, Australia
| | - Daniel A. Boakye
- Parasitology Department, Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | - Warwick N. Grant
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
13
|
Dalmat R, Naughton B, Kwan-Gett TS, Slyker J, Stuckey EM. Use cases for genetic epidemiology in malaria elimination. Malar J 2019; 18:163. [PMID: 31064369 PMCID: PMC6503548 DOI: 10.1186/s12936-019-2784-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/22/2019] [Indexed: 12/22/2022] Open
Abstract
Background While traditional epidemiological approaches have supported significant reductions in malaria incidence across many countries, higher resolution information about local and regional malaria epidemiology will be needed to efficiently target interventions for elimination. The application of genetic epidemiological methods for the analysis of parasite genetics has, thus far, primarily been confined to research settings. To illustrate how these technical methods can be used to advance programmatic and operational needs of National Malaria Control Programmes (NMCPs), and accelerate global progress to eradication, this manuscript presents seven use cases for which genetic epidemiology approaches to parasite genetic data are informative to the decision-making of NMCPs. Methods The use cases were developed through a highly iterative process that included an extensive review of the literature and global guidance documents, including the 2017 World Health Organization’s Framework for Malaria Elimination, and collection of stakeholder input. Semi-structured interviews were conducted with programmatic and technical experts about the needs and opportunities for genetic epidemiology methods in malaria elimination. Results Seven use cases were developed: Detect resistance, Assess drug resistance gene flow, Assess transmission intensity, Identify foci, Determine connectivity of parasite populations, Identify imported cases, and Characterize local transmission chains. The method currently used to provide the information sought, population unit for implementation, the pre-conditions for using these approaches, and post-conditions intended as a product of the use case were identified for each use case. Discussion This framework of use cases will prioritize research and development of genetic epidemiology methods that best achieve the goals of NMCPs, and ultimately, inform the establishment of normative policy guidance for their uses. With significant engagement of stakeholders from malaria endemic countries and collaboration with local programme experts to ensure strategic implementation, genetic epidemiological approaches have tremendous potential to accelerate global malaria elimination efforts. Electronic supplementary material The online version of this article (10.1186/s12936-019-2784-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ronit Dalmat
- Department of Epidemiology, University of Washington, Seattle, WA, USA.,Strategic Analysis Research and Training Center, University of Washington, Seattle, WA, USA
| | - Brienna Naughton
- Department of Global Health, University of Washington, Seattle, WA, USA.,Strategic Analysis Research and Training Center, University of Washington, Seattle, WA, USA
| | - Tao Sheng Kwan-Gett
- Department of Health Services, University of Washington, Seattle, WA, USA.,Strategic Analysis Research and Training Center, University of Washington, Seattle, WA, USA
| | - Jennifer Slyker
- Department of Epidemiology, University of Washington, Seattle, WA, USA.,Department of Global Health, University of Washington, Seattle, WA, USA.,Strategic Analysis Research and Training Center, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
14
|
Pacheco MA, Schneider KA, Céspedes N, Herrera S, Arévalo-Herrera M, Escalante AA. Limited differentiation among Plasmodium vivax populations from the northwest and to the south Pacific Coast of Colombia: A malaria corridor? PLoS Negl Trop Dis 2019; 13:e0007310. [PMID: 30921317 PMCID: PMC6456216 DOI: 10.1371/journal.pntd.0007310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 04/09/2019] [Accepted: 03/16/2019] [Indexed: 01/06/2023] Open
Abstract
Background Malaria remains endemic in several countries of South America with low to moderate transmission intensity. Regional human migration through underserved endemic areas may be responsible for significant parasite dispersion making the disease resilient to interventions. Thus, the genetic characterization of malarial parasites is an important tool to assess how endemic areas may connect via the movement of infected individuals. Here, four sites in geographically separated areas reporting 80% of the malaria morbidity in Colombia were studied. The sites are located on an imaginary transect line of 1,500 km from the northwest to the south Pacific Coast of Colombia with a minimal distance of 500 km between populations that display noticeable ethnic, economic, epidemiological, and ecological differences. Methodology/Principal findings A total of 624 Plasmodium vivax samples from the four populations were genotyped by using eight microsatellite loci. Although a strong geographic structure was expected between these populations, only moderate evidence of genetic differentiation was observed using a suite of population genetic analyses. High genetic diversity, shared alleles, and low linkage disequilibrium were also found in these P. vivax populations providing no evidence for a bottleneck or clonal expansions as expected from recent reductions in the transmission that could have been the result of scaling up interventions or environmental changes. These patterns are consistent with a disease that is not only endemic in each site but also imply that there is gene flow among these populations across 1,500 km. Conclusion /Significance The observed patterns in P. vivax are consistent with a “corridor” where connected endemic areas can sustain a high level of genetic diversity locally and can restore parasite-subdivided populations via migration of infected individuals even after local interventions achieved a substantial reduction of clinical cases. The consequences of these findings in terms of control and elimination are discussed. The regional movements of infected individuals that connect suitable transmission areas make malaria resilient to control efforts. Those movements are expected to leave genetic signatures in the parasite populations that can be detected using analytical tools. In this study, the genetic makeups of Plasmodium vivax populations were characterized to assess whether the most endemic areas in Colombia were connected. Samples were collected from passive surveillance studies in four locations across an imaginary transect line of 1,500 km from the northwest to the south Pacific Coast of Colombia (South America). Considering the distance, and contrary to expectations, we found weak levels of genetic differentiation between these parasite populations with no evidence indicating that their genetic diversity has been eroded as expected whenever the prevalence of the disease is successfully reduced, e.g., through control programs or environmental changes. Although the sampling lacks the geographic and temporal detail to describe how the dispersion of parasite lineages occurred, the observed patterns are consistent with a series of infected populations that are connected in space by human movements allowing the parasite to diffuse across this 1,500 km transect. This malaria corridor needs to be characterized to achieve elimination.
Collapse
Affiliation(s)
- M. Andreína Pacheco
- Department of Biology/Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, Pennsylvania, United States of America
| | | | - Nora Céspedes
- Caucaseco Scientific Research Center and Malaria Vaccine and Drug Development Center, Cali, Colombia
| | - Sócrates Herrera
- Caucaseco Scientific Research Center and Malaria Vaccine and Drug Development Center, Cali, Colombia
| | - Myriam Arévalo-Herrera
- Caucaseco Scientific Research Center and Malaria Vaccine and Drug Development Center, Cali, Colombia
- Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Ananias A. Escalante
- Department of Biology/Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
15
|
Nkhoma SC, Banda RL, Khoswe S, Dzoole-Mwale TJ, Ward SA. Intra-host dynamics of co-infecting parasite genotypes in asymptomatic malaria patients. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 65:414-424. [PMID: 30145390 PMCID: PMC6219893 DOI: 10.1016/j.meegid.2018.08.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 11/22/2022]
Abstract
Malaria-infected individuals often harbor mixtures of genetically distinct parasite genotypes. We studied intra-host dynamics of parasite genotypes co-infecting asymptomatic adults in an area of intense malaria transmission in Chikhwawa, Malawi. Serial blood samples (5 ml) were collected over seven consecutive days from 25 adults with asymptomatic Plasmodium falciparum malaria and analyzed to determine whether a single peripheral blood sample accurately captures within-host parasite diversity. Blood samples from three of the participants were also analyzed by limiting dilution cloning and SNP genotyping of the parasite clones isolated to examine both the number and relatedness of co-infecting parasite haplotypes. We observed rapid turnover of co-infecting parasite genotypes in 88% of the individuals sampled (n = 22) such that the genetic composition of parasites infecting these individuals changed dramatically over the course of seven days of follow up. Nineteen of the 25 individuals sampled (76%) carried multiple parasite genotypes at baseline. Analysis of serial blood samples from three of the individuals revealed that they harbored 6, 12 and 17 distinct parasite haplotypes respectively. Approximately 70% of parasite haplotypes recovered from the three extensively sampled individuals were unrelated (proportion of shared alleles <83.3%) and were deemed to have primarily arisen from superinfection (inoculation of unrelated parasite haplotypes through multiple mosquito bites). The rest were related at the half-sib level or greater and were deemed to have been inoculated into individual human hosts via parasite co-transmission from single mosquito bites. These findings add further to the growing weight of evidence indicating that a single blood sample poorly captures within-host parasite diversity and underscore the importance of repeated blood sampling to accurately capture within-host parasite ecology. Our data also demonstrate a more pronounced role for parasite co-transmission in generating within-host parasite diversity in high transmission settings than previously assumed. Taken together, these findings have important implications for understanding the evolution of drug resistance, malaria transmission, parasite virulence, allocation of gametocyte sex ratios and acquisition of malaria immunity.
Collapse
Affiliation(s)
- Standwell C Nkhoma
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi; Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; Wellcome Trust-Liverpool-Glasgow Centre for Global Health Research, 70 Pembroke Place, Liverpool L69 3GF, UK.
| | - Rachel L Banda
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Stanley Khoswe
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Tamika J Dzoole-Mwale
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Stephen A Ward
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|