1
|
Mohammadi M, Razmara J, Hadizadeh M, Parvizpour S, Shahir Shamsir M. Peptide vaccine design against glioblastoma by applying immunoinformatics approach. Int Immunopharmacol 2024; 142:113219. [PMID: 39340993 DOI: 10.1016/j.intimp.2024.113219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Brain tumors are considered to be one of the most fatal forms of cancer owing to their highly aggressive attributes, diverse characteristics, and notably low rate of survival. Among these tumors, glioblastoma stands out as the prevalent and perilous variant Despite the present advancements in surgical procedures, pharmacological treatment, and radiation therapy, the overall prognosis remains notably unfavorable, as merely 4.3 % of individuals manage to attain a five-year survival rate; For this reason, it has emerged as a challenge for cancer researchers. Therefore, among several immunotherapy methods, using peptide-based vaccines for cancer treatment is considered promising due to their ability to generate a focused immune response with minimal damage. This study endeavors to devise a multi-epitope vaccine utilizing an immunoinformatics methodology to address the challenge posed by glioblastoma disease. Through this approach, it is anticipated that the duration and expenses associated with vaccine manufacturing can be diminished, while simultaneously enhancing the characteristics of the vaccine. The target gene in this research is ITGA5, which was achieved through TCGA analysis by targeting the PI3K-Akt pathway as a significant association with patient survival. Subsequently, the suitable epitopes of T and B cells were selected through various immunoinformatics tools by analyzing their sequence. Then, nine epitopes were merged with GM-CSF as an adjuvant to enhance immunogenicity. The outcomes encompass molecular docking, molecular dynamics (MD) simulation, simulation of the immune response, prognosis and confirmation of the secondary and tertiary structure, Chemical and physical characteristics, toxicity, as well as antigenicity and allergenicity of the potential vaccine candidate against glioblastoma.
Collapse
Affiliation(s)
- Mahsa Mohammadi
- Department of Computer Science, Faculty of Mathematics, Statistics, and Computer Science, University of Tabriz, Tabriz, Iran
| | - Jafar Razmara
- Department of Computer Science, Faculty of Mathematics, Statistics, and Computer Science, University of Tabriz, Tabriz, Iran.
| | - Morteza Hadizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohd Shahir Shamsir
- Bioinformatics Research Group, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| |
Collapse
|
2
|
Ashoori N, Ranjbar MM, Schirhagl R. In silico vaccine design: Targeting highly epitopic regions of Clostridium perfringens type D epsilon toxin and Clostridium novyi type B alpha toxin for optimal immunogenicity. Comput Struct Biotechnol J 2024; 25:153-164. [PMID: 39257963 PMCID: PMC11384337 DOI: 10.1016/j.csbj.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024] Open
Abstract
Livestock infections caused by highly toxic bacteria, such as Clostridium perfringens type D and Clostridium novyi type B, present significant challenges in veterinary medicine. Such infections often require complex and elusive treatment regimens. Developing effective vaccines tailored to combat these specific pathogens remains a pressing need within the field. These bacteria are notorious for their extreme toxicity and the difficulty in culturing them for vaccine production. To address this challenge, we engineered a new potential vaccine candidate capable of neutralizing the virulence of both bacterial strains. Leveraging computational techniques, we identified epitopic regions within C. perfringens Epsilon Toxin (ETX) and C. novyi Alpha Toxin (ATX). Through fusion gene design, we integrated these epitopic regions alongside the PADRE-peptide sequence. The PADRE-peptide serves as a universal adjuvant to induce an immune response. The culmination of our efforts materialized in a Recombinant Fusion Protein D (rFPD), a novel vaccine construct designed to elicit robust and specific immune defenses against both bacterial species. By combining in-silico design and molecular engineering, our study represents a promising stride toward combating the impact of these pathogenic bacteria in livestock.
Collapse
Affiliation(s)
- Nastaran Ashoori
- Groningen University, University Medical Centre Groningen, Antonius Deusinglaan 1, 9713AW Groningen, the Netherlands
| | - Mohammad Mehdi Ranjbar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Romana Schirhagl
- Groningen University, University Medical Centre Groningen, Antonius Deusinglaan 1, 9713AW Groningen, the Netherlands
| |
Collapse
|
3
|
Sharif E, Nezafat N, Ahmadi FM, Mohit E. In Silico Design of CT26 Polytope and its Surface Display by ClearColi™-Derived Outer Membrane Vesicles as a Cancer Vaccine Candidate Against Colon Carcinoma. Appl Biochem Biotechnol 2024; 196:8820-8847. [PMID: 38958886 DOI: 10.1007/s12010-024-04971-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
Simultaneous targeting of several mutations can be useful in colorectal cancer (CRC) due to its heterogeneity and presence of somatic mutations. As CT26 mutations and expression profiles resemble those of human CRC, we focused on designing a polyepitope vaccine based on CT26 neoepitopes. Due to its low immunogenicity, outer membrane vesicles (rOMV) as an antigen delivery system and adjuvant was applied. Herein, based on previous experimental and our in silico studies four CT26 neoepitopes with the ability to bind MHC-I and MHC-II, TCR, and induce IFN-α production were selected. To increase their immunogenicity, the gp70 and PADRE epitopes were added. The order of the neoepitopes was determined through 3D structure analysis using ProSA, Verify 3D, ERRAT, and Ramachandran servers. The stable peptide-protein docking between the selected epitopes and MHC alleles strengthen our prediction. The CT26 polytope vaccine sequence was fused to the C-terminal of cytolysin A (ClyA) anchor protein and rOMVs were isolated from endotoxin-free ClearColi™ strain. The results of the C-ImmSim server showed that the ClyA-CT26 polytope vaccine could induce T and B cells immunity.The ClyA-CT26 polytope was characterized as a soluble, stable, immunogen, and non-allergen vaccine and optimized for expression in ClearColi™ 24 h after induction with 1 mM IPTG at 25 °C. Western blot analysis confirmed the expression of ClyA-CT26 polytope by ClearColi™ and also on ClearColi™-derived rOMVs. In conclusion, we found that ClearColi™-derived rOMVs with CT26 polytope can deliver CRC neoantigens and induce antitumor immunity, but in vivo immunological studies are needed to confirm vaccine efficacy.
Collapse
Affiliation(s)
- Elham Sharif
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, No. 2660, Vali-e-Asr Ave, Tehran, 1991953381, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, No. 2660, Vali-e-Asr Ave, Tehran, 1991953381, Iran.
| |
Collapse
|
4
|
Arshad F, Sarfraz A, Rubab A, Shehroz M, Moura AA, Sheheryar S, Ullah R, Shahat AA, Ibrahim MA, Nishan U, Shah M. Rational design of novel peptide-based vaccine against the emerging OZ virus. Hum Immunol 2024; 85:111162. [PMID: 39447523 DOI: 10.1016/j.humimm.2024.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Oz virus (OZV) belongs to the Orthomyxoviridae family which includes viruses with a negative-sense, single-stranded, and segmented RNA genome. OZV is a zoonotic pathogen, particularly since the virus can cause deadly illness when injected intracerebrally into nursing mice. OZV is an emerging pathogen with the potential to spark a pandemic as there is no preventive and licensed treatment against this virus. The goal of this study was to develop a novel multi-epitope vaccination against OZV proteins utilizing immunoinformatics and immunological simulation analysis. This work evaluated immunological epitopes (B cells, MHC-I, and MHC-II) to identify highly antigenic OZV target proteins. Shortlisted epitopes were joined together by using appropriate linkers and adjuvants to design multi-epitope vaccine constructs (MEVC). The vaccine models were designed, improved, validated, and the globular regions and post-translational modifications (PTMs) were also evaluated in the vaccine's structure. Molecular docking analysis with the Toll-like receptor (TLR4) showed strong interactions and appropriate binding energies. Molecular dynamics (MD) simulation confirmed stable interactions between the vaccines and TLR4. Bioinformatics tools helped optimize codons, resulting in successful cloning into appropriate host vectors. This study showed that the developed vaccines are stable and non-allergenic in the human body and successfully stimulated immunological responses against OZV. Finally, a mechanism of action for the designed vaccine construct was also proposed. Further experimental validations of the designed vaccine construct will pave the way to create a potentially effective vaccine against this emerging pathogen.
Collapse
Affiliation(s)
- Fizza Arshad
- Department of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Asifa Sarfraz
- Department of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Aleeza Rubab
- Department of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Muhammad Shehroz
- Department of Bioinformatics, Kohsar University Murree, Murree 47150, Pakistan
| | - Arlindo A Moura
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| | - Sheheryar Sheheryar
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdelaaty A Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan.
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan; Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil.
| |
Collapse
|
5
|
Hashemi P, Osanloo M, Farjadfar A, Nasiri-Ghiri M, Zarenezhad E, Mahmoodi S. A multi-epitope protein vaccine encapsulated in alginate nanoparticles as a candidate vaccine against Shigella sonnei. Sci Rep 2024; 14:22484. [PMID: 39341926 PMCID: PMC11438873 DOI: 10.1038/s41598-024-73105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Shigellosis, caused by the Gram-negative bacterium Shigella, is a major global health challenge. Despite extensive research over the past two decades, no commercial vaccine is available to prevent Shigella infection. Developing multi-epitope vaccines offers a promising and innovative approach to tackling infectious diseases. In this study, we produced a multi-epitope vaccine candidate using E. coli BL21 (DE3) plysS bacteria and purified the vaccine protein with Ni-NTA affinity chromatography. We then prepared alginate nanoparticles containing the vaccine protein, with a particle size of 122 ± 6 nm, PDI 0.17, SPAN 0.83, and zeta potential of -27 ± 2 mV. Successful protein loading was confirmed through nanodrop and ATR-FTIR analyses. To evaluate the immunogenicity of the encapsulated vaccine, mice were orally vaccinated, and their serum was analyzed for IgG, IL-4, and IFN-γ levels cytokines. The results showed a significant increase in IgG level in the vaccinated group compared to controls. Additionally, the vaccinated group exhibited a notable increase in IL-4 and IFN-γ cytokines, indicating a robust Th-cell-mediated immune response essential for combating Shigella. Our nano-vaccine demonstrated high efficacy in activating both humoral and cellular immunity, effectively protecting against the bacteria. The alginate-based oral vaccine candidate thus emerges as a promising strategy for developing a multi-epitope vaccine candidate against Shigella.
Collapse
Affiliation(s)
- Parisa Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Akbar Farjadfar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahdi Nasiri-Ghiri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
6
|
Mora-Ochoa YI, Ramirez-Cando LJ. Salmonella pathogenesis-based In-silico design and immunoinformatic analysis of multi-epitope vaccine constructs in broiler veterinary medicine. Vet J 2024; 308:106240. [PMID: 39276848 DOI: 10.1016/j.tvjl.2024.106240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
Salmonellosis, a zoonotic gastrointestinal disease, presents a significant global health burden with a high incidence rate. Transmission primarily occurs through the consumption of contaminated poultry products, although water and contact with asymptomatic animals are also vectors. The disease's pervasiveness has prompted international health organizations to advocate for robust prevention and control strategies. This study focuses on the in-silico design of a multi-epitope vaccine targeting Salmonella enterica serovar Typhimurium's fimH protein, a fimbriae component crucial for bacterial adhesion and pathogenicity. The vaccine construct was developed by identifying and synthesizing non-allergenic, antigenic, and non-toxic epitopes for both Cytotoxic T Lymphocytes and Helper T Lymphocytes. Adjuvants were incorporated to enhance immunogenicity, and the vaccine's structure was modeled using advanced bioinformatics tools. The proposed vaccine demonstrated promising antigenicity and immunogenicity profiles, with a favorable physical-chemical property analysis. The vaccine's structures, designed by computational analysis, suggests high likelihood to native protein configurations. Antigenicity and allergenicity assessments validate the vaccine's immunogenic potential and hypoallergenic nature. Physicochemical evaluations indicate favorable stability and solubility profiles, essential for vaccine efficacy. This comprehensive approach to vaccine design expressed in Chlorella vulgaris holds promises for effective salmonellosis control. The multi-epitope vaccine, designed through meticulous in-silico methods, emerges as a promising candidate for controlling salmonellosis. Its strategic construction based on the fimH protein epitopes offers a targeted approach to elicit a robust immune response, potentially curbing the spread of this disease in poultry.
Collapse
Affiliation(s)
- Yuliana I Mora-Ochoa
- School of Biological Sciences and Engineering, Yachay University for Experimental Technology and Research (Yachay Tech), Urcuquí 100115, Ecuador
| | - Lenin J Ramirez-Cando
- School of Biological Sciences and Engineering, Yachay University for Experimental Technology and Research (Yachay Tech), Urcuquí 100115, Ecuador.
| |
Collapse
|
7
|
Wu S, Wang M, Yang X, Zhao L, Lan Z, Sun S. Research Progress in the Development of Vaccines against Mycoplasma gallisepticum and Mycoplasma synoviae. Microorganisms 2024; 12:1699. [PMID: 39203540 PMCID: PMC11356929 DOI: 10.3390/microorganisms12081699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Mycoplasma gallisepticum (MG) and Mycoplasma synoviae (MS) are the primary agents responsible for mycoplasma disease in poultry. MG has been identified as a significant cause of chronic respiratory disease in chickens, while MS has been linked to the development of tenosynovitis, joint swelling and other symptoms in chickens, leading to considerable economic losses for the poultry industry. Unfortunately, there is no specific drug for treatment and vaccination is the most important way to control the disease. There are some different types of vaccines, including live vaccines, inactivated vaccines, sub-unit vaccines and vector vaccines. This paper provides a comprehensive review of the development of vaccines for MG and MS.
Collapse
Affiliation(s)
- Shaopeng Wu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China;
| | - Miaoli Wang
- Shandong Provincial Center for Animal Disease Control, Jinan 250010, China; (M.W.); (X.Y.); (L.Z.)
| | - Xiaoxue Yang
- Shandong Provincial Center for Animal Disease Control, Jinan 250010, China; (M.W.); (X.Y.); (L.Z.)
| | - Lu Zhao
- Shandong Provincial Center for Animal Disease Control, Jinan 250010, China; (M.W.); (X.Y.); (L.Z.)
| | - Zouran Lan
- Shandong Provincial Center for Animal Disease Control, Jinan 250010, China; (M.W.); (X.Y.); (L.Z.)
| | - Shuhong Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China;
| |
Collapse
|
8
|
Agarwal S, Harsukhbhai Chandpa H, Naskar S, Lal Meena C, Kumar Panda A, Meena J. Dominant B cell-T cell epitopes instigated robust immune response in-silico against Scrub Typhus. Vaccine 2024; 42:3899-3915. [PMID: 38719691 DOI: 10.1016/j.vaccine.2024.04.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 06/14/2024]
Abstract
Scrub typhus, a potentially life-threatening infectious disease, is attributed to bacteria Orientia tsutsugamushi (O. tsutsugamushi). The transmission of this illness to humans occurs through the bite of infected chiggers, which are the larval forms of mites belonging to the genus Leptotrombidium. In this research, we developed a subunit vaccine specifically designed to target outer membrane proteins. Immunodominant cytotoxic T-lymphocytes (CTLs), B- lymphocytes (BCLs), and major histocompatibility complex (MHC)- II epitopes were identified using machine learning and bioinformatics approaches. These epitopes were arranged in different combinations with the help of suitable linkers like AAY, KK, GPGPG and adjuvant (cholera toxin B) that resulted in a vaccine construct. Physiochemical properties were assessed, where the predicted solubility (0.571) was higher than threshold value. Tertiary structure was predicted using I-TASSER web server and evaluated using Ramachandran plot (94 % residues in most favourable region) and z-score (-6.04), which had shown the structure to have good stability and residue arrangement. Molecular docking with immune receptors, Toll-like receptor (TLR)-2 and -4 showed good residue interaction with 13 and 5 hydrogen bonds respectively. Molecular dynamics simulations of receptor-ligand complex provided the idea about the strong interaction having 1.524751 × 10-5 eigenvalue. Amino acid sequence of vaccine was converted to nucleotide sequence and underwent codon optimization. The optimized codon sequence was used for in-silico cloning, which provided idea about the possibility of synthesis of vaccine using E. coli as host. Overall, this study provided a promising blueprint for a scrub typhus vaccine, although experimental validation is needed for confirmation. Furthermore, it is crucial to acknowledge that while bioinformatics provides valuable insights, in-vitro and in-vivo studies are imperative for a comprehensive evaluation of vaccine candidate. Thus, the integration of computational predictions with empirical research is essential to validate the efficacy, safety, and real-world applicability of the designed vaccine against Scrub Typhus. Nevertheless, the findings are good to carry forward for in-vitro and in-vivo investigations.
Collapse
Affiliation(s)
- Shalini Agarwal
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Hitesh Harsukhbhai Chandpa
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Shovan Naskar
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Chhuttan Lal Meena
- Drug Design Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Amulya Kumar Panda
- Panacea Biotec Limited, Mohan Cooperative Industrial Estate, Badarpur New Delhi 110044, India
| | - Jairam Meena
- ImmunoEngineering and Therapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
9
|
Banesh S, Gupta N, Reddy CV, Mallikarjunachari U, Patil N, Uddhavesh S, Saudagar P. A novel approach to design chimeric multi epitope vaccine against Leishmania exploiting infected host cell proteome. Heliyon 2024; 10:e31306. [PMID: 38813178 PMCID: PMC11133825 DOI: 10.1016/j.heliyon.2024.e31306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Leishmaniasis is a major infectious disease having high mortality which could be attributed to lack of a suitable vaccine candidate. We propose a novel approach to design multiepitope vaccine to leishmaniasis exploiting specific membrane proteome from infected macrophage from host. The MHC-I, MHC-II and BC epitopes predicted for unique proteins from the infected macrophages and Leishmania and a MEV designed in various combinations (1a-1m). The epitope arrangements 1a, 1k, 1l, and 1 m showed a strong antigenicity profile and immune response. The molecular dynamics simulation indicate the 1k, 1l, and 1 m constructs have strong affinity toward TLR-2, TLR-3, and TLR-4. Overall the structural and immunogenicity profile suggests 1k is top candidate. Further, a computational model system with TLR-2, TLR-3, TLR-4, BCR, MHC-I and MHC-II was generated for 1k construct to understand the MEV interactions with immune components. Dihedral distribution and distance was enumerated to understand the movement of immune components towards 1k. The results indicate 1k has strong affinity for the immune response molecules especially TLR-3, BCR and MHC-II are coming in close contact with the MEV through the simulation. The study suggests that designed multi-epitope vaccine 1k has potential to induce proper immune response but warrants further studies.
Collapse
Affiliation(s)
- Sooram Banesh
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| | - Neharika Gupta
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| | - Chethireddy Vihadhar Reddy
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| | - Uppuladinne Mallikarjunachari
- High Performance Computing - Medical and Bioinformatics Applications, Centre for Development of Advanced Computing (C-DAC), Pune, Maharastra, India
| | - Nupoor Patil
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| | - Sonavane Uddhavesh
- High Performance Computing - Medical and Bioinformatics Applications, Centre for Development of Advanced Computing (C-DAC), Pune, Maharastra, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, 506004, Telangana, India
| |
Collapse
|
10
|
Yaseen AR, Suleman M, Jabeen A, Nezami L, Qadri AS, Arif A, Arshad I, Iqbal K, Yaqoob T, Khan Z. Design and computational evaluation of a novel multi-epitope hybrid vaccine against monkeypox virus: Potential targets and immunogenicity assessment for pandemic preparedness. Biologicals 2024; 86:101770. [PMID: 38749079 DOI: 10.1016/j.biologicals.2024.101770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/15/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Monkeypox is a type of DNA-enveloped virus that belongs to the orthopoxvirus family, closely related to the smallpox virus. It can cause an infectious disease in humans known as monkeypox disease. Although there are multiple drugs and vaccines designed to combat orthopoxvirus infections, with a primary focus on smallpox, the recent spread of the monkeypox virus to over 50 countries have ignited a mounting global concern. This unchecked viral proliferation has raised apprehensions about the potential for a pandemic corresponding to the catastrophic impact of COVID-19. This investigation explored the structural proteins of monkeypox virus as potential candidates for designing a novel hybrid multi-epitope vaccine. The epitopes obtained from the selected proteins were screened to ensure their non-allergenicity, non-toxicity, and antigenicity to trigger T and B-cell responses. The interaction of the vaccine with toll-like receptor-3 (TLR-3) and major histocompatibility complexes (MHCs) was assessed using Cluspro 2.0. To establish the reliability of the docked complexes, a comprehensive evaluation was conducted using Immune and MD Simulations and Normal Mode Analysis. However, to validate the computational results of this study, additional in-vitro and in-vivo research is essential.
Collapse
Affiliation(s)
- Allah Rakha Yaseen
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Muhammad Suleman
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Aqsa Jabeen
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Laiba Nezami
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan.
| | - Abdul Salam Qadri
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan; Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54000, Pakistan.
| | - Ayesha Arif
- Centre for Applied Molecular biology (CAMB), University of the Punjab, Lahore, 54590, Pakistan.
| | - Iram Arshad
- Institute of Biochemistry and Biotechnology, University of Veterinary & Animal Sciences, Lahore, 54000, Pakistan.
| | - Khadija Iqbal
- Institute of Biochemistry and Biotechnology, University of Veterinary & Animal Sciences, Lahore, 54000, Pakistan.
| | - Tasuduq Yaqoob
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Zoha Khan
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan.
| |
Collapse
|
11
|
Shams MH, Sohrabi SM, Jafari R, Sheikhian A, Motedayyen H, Baharvand PA, Hasanvand A, Fouladvand A, Assarehzadegan MA. Designing a T-cell epitope-based vaccine using in silico approaches against the Sal k 1 allergen of Salsola kali plant. Sci Rep 2024; 14:5040. [PMID: 38424208 PMCID: PMC10904830 DOI: 10.1038/s41598-024-55788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
Allergens originated from Salsola kali (Russian thistle) pollen grains are one of the most important sources of aeroallergens causing pollinosis in desert and semi-desert regions. T-cell epitope-based vaccines (TEV) are more effective among different therapeutic approaches developed to alleviate allergic diseases. The physicochemical properties, and B as well as T cell epitopes of Sal k 1 (a major allergen of S. kali) were predicted using immunoinformatic tools. A TEV was constructed using the linkers EAAAK, GPGPG and the most suitable CD4+ T cell epitopes. RS04 adjuvant was added as a TLR4 agonist to the amino (N) and carboxyl (C) terminus of the TEV protein. The secondary and tertiary structures, solubility, allergenicity, toxicity, stability, physicochemical properties, docking with immune receptors, BLASTp against the human and microbiota proteomes, and in silico cloning of the designed TEV were assessed using immunoinformatic analyses. Two CD4+ T cell epitopes of Sal k1 that had high affinity with different alleles of MHC-II were selected and used in the TEV. The molecular docking of the TEV with HLADRB1, and TLR4 showed TEV strong interactions and stable binding pose to these receptors. Moreover, the codon optimized TEV sequence was cloned between NcoI and XhoI restriction sites of pET-28a(+) expression plasmid. The designed TEV can be used as a promising candidate in allergen-specific immunotherapy against S. kali. Nonetheless, effectiveness of this vaccine should be validated through immunological bioassays.
Collapse
Affiliation(s)
- Mohammad Hossein Shams
- Hepatitis Research Center and Department of Medical Immunology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Seyyed Mohsen Sohrabi
- Department of Production Engineering and Plant Genetic, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Box 6814993165, Ahvaz, Iran
| | - Reza Jafari
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ali Sheikhian
- Hepatitis Research Center and Department of Medical Immunology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Peyman Amanolahi Baharvand
- Hepatitis Research Center and Department of Medical Immunology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Amin Hasanvand
- Department of Physiology and Pharmacology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ali Fouladvand
- Hepatitis Research Center and Department of Medical Immunology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad-Ali Assarehzadegan
- Immunology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Salahlou R, Farajnia S, Bargahi N, Bakhtiyari N, Elmi F, Shahgolzari M, Fiering S, Venkataraman S. Development of a novel multi‑epitope vaccine against the pathogenic human polyomavirus V6/7 using reverse vaccinology. BMC Infect Dis 2024; 24:177. [PMID: 38336665 PMCID: PMC10854057 DOI: 10.1186/s12879-024-09046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Human polyomaviruses contribute to human oncogenesis through persistent infections, but currently there is no effective preventive measure against the malignancies caused by this virus. Therefore, the development of a safe and effective vaccine against HPyV is of high priority. METHODS First, the proteomes of 2 polyomavirus species (HPyV6 and HPyV7) were downloaded from the NCBI database for the selection of the target proteins. The epitope identification process focused on selecting proteins that were crucial, associated with virulence, present on the surface, antigenic, non-toxic, and non-homologous with the human proteome. Then, the immunoinformatic methods were used to identify cytotoxic T-lymphocyte (CTL), helper T-lymphocyte (HTL), and B-cell epitopes from the target antigens, which could be used to create epitope-based vaccine. The physicochemical features of the designed vaccine were predicted through various online servers. The binding pattern and stability between the vaccine candidate and Toll-like receptors were analyzed through molecular docking and molecular dynamics (MD) simulation, while the immunogenicity of the designed vaccines was assessed using immune simulation. RESULTS Online tools were utilized to forecast the most optimal epitope from the immunogenic targets, including LTAg, VP1, and VP1 antigens of HPyV6 and HPyV7. A multi-epitope vaccine was developed by combining 10 CTL, 7 HTL, and 6 LBL epitopes with suitable linkers and adjuvant. The vaccine displayed 98.35% of the world's population coverage. The 3D model of the vaccine structure revealed that the majority of residues (87.7%) were located in favored regions of the Ramachandran plot. The evaluation of molecular docking and MD simulation revealed that the constructed vaccine exhibits a strong binding (-1414.0 kcal/mol) towards the host's TLR4. Moreover, the vaccine-TLR complexes remained stable throughout the dynamic conditions present in the natural environment. The immune simulation results demonstrated that the vaccine design had the capacity to elicit robust immune responses in the host. CONCLUSION The multi-parametric analysis revealed that the designed vaccine is capable of inducing sustained immunity against the selected polyomaviruses, although further in-vivo investigations are needed to verify its effectiveness.
Collapse
Affiliation(s)
- Reza Salahlou
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nasrin Bargahi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Bakhtiyari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faranak Elmi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Shahgolzari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine, and Dartmouth Cancer Center, Lebanon, NH, USA
| | | |
Collapse
|
13
|
Bahadori Z, Shafaghi M, Sabzevari J, Madanchi H, Ranjbar MM, Mousavi SF, Shabani AA. Design, development, and assessment of a novel multi-peptide vaccine targeting PspC, PsaA, and PhtD proteins of Streptococcus pneumoniae. Int J Biol Macromol 2024; 258:128924. [PMID: 38143051 DOI: 10.1016/j.ijbiomac.2023.128924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Pneumococcus is the top cause of diseases such as pneumonia/meningitis, and of secondary infections after viral respiratory diseases like COVID-19/flu. Pneumococcal protein-based vaccines consisting of proteins with various functions in virulence might provide a qualified alternative for present vaccines. In this project, PspC, PsaA, and PhtD proteins were considered to anticipate B/T-cell epitopes using immunoinformatics to develop 4 multi-peptide constructs (C, A, and D individual constructs, and a fusion construct CAD). We tested whether vaccination with CAD is able to elicit more efficient protective responses against infection than vaccination with the individual constructs or combination of C + A + D. Based on the in silico results, the constructs were predicted to be antigenic, soluble, non-toxic, and stable, and also be able to provoke humoral/cellular immune reactions. When mice were immunized with the fusion protein, significantly higher levels of IgG and cytokines were induced in serum. The IgG in the fusion group had an effective bioactivity for pneumococcus clearance utilizing the complement pathway. The mice immunized with fusion protein were the most protected from challenge. This report for the first time presents a novel multi-peptide vaccine composed of immunodominant peptides of PspC, PsaA, and PhtD. In general, the experimental results supported the immunoinformatics predictions.
Collapse
Affiliation(s)
- Zohreh Bahadori
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran; Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| | - Mona Shafaghi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran; Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| | - Jahangir Sabzevari
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hamid Madanchi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran; Drug Design and Bioinformatics Unit, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammad Mehdi Ranjbar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | | | - Ali Akbar Shabani
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
14
|
Ji Q, Ma J, Wang S, Liu Q. Embedding of exogenous B cell epitopes on the surface of UreB structure generates a broadly reactive antibody response against Helicobacter pylori. Immunology 2024; 171:212-223. [PMID: 37899627 DOI: 10.1111/imm.13703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Since Helicobacter pylori (H. pylori) resistance to antibiotic regimens has increased, vaccination is becoming an increasingly important alternative therapy to control H. pylori infection. UreB, FlaA, AlpB, SabA, and HpaA proteins of H. pylori were previously proved to be used as candidate vaccine antigens. Here, we developed an engineered antigen based on a recombinant chimeric protein containing a structural scaffold from UreB and B cell epitopes from FlaA, AlpB, SabA, and HpaA. The multi-epitope chimeric antigen, named MECU, could generate a broadly reactive antibody response including antigen-specific antibodies and neutralising antibodies against H. pylori urease and adhesins. Moreover, therapeutic immunisation with MECU could reduce H. pylori colonisation in the stomach and protect the stomach in BALB/c mice. This study not only provides promising immunotherapy to control H. pylori infection but also offers a reference for antigen engineering against other pathogens.
Collapse
Affiliation(s)
- Qianyu Ji
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Junfei Ma
- College of Agriculture and Forestry, Linyi University, Linyi, China
| | - Shuying Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
15
|
Dhanushkumar T, M E S, Selvam PK, Rambabu M, Dasegowda KR, Vasudevan K, George Priya Doss C. Advancements and hurdles in the development of a vaccine for triple-negative breast cancer: A comprehensive review of multi-omics and immunomics strategies. Life Sci 2024; 337:122360. [PMID: 38135117 DOI: 10.1016/j.lfs.2023.122360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Triple-Negative Breast Cancer (TNBC) presents a significant challenge in oncology due to its aggressive behavior and limited therapeutic options. This review explores the potential of immunotherapy, particularly vaccine-based approaches, in addressing TNBC. It delves into the role of immunoinformatics in creating effective vaccines against TNBC. The review first underscores the distinct attributes of TNBC and the importance of tumor antigens in vaccine development. It then elaborates on antigen detection techniques such as exome sequencing, HLA typing, and RNA sequencing, which are instrumental in identifying TNBC-specific antigens and selecting vaccine candidates. The discussion then shifts to the in-silico vaccine development process, encompassing antigen selection, epitope prediction, and rational vaccine design. This process merges computational simulations with immunological insights. The role of Artificial Intelligence (AI) in expediting the prediction of antigens and epitopes is also emphasized. The review concludes by encapsulating how Immunoinformatics can augment the design of TNBC vaccines, integrating tumor antigens, advanced detection methods, in-silico strategies, and AI-driven insights to advance TNBC immunotherapy. This could potentially pave the way for more targeted and efficacious treatments.
Collapse
Affiliation(s)
- T Dhanushkumar
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - Santhosh M E
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - Prasanna Kumar Selvam
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - Majji Rambabu
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - K R Dasegowda
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - Karthick Vasudevan
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India.
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, India.
| |
Collapse
|
16
|
Zhang G, Han L, Zhao Y, Li Q, Wang S, Shi H. Development and evaluation of a multi-epitope subunit vaccine against Mycoplasma synoviae infection. Int J Biol Macromol 2023; 253:126685. [PMID: 37666406 DOI: 10.1016/j.ijbiomac.2023.126685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Mycoplasma synoviae is an extremely significant avian pathogen, causing substantial financial harm to poultry farmers worldwide, and impacting both chicken and turkey production. Multi-epitope vaccines offer higher immunity and lower allergenicity compared to conventional vaccines. In this study, our objective is to develop a multi-epitope vaccine for M. synoviae (MSMV) and to evaluate the immune responses and protective efficacy of MSMV in chickens. We successfully identified a total of 14 B-cell, 5 MHC-I, and 16 MHC-II binding epitopes from the immunodominant proteins RS01790, BMP, GrpE, RS00900, and RS00275. Subsequently, we synthesized the multi-epitope vaccine by connecting all conserved epitopes using appropriate linkers. The resulting MSMV demonstrated notable antigenicity, non-allergenic properties, and stability. Notably, the MSMV effectively stimulated high levels of antibody production in chickens. Furthermore, MSMV the vaccine elicited a robust cellular immune response in chickens, characterized by a well-balanced Th1/Th2-type cytokine profile and enhanced lymphocyte proliferation. In immune protection experiments, the vaccinated chickens exhibited reduced air sac lesion scores and tracheal mucosal thickness compared to their non-vaccinated chickens. Additionally, vaccinated chickens displayed lower M. synoviae loads in throat swabs. These findings collectively suggested that the MSMV holds significant potential as a promising vaccine candidate for managing M. synoviae infections.
Collapse
Affiliation(s)
- Guihua Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Lejiabao Han
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuying Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA.
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China.
| |
Collapse
|
17
|
Tabibpour NS, Doosti A, Sharifzadeh A. Putative novel outer membrane antigens multi-epitope DNA vaccine candidates identified by Immunoinformatic approaches to control Acinetobacter baumannii. BMC Immunol 2023; 24:46. [PMID: 37980458 PMCID: PMC10657578 DOI: 10.1186/s12865-023-00585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023] Open
Abstract
Multi-epitope polypeptide vaccines, a fusion protein, often have a string-of-beads system composed of various specific peptide epitopes, potential adjuvants, and linkers. When choosing the sequence of various segments and linkers, many alternatives are available. These variables can influence the vaccine's effectiveness through their effects on physicochemical properties and polypeptide tertiary structure.The most conserved antigens were discovered using BLASTn. To forecast the proteins' subcellular distribution, PSORTb 3.0.2 was used. Vaxign was used for the preliminary screening and antigenicity assessment. Protein solubility was also predicted using the ccSOL omics. Using PRED-TMBB, it was anticipated that the protein would localize across membranes. The IEDB and BepiPred-2.0 databases were used to predict the immunogenicity of B cell epitopes. A multi-epitope construct was developed and analyzed to evaluate. Twenty epitopes from A. baumannii's outer membrane protein (omp) were included in the vaccination. TLR4 agonist explosibility was investigated. The physicochemical characteristics, secondary and tertiary structures, and B-cell epitopes of vaccine constructs were assessed. Additionally, docking and MD experiments were used to examine the relationship between TLR4 and its agonist.Thirteen antigens were discovered, and eight of the 13 chosen proteins were predicted to be surface proteins. The 34 kDa outer membrane protein, Omp38, Omp W, CarO, putative porin, OmpA, were chosen as having the right antigenicity (≥0.5). FhuE and CdiA were eliminated from further study because of their low antigenicity. The vaccine design was developed by combining the most effective 10 B-cell and 10 MHC-I/MHCII combined coverage epitopes. The molecular formula of the vaccine was determined to be C1718H2615N507O630S17. The vaccine form has a molecular weight of 40,996.70 Da and 47 negatively charged residues (Asp + Glu), whereas 28 positively charged residues (Arg + Lys). The estimated half-life was 7.2 hours (mammalian reticulocytes, in vitro), > 20 hours (yeast, in vivo) and > 10 hours (Escherichia coli, in vivo) for the vaccine. The multi-epitope vaccine insertion is carried via the expression vector pcDNA3.1 (+).The multi-epitope vaccine may stimulate humoral and cellular immune responses, according to our findings, and it may be a candidate for an A. baumannii vaccine.
Collapse
Affiliation(s)
- Niloofar Sadat Tabibpour
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Ali Sharifzadeh
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Department of Microbiology, Faculty of Veterinary Medicine, Islamic Azad University, Shahrekord Branch, Shahrekord, Iran
| |
Collapse
|
18
|
Moten D, Batsalova T, Apostolova D, Mladenova T, Dzhambazov B, Teneva I. In Silico Design of a New Epitope-Based Vaccine against Grass Group 1 Allergens. Adv Respir Med 2023; 91:486-503. [PMID: 37987298 PMCID: PMC10660545 DOI: 10.3390/arm91060036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Allergic diseases are a global public health problem that affects up to 30% of the population in industrialized societies. More than 40% of allergic patients suffer from grass pollen allergy. Grass pollen allergens of group 1 and group 5 are the major allergens, since they induce allergic reactions in patients at high rates. In this study, we used immunoinformatic approaches to design an effective epitope-based vaccine against the grass group 1 allergens. After the alignment of all known pollen T-cell and B-cell epitopes from pollen allergens available in the public databases, the epitope GTKSEVEDVIPEGWKADTSY was identified as the most suitable for further analyses. The target sequence was subjected to immunoinformatics analyses to predict antigenic T-cell and B-cell epitopes. Population coverage analysis was performed for CD8+ and CD4+ T-cell epitopes. The selected T-cell epitopes (VEDVIPEGW and TKSEVEDVIPEGWKA) covered 78.87% and 98.20% of the global population and 84.57% and 99.86% of the population of Europe. Selected CD8+, CD4+ T-cell and B-cell epitopes have been validated by molecular docking analysis. CD8+ and CD4+ T-cell epitopes showed a very strong binding affinity to major histocompatibility complex (MHC) class I (MHC I) molecules and MHC class II (MHC II) molecules with global energy scores of -72.1 kcal/mol and -89.59 kcal/mol, respectively. The human IgE-Fc (PDB ID 4J4P) showed a lower affinity with B-cell epitope (ΔG = -34.4 kcal/mol), while the Phl p 2-specific human IgE Fab (PDB ID 2VXQ) had the lowest binding with the B-cell epitope (ΔG = -29.9 kcal/mol). Our immunoinformatics results demonstrated that the peptide GTKSEVEDVIPEGWKADTSY could stimulate the immune system and we performed ex vivo tests showed that the investigated epitope activates T cells isolated from patients with grass pollen allergy, but it is not recognized by IgE antibodies specific for grass pollen allergens. This confirms the importance of such studies to establish universal epitopes to serve as a basis for developing an effective vaccine against a particular group of allergens. Further in vivo studies are needed to validate the effectiveness of such a vaccine against grass pollen allergens.
Collapse
Affiliation(s)
- Dzhemal Moten
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria; (D.M.); (T.B.); (D.A.); (B.D.)
| | - Tsvetelina Batsalova
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria; (D.M.); (T.B.); (D.A.); (B.D.)
| | - Desislava Apostolova
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria; (D.M.); (T.B.); (D.A.); (B.D.)
| | - Tsvetelina Mladenova
- Department of Botany and Biological Education, Faculty of Biology, Paisii Hilendarski University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria;
| | - Balik Dzhambazov
- Department of Developmental Biology, Faculty of Biology, Paisii Hilendarski University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria; (D.M.); (T.B.); (D.A.); (B.D.)
| | - Ivanka Teneva
- Department of Botany and Biological Education, Faculty of Biology, Paisii Hilendarski University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria;
| |
Collapse
|
19
|
Nguyen TL, Samuel Leon Magdaleno J, Rajjak Shaikh A, Choowongkomon K, Li V, Lee Y, Kim H. Designing a multi-epitope candidate vaccine by employing immunoinformatics approaches to control African swine fever spread. J Biomol Struct Dyn 2023; 41:10214-10229. [PMID: 36510707 DOI: 10.1080/07391102.2022.2153922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Abstract
The African swine fever virus has been circulating for decades and is highly infectious, often fatal to farmed and wild pigs. There is currently no approved vaccine or treatment for the disease, making prevention even more difficult. Therefore, vaccine development is necessary and urgent to limit the consequences of ASF and ensure the food chain and sustainability of the swine industry. This research study was conducted to design a multi-epitope vaccine for controlling veterinary diseases caused by the African swine fever virus. We employed the immunoinformatics approaches to reveal 37 epitopes from different viral proteins of ASFV. These epitopes were linked to adjuvants and linkers to form a full-fledged immunogenic vaccine construct. The tertiary structure of the final vaccine was predicted using a deep-learning approach. The molecular docking and molecular dynamics predicted stable interactions between the vaccine and immune receptor TLR5 of Sus scrofa (Pig). The MD simulation studies reflect that the calculated parameters like RMSD, RMSF, number of hydrogen bonds, and finally, the buried interface surface area for the complex remained stable throughout the simulation time. This analysis suggests the stability of interface interactions between the TLR5 and the multi-epitope vaccine construct. Further, the physiochemical analysis demonstrated that our designed vaccine construct was expected to have high stability and prolonged half-life time in mammalian cells. Traditional vaccine design experiments require significant time and financial input from the development stage to the final product. Studies like this can assist in accelerating vaccine development while minimizing the cost.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Truc Ly Nguyen
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jorge Samuel Leon Magdaleno
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad, Haryana, India
| | - Abdul Rajjak Shaikh
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad, Haryana, India
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | - Vladimir Li
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Youngho Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- eGnome, Inc., Seoul, Republic of Korea
| |
Collapse
|
20
|
Moin AT, Ullah MA, Patil RB, Faruqui NA, Araf Y, Das S, Uddin KMK, Hossain MS, Miah MF, Moni MA, Chowdhury DUS, Islam S. A computational approach to design a polyvalent vaccine against human respiratory syncytial virus. Sci Rep 2023; 13:9702. [PMID: 37322049 PMCID: PMC10272159 DOI: 10.1038/s41598-023-35309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Human Respiratory Syncytial Virus (RSV) is one of the leading causes of lower respiratory tract infections (LRTI), responsible for infecting people from all age groups-a majority of which comprises infants and children. Primarily, severe RSV infections are accountable for multitudes of deaths worldwide, predominantly of children, every year. Despite several efforts to develop a vaccine against RSV as a potential countermeasure, there has been no approved or licensed vaccine available yet, to control the RSV infection effectively. Therefore, through the utilization of immunoinformatics tools, a computational approach was taken in this study, to design a multi-epitope polyvalent vaccine against two major antigenic subtypes of RSV, RSV-A and RSV-B. Potential predictions of the T-cell and B-cell epitopes were followed by extensive tests of antigenicity, allergenicity, toxicity, conservancy, homology to human proteome, transmembrane topology, and cytokine-inducing ability. The peptide vaccine was modeled, refined, and validated. Molecular docking analysis with specific Toll-like receptors (TLRs) revealed excellent interactions with suitable global binding energies. Additionally, molecular dynamics (MD) simulation ensured the stability of the docking interactions between the vaccine and TLRs. Mechanistic approaches to imitate and predict the potential immune response generated by the administration of vaccines were determined through immune simulations. Subsequent mass production of the vaccine peptide was evaluated; however, there remains a necessity for further in vitro and in vivo experiments to validate its efficacy against RSV infections.
Collapse
Affiliation(s)
- Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh.
| | - Md Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Rajesh B Patil
- Department of Pharmaceutical Chemistry, Sinhgad Technical Education Society's, Sinhgad College of Pharmacy, Pune, Maharashtra, India
| | - Nairita Ahsan Faruqui
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Sowmen Das
- Department of Computer Science and Engineering, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Khaza Md Kapil Uddin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Md Shakhawat Hossain
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Md Faruque Miah
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mohammad Ali Moni
- Bone Biology Division, The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- Artificial Intelligence and Data Science, Faculty of Health and Behavioural Sciences, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | - Dil Umme Salma Chowdhury
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh.
| | - Saiful Islam
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram Laboratories, Chattogram, Bangladesh.
| |
Collapse
|
21
|
Anandhan G, Narkhede YB, Mohan M, Paramasivam P. Immunoinformatics aided approach for predicting potent cytotoxic T cell epitopes of respiratory syncytial virus. J Biomol Struct Dyn 2023; 41:12093-12105. [PMID: 36935101 DOI: 10.1080/07391102.2023.2191136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/27/2022] [Indexed: 03/21/2023]
Abstract
Respiratory syncytial virus (RSV) is an infectious viral pathogen that causing serious respiratory infection in adults and neonates. The only approved therapies for RSV are the monoclonal antibodies palivizumab and its derivative motavizumab. Both treatments are expensive and require a hospital setting for administration. A vaccine represents a safe, effective and cheaper alternative for preventing RSV infection. In silico prediction methods have proven to be valuable in speeding up the process of vaccine design. In this study, reverse vaccinology methods were used to predict the cytotoxic T lymphocytes (CTL) epitopes from the entire proteome of RSV strain A. From amongst 3402 predicted binders to 12 high frequency alleles from the Immune Epitope Database (IEDB), 567 had positive processing scores while 327 epitopes were predicted to be immunogenic. A thorough examination of the 327 epitopes for possible antigenicity, allergenicity and toxicity resulted in 95 epitopes with desirable properties. A BLASTp analysis revealed 94 unique and non-homologous epitopes that were subjected to molecular docking across the 12 high frequency alleles. The final dataset of 70 epitopes contained 13 experimentally proven and 57 unique epitopes from a total of 11 RSV proteins. From our findings on selected T-cell-specific RSV antigen epitopes, notably the four epitopes confirmed to exhibit stable binding by molecular dynamics. The prediction pipeline used in this study represents an effective way to screen the immunogenic epitopes from other pathogens.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gayathri Anandhan
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Manikandan Mohan
- College of Pharmacy, University of Georgia, Athens, USA
- Vaxigen International Research Center, Coimbatore, Tamil Nadu, India
| | - Premasudha Paramasivam
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
22
|
Beikzadeh B. Immunoinformatics design of multi-epitope vaccine using OmpA, OmpD and enterotoxin against non-typhoidal salmonellosis. BMC Bioinformatics 2023; 24:63. [PMID: 36823524 PMCID: PMC9950014 DOI: 10.1186/s12859-023-05183-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Non-typhoidal Salmonella (NTS) is one of the important bacteria that cause foodborne diseases and invasive infections in children and elderly people. Since NTS infection is difficult to control due to the emergence of antibiotic-resistant species and its adverse effect on immune response, the development of a vaccine against NTS would be necessary. This study aimed to develop a multi-epitope vaccine against the most prevalent serovars of NTS (Salmonella Typhimurium, Salmonella Enteritidis) using an immunoinformatics approach and targeting OmpA, OmpD, and enterotoxin (Stn). RESULTS Initially, the B cell and T cell epitopes were predicted. Then, epitopes and suitable adjuvant were assembled by molecular linkers to construct a multi-epitope vaccine. The computational tools predicted the tertiary structure, refined the tertiary structure and validated the final vaccine construct. The effectiveness of the vaccine was evaluated via molecular docking, molecular dynamics simulation, and in silico immune simulation. The vaccine model had good binding affinity and stability with MHC-I, MHC-II, and toll-like receptors (TLR-1, 2, 4) as well as activation of T cells, IgM, IgG, IFN-γ and IL-2 responses. Furthermore, after codon optimization of the vaccine sequence, this sequence was cloned in E. coli plasmid vector pET-30a (+) within restriction sites of HindIII and BamHI. CONCLUSIONS This study, for the first time, introduced a multi-epitope vaccine based on OmpA, OmpD and enterotoxin (Stn) of NTS that could stimulate T and B cell immune responses and produced in the prokaryotic system. This vaccine was validated in-silico phase which is an essential study to reduce challenges before in vitro and in vivo studies.
Collapse
Affiliation(s)
- Babak Beikzadeh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
23
|
Targeted Protein-Specific Multi-Epitope-Based Vaccine Designing against Human Cytomegalovirus by Using Immunoinformatics Approaches. Vaccines (Basel) 2023; 11:vaccines11020203. [PMID: 36851082 PMCID: PMC9959080 DOI: 10.3390/vaccines11020203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Cytomegaloviruses are emerging pathogenic agents known to cause congenital disorders in humans. In this study, immune epitopes (CTL, B cell and HTL) were screened for highly antigenic target proteins of the Human Cytomegalovirus. These shortlisted epitopes were then joined together through suitable linkers to construct multi epitope-based vaccine constructs (MEVCs). The functionality of each vaccine construct was evaluated through tertiary vaccine structure modelling and validations. Furthermore, physio-chemical properties including allergenicity, antigenicity molecular weight and many others were also predicted. The vaccine designs were also docked with the human TLR-4 receptor to demonstrate the receptor specific affinity and formed interactions. The vaccine peptides sequences were also subjected to codon optimization to confirm the potential vaccines expression in E. coli hosts. Additionally, all the MEVCs were also evaluated for immune response (IgG and IgM) induction. However, further in vivo tests are needed to ensure the efficacy of these vaccine designs.
Collapse
|
24
|
Romano M, Squeglia F, Kramarska E, Barra G, Choi HG, Kim HJ, Ruggiero A, Berisio R. A Structural View at Vaccine Development against M. tuberculosis. Cells 2023; 12:317. [PMID: 36672252 PMCID: PMC9857197 DOI: 10.3390/cells12020317] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Tuberculosis (TB) is still the leading global cause of death from an infectious bacterial agent. Limiting tuberculosis epidemic spread is therefore an urgent global public health priority. As stated by the WHO, to stop the spread of the disease we need a new vaccine, with better coverage than the current Mycobacterium bovis BCG vaccine. This vaccine was first used in 1921 and, since then, there are still no new licensed tuberculosis vaccines. However, there is extremely active research in the field, with a steep acceleration in the past decades, due to the advance of technologies and more rational vaccine design strategies. This review aims to gather latest updates in vaccine development in the various clinical phases and to underline the contribution of Structural Vaccinology (SV) to the development of safer and effective antigens. In particular, SV and the development of vaccine adjuvants is making the use of subunit vaccines, which are the safest albeit the less antigenic ones, an achievable goal. Indeed, subunit vaccines overcome safety concerns but need to be rationally re-engineered to enhance their immunostimulating effects. The larger availability of antigen structural information as well as a better understanding of the complex host immune response to TB infection is a strong premise for a further acceleration of TB vaccine development.
Collapse
Affiliation(s)
- Maria Romano
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Eliza Kramarska
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Giovanni Barra
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Han-Gyu Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, IBB, CNR, 80131 Naples, Italy
| |
Collapse
|
25
|
Ishwarlall TZ, Adeleke VT, Maharaj L, Okpeku M, Adeniyi AA, Adeleke MA. Identification of potential candidate vaccines against Mycobacterium ulcerans based on the major facilitator superfamily transporter protein. Front Immunol 2022; 13:1023558. [PMID: 36426350 PMCID: PMC9679648 DOI: 10.3389/fimmu.2022.1023558] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2023] Open
Abstract
Buruli ulcer is a neglected tropical disease that is characterized by non-fatal lesion development. The causative agent is Mycobacterium ulcerans (M. ulcerans). There are no known vectors or transmission methods, preventing the development of control methods. There are effective diagnostic techniques and treatment routines; however, several socioeconomic factors may limit patients' abilities to receive these treatments. The Bacillus Calmette-Guérin vaccine developed against tuberculosis has shown limited efficacy, and no conventionally designed vaccines have passed clinical trials. This study aimed to generate a multi-epitope vaccine against M. ulcerans from the major facilitator superfamily transporter protein using an immunoinformatics approach. Twelve M. ulcerans genome assemblies were analyzed, resulting in the identification of 11 CD8+ and 7 CD4+ T-cell epitopes and 2 B-cell epitopes. These conserved epitopes were computationally predicted to be antigenic, immunogenic, non-allergenic, and non-toxic. The CD4+ T-cell epitopes were capable of inducing interferon-gamma and interleukin-4. They successfully bound to their respective human leukocyte antigens alleles in in silico docking studies. The expected global population coverage of the T-cell epitopes and their restricted human leukocyte antigens alleles was 99.90%. The population coverage of endemic regions ranged from 99.99% (Papua New Guinea) to 21.81% (Liberia). Two vaccine constructs were generated using the Toll-like receptors 2 and 4 agonists, LprG and RpfE, respectively. Both constructs were antigenic, non-allergenic, non-toxic, thermostable, basic, and hydrophilic. The DNA sequences of the vaccine constructs underwent optimization and were successfully in-silico cloned with the pET-28a(+) plasmid. The vaccine constructs were successfully docked to their respective toll-like receptors. Molecular dynamics simulations were carried out to analyze the binding interactions within the complex. The generated binding energies indicate the stability of both complexes. The constructs generated in this study display severable favorable properties, with construct one displaying a greater range of favorable properties. However, further analysis and laboratory validation are required.
Collapse
Affiliation(s)
- Tamara Z. Ishwarlall
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Victoria T. Adeleke
- Department of Chemical Engineering, Mangosuthu University of Technology, Durban, South Africa
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Adebayo A. Adeniyi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
- Department of Industrial Chemistry, Federal University Oye Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
26
|
Motamedi Dehbarez F, Mahmoodi S. Production of a Novel Multi-Epitope Peptide Vaccine against Hepatocellular Carcinoma. IRANIAN JOURNAL OF MEDICAL SCIENCES 2022; 47:558-565. [PMID: 36380977 PMCID: PMC9652490 DOI: 10.30476/ijms.2021.90916.2199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/11/2021] [Accepted: 08/28/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the prevalent cancers in the world with a high recurrence rate. In recent years, different researches have focused on designing efficient multi-epitope peptide vaccines against HCC. In designing these vaccines, over-expressed antigens in HCC patients, such as α- fetoprotein (AFP) and glypican-3 (GPC-3), have been employed. In our previous study, a multi-epitope peptide vaccine for HCC was designed by in-silico methods. The designed vaccine construct included the AFP, GPC-3, and aspartyl-β-hydroxylase (ASPH) as CytoLoxic T cell Lymphocytes (CTL), one epitope from Tetanus Toxin Fragment C (TTFrC) as Helper T cell Lymphocytes (HTL), and a segment of microbial heat shock protein (HSP70) peptide407-426 as an adjuvant. All the mentioned parts were connected by appropriate linkers. The aim of this study is the production of the designed vaccine. METHODS This research is experimental and was carried out in Fasa, Iran, in 2017. The designed vaccine construct gene was transformed to the Escherchia coli BL21 (DE3) strain and expressed in different isopropyl β-D-1-thiogalactopyranoside (IPTG) concentrations (0.6 and 1 mM), times (4, 6, 8, 16 hours), and temperatures (25 and 37 °C). Then, the expressed protein was analyzed by Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and the Western blot methods. RESULTS The best conditions for protein expression were obtained in the Super Optimal Broth (SOB) medium at 37 °C after the induction of expression by 1 mM IPTG for six hour. CONCLUSION The recombinant HCC vaccine was produced with a proper concentration.
Collapse
Affiliation(s)
- Fatemeh Motamedi Dehbarez
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
27
|
Tamjid N, Eskandari S, Karimi Z, Nezafat N, Negahdaripour M. Vaccinomics strategy to design an epitope peptide vaccine against Helicobacter pylori. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Vaccinomics to Design a Multiepitope Vaccine against Legionella pneumophila. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4975721. [PMID: 36164443 PMCID: PMC9509222 DOI: 10.1155/2022/4975721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022]
Abstract
Legionella pneumophila is found in the natural aquatic environment and can resist a wide range of environmental conditions. There are around fifty species of Legionella, at least twenty-four of which are directly linked to infections in humans. L. pneumophila is the cause of Legionnaires' disease, a potentially lethal form of pneumonia. By blocking phagosome-lysosome fusion, L. pneumophila lives and proliferates inside macrophages. For this disease, there is presently no authorized multiepitope vaccine available. For the multi-epitope-based vaccine (MEBV), the best antigenic candidates were identified using immunoinformatics and subtractive proteomic techniques. Several immunoinformatics methods were utilized to predict B and T cell epitopes from vaccine candidate proteins. To construct an in silico vaccine, epitopes (07 CTL, 03 HTL, and 07 LBL) were carefully selected and docked with MHC molecules (MHC-I and MHC-II) and human TLR4 molecules. To increase the immunological response, the vaccine was combined with a 50S ribosomal adjuvant. To maximize vaccine protein expression, MEBV was cloned and reverse-translated in Escherichia coli. To prove the MEBV's efficacy, more experimental validation is required. After its development, the resulting vaccine is greatly hoped to aid in the prevention of L. pneumophila infections.
Collapse
|
29
|
Bahadori Z, Shafaghi M, Madanchi H, Ranjbar MM, Shabani AA, Mousavi SF. In silico designing of a novel epitope-based candidate vaccine against Streptococcus pneumoniae with introduction of a new domain of PepO as adjuvant. J Transl Med 2022; 20:389. [PMID: 36059030 PMCID: PMC9440865 DOI: 10.1186/s12967-022-03590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae is the leading reason for invasive diseases including pneumonia and meningitis, and also secondary infections following viral respiratory diseases such as flu and COVID-19. Currently, serotype-dependent vaccines, which have several insufficiency and limitations, are the only way to prevent pneumococcal infections. Hence, it is plain to need an alternative effective strategy for prevention of this organism. Protein-based vaccine involving conserved pneumococcal protein antigens with different roles in virulence could provide an eligible alternative to existing vaccines. METHODS In this study, PspC, PhtD and PsaA antigens from pneumococcus were taken to account to predict B-cell and helper T-cell epitopes, and epitope-rich regions were chosen to build the construct. To enhance the immunogenicity of the epitope-based vaccine, a truncated N-terminal fragment of pneumococcal endopeptidase O (PepO) was used as a potential TLR2/4 agonist which was identified by molecular docking studies. The ultimate construct was consisted of the chosen epitope-rich regions, along with the adjuvant role (truncated N-PepO) and suitable linkers. RESULTS The epitope-based vaccine was assessed as regards physicochemical properties, allergenicity, antigenicity, and toxicity. The 3D structure of the engineered construct was modeled, refined, and validated. Molecular docking and simulation of molecular dynamics (MD) indicated the proper and stable interactions between the vaccine and TLR2/4 throughout the simulation periods. CONCLUSIONS For the first time this work presents a novel vaccine consisting of epitopes of PspC, PhtD, and PsaA antigens which is adjuvanted with a new truncated domain of PepO. The computational outcomes revealed that the suggested vaccine could be deemed an efficient therapeutic vaccine for S. pneumoniae; nevertheless, in vitro and in vivo examinations should be performed to prove the potency of the candidate vaccine.
Collapse
Affiliation(s)
- Zohreh Bahadori
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Research Center of Biotechnology, Semnan University of Medical Sciences, Semnan, Iran.,Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Mona Shafaghi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Research Center of Biotechnology, Semnan University of Medical Sciences, Semnan, Iran.,Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Madanchi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Research Center of Biotechnology, Semnan University of Medical Sciences, Semnan, Iran.,Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Mehdi Ranjbar
- Agricultural Research, Education, and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Ali Akbar Shabani
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran. .,Research Center of Biotechnology, Semnan University of Medical Sciences, Semnan, Iran.
| | | |
Collapse
|
30
|
Alzarea SI. Identification and construction of a multi-epitopes vaccine design against Klebsiella aerogenes: molecular modeling study. Sci Rep 2022; 12:14402. [PMID: 36002561 PMCID: PMC9399595 DOI: 10.1038/s41598-022-18610-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/16/2022] [Indexed: 02/03/2023] Open
Abstract
A rapid rise in antibiotic resistance by bacterial pathogens is due to these pathogens adaptation to the changing environmental conditions. Antibiotic resistance infections can be reduced by a number of ways such as development of safe and effective vaccine. Klebsiella aerogene is a gram-negative, rod-shaped bacterium resistant to a variety of antibiotics and no commercial vaccine is available against the pathogen. Identifying antigens that can be easily evaluated experimentally would be crucial to successfully vaccine development. Reverse vaccinology (RV) was used to identify vaccine candidates based on complete pathogen proteomic information. The fully sequenced proteomes include 44,115 total proteins of which 43,316 are redundant and 799 are non-redundant. Subcellular localization showed that only 1 protein in extracellular matrix, 7 were found in outer-membrane proteins, and 27 in the periplasm space. A total of 3 proteins were found virulent. Next in the B-cell-derived T-cell epitopes mapping phase, the 3 proteins (Fe2+- enterobactin, ABC transporter substrate-binding protein, and fimbriae biogenesis outer membrane usher protein) were tested positive for antigenicity, toxicity, and solubility. GPGPG linkers were used to prepare a vaccine construct composed of 7 epitopes and an adjuvant of toxin B subunit (CTBS). Molecular docking of vaccine construct with major histocompatibility-I (MHC-I), major histocompatibility-II (MHC-II), and Toll-like receptor 4 (TLR4) revealed vaccine robust interactions and stable binding pose to the receptors. By using molecular dynamics simulations, the vaccine-receptors complexes unveiled stable dynamics and uniform root mean square deviation (rmsd). Further, binding energies of complex were computed that again depicted strong intermolecular bindings and formation of stable conformation.
Collapse
Affiliation(s)
- Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72341, Saudi Arabia.
| |
Collapse
|
31
|
Jaan S, Shah M, Ullah N, Amjad A, Javed MS, Nishan U, Mustafa G, Nawaz H, Ahmed S, Ojha SC. Multi-epitope chimeric vaccine designing and novel drug targets prioritization against multi-drug resistant Staphylococcus pseudintermedius. Front Microbiol 2022; 13:971263. [PMID: 35992654 PMCID: PMC9386485 DOI: 10.3389/fmicb.2022.971263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Biofilm synthesizing multi-drug resistant Staphylococcus pseudintermedius bacteria has been recognized as the human infectious agent. It has been detected in the diseases of skin, ear, and postoperative infections. Its infections are becoming a major health problem due to its multi-drug resistance capabilities. However, no commercial vaccine for the treatment of its infections is currently available in the market. Here we employed the subtractive proteomics and reverse vaccinology approach to determine the potential novel drug and vaccine targets against S. pseudintermedius infections in humans. After screening the core-proteome of the 39 complete genomes of S. pseudintermedius, 2 metabolic pathways dependent and 34 independent proteins were determined as novel potential drug targets. Two proteins were found and used as potential candidates for designing the chimeric vaccine constructs. Depending on the properties such as antigenicity, toxicity and solubility, multi-epitope based vaccines constructs were designed. For immunogenicity enhancement, different specific sequences like linkers, PADRE sequences and molecular adjuvants were added. Molecular docking and molecular dynamic simulation analyses were performed to evaluate the prioritized vaccine construct’s interactions with human immune cells HLA and TLR4. Finally, the cloning and expression ability of the vaccine construct was determined in the bacterial cloning system and human body immune response was predicted through immune simulation analysis. In conclusion, this study proposed the potential drug and vaccine targets and also designed a chimera vaccine to be tested and validated against infectious S. pseudintermedius species.
Collapse
Affiliation(s)
- Samavia Jaan
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
- *Correspondence: Mohibullah Shah, ;
| | - Najeeb Ullah
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Adnan Amjad
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Sameem Javed
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Haq Nawaz
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Sarfraz Ahmed
- Department of Basic Sciences, University of Veterinary and Animal Sciences Lahore, Narowal, Pakistan
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Suvash Chandra Ojha,
| |
Collapse
|
32
|
Ghafouri F, Ahangari Cohan R, Samimi H, Hosseini Rad S M A, Naderi M, Noorbakhsh F, Haghpanah V. Development of a Multiepitope Vaccine Against SARS-CoV-2: Immunoinformatics Study. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2022; 3:e36100. [PMID: 35891920 PMCID: PMC9302570 DOI: 10.2196/36100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 05/16/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022]
Abstract
Background Since the first appearance of SARS-CoV-2 in China in December 2019, the world witnessed the emergence of the SARS-CoV-2 outbreak. Due to the high transmissibility rate of the virus, there is an urgent need to design and develop vaccines against SARS-CoV-2 to prevent more cases affected by the virus. Objective A computational approach is proposed for vaccine design against the SARS-CoV-2 spike (S) protein, as the key target for neutralizing antibodies, and envelope (E) protein, which contains a conserved sequence feature. Methods We used previously reported epitopes of S protein detected experimentally and further identified a collection of predicted B-cell and major histocompatibility (MHC) class II–restricted T-cell epitopes derived from E proteins with an identical match to SARS-CoV-2 E protein. Results The in silico design of our candidate vaccine against the S and E proteins of SARS-CoV-2 demonstrated a high affinity to MHC class II molecules and effective results in immune response simulations. Conclusions Based on the results of this study, the multiepitope vaccine designed against the S and E proteins of SARS-CoV-2 may be considered as a new, safe, and efficient approach to combatting the COVID-19 pandemic.
Collapse
Affiliation(s)
- Fatemeh Ghafouri
- Department of Biotechnology Faculty of Life Sciences and Biotechnology Shahid Beheshti University Tehran Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology New Technologies Research Group Pasteur Institute of Iran Tehran Iran
| | - Hilda Samimi
- Endocrinology and Metabolism Research Center Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| | | | - Mahmood Naderi
- Digestive Diseases Research Center Digestive Diseases Research Institute Tehran University of Medical Sciences Tehran Iran
| | - Farshid Noorbakhsh
- Department of Immunology School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Vahid Haghpanah
- Endocrinology and Metabolism Research Center Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
- Personalized Medicine Research Center Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
33
|
Kumar A, Sahu U, Kumari P, Dixit A, Khare P. Designing of multi-epitope chimeric vaccine using immunoinformatic platform by targeting oncogenic strain HPV 16 and 18 against cervical cancer. Sci Rep 2022; 12:9521. [PMID: 35681036 PMCID: PMC9184633 DOI: 10.1038/s41598-022-13442-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cervical cancer is the most common gynaecological cancer and reaches an alarming stage. HPVs are considered the main causative agents for cervical cancer and other sexually transmitted infections across the globe. Currently, three prophylactic vaccines are available against HPV infections with no therapeutic values. Due to a lack of effective therapeutic and prophylactic measures, the HPV infection is spreading in an uncontrolled manner. Next-generation of vaccine is needed to have both prophylactic and therapeutic values against HPV. Here first time we have designed a multi-epitope chimeric vaccine using the most oncogenic strain HPV 16 and HPV 18 through an immunoinformatic approach. In this study, we have used the L1, E5, E6 and E7 oncoproteins from both HPV 16 and HPV 18 strains for epitope prediction. Our recombinant chimeric vaccine construct consists, selected helper and cytotoxic T cell epitopes. Our computational analysis suggests that this chimeric construct is highly stable, non-toxic and also capable of inducing both cell-mediated and humoral immune responses. Furthermore, in silico cloning of the multi-epitope chimeric vaccine construct was done and the stabilization of the vaccine construct is validated with molecular dynamics simulation studies. Finally, our results indicated that our construct could be used for an effective prophylactic and therapeutic vaccine against HPV.
Collapse
Affiliation(s)
- Anoop Kumar
- National Institute of Biologicals (NIB), Noida, Uttar Pradesh, India
| | - Utkarsha Sahu
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, 462020, India
- Division of Synthetic Biology, Absolute foods, 5th floor, Plot 68, Sector 44, Gurugram, Haryana, 122003, India
| | - Pratima Kumari
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad Rd, Faridabad, Haryana, 121001, India
| | - Anshuman Dixit
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Prashant Khare
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, 462020, India.
- Division of Synthetic Biology, Absolute foods, 5th floor, Plot 68, Sector 44, Gurugram, Haryana, 122003, India.
| |
Collapse
|
34
|
Identification of Antigenic Properties of Acinetobacter baumannii Proteins as Novel Putative Vaccine Candidates Using Reverse Vaccinology Approach. Appl Biochem Biotechnol 2022; 194:4892-4914. [PMID: 35670904 DOI: 10.1007/s12010-022-03995-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 02/06/2023]
Abstract
Multidrug-resistant Acinetobacter baumannii (A. baumannii) infections are becoming more prevalent all over the world. As a cost-effective and preventative method, vaccination seems to be required against this bacterium. In the present study, subtractive proteomics along with reverse vaccinology approaches was used to predict suitable therapeutics against A. baumannii. Using the Vaxign online tool, we studied over 35 genomes of A. baumannii strains and chose outer membrane and secreted proteins of A. baumannii 1656-2 as possible vaccine candidates. Then, investigations were performed on the immunogenicity, antigenic characteristics, physicochemical properties, B-cell and MHC class I, and MHC class II molecules epitope densities of proteins. After optimizing the codon of the proteins, the pcDNA3.1( +) expression construct was designed and the immunogenicity, allergenicity, and physicochemical properties of the vaccine construct were predicted. Hcp and OmpC proteins were predicted as extracellular and outer membrane proteins, respectively. These proteins interact with 10 other proteins to form a network of protein interactions with virulence properties. Immunoassays of Hcp and OmpC proteins showed antigenicity of 0.88 and 0.79, respectively. These proteins have 5 structural cell epitope points and 5 linear B epitope points. They are also able to bind to different HLA alleles of MCH class I/class II as selected immunogenic proteins and designed non-allergenic structures with solubility of 0.650 and immunogenicity score of 0.91. The results of this "in silico" study indicate high specificity and the development of a significant humoral and cellular immune response. It can be concluded that the Hcp and OmpC dual vaccine construct is one of the promising candidates against A. baumannii. The findings of this "in silico" study show excellent specificity and the emergence of a substantial humoral and cellular immune response. This is a computer-based study that needs to be tested in vitro and in vivo to corroborate the conclusions of the vaccine design procedures.
Collapse
|
35
|
Raza A, Asif Rasheed M, Raza S, Tariq Navid M, Afzal A, Jamil F. Prediction and analysis of multi epitope based vaccine against Newcastle disease virus based on haemagglutinin neuraminidase protein. Saudi J Biol Sci 2022; 29:3006-3014. [PMID: 35531218 PMCID: PMC9073007 DOI: 10.1016/j.sjbs.2022.01.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
Abstract
Newcastle disease virus (NDV), an avian orthoavulavirus, is a causative agent of Newcastle disease named (NDV), and can cause even the epidemics when disease is not treated. Previously several vaccines based on attenuated and inactivated viruses have been reported which are rendered useless with the passage of time due to versatile changes in viral genome. Therefore, we aimed to develop an effective multi-epitope vaccine against the haemagglutinin neuraminidase (HN) protein of 26 NDV strains from Pakistan through a modern immunoinformatic approaches. As a result, a vaccine chimaera was constructed by combining T-cell and B-cell epitopes with the appropriate linkers and adjuvant. The designed vaccine was highly immunogenic, non-allergen and antigenic; therefore, the potential 3D-structureof multi epitope vaccine was constructed, refined and validated. A molecular docking study of a multiepitope vaccine candidate with the chicken Toll-like receptor-4 indicated successful binding. An In silico immunological simulation was used to evaluate the candidate vaccine's ability to elicit an effective immune response. According to the computational studies, the proposed multiepitope vaccine is physically stable and may induce immune responses whichsuggested it a strong candidate against 26 Newcastle disease virus strains from Pakistan.
Collapse
Affiliation(s)
- Adnan Raza
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Muhammad Asif Rasheed
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Sohail Raza
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Tariq Navid
- Department of Biological Sciences, National University of Medical sciences, Rawalpindi 46000, Pakistan
| | - Amna Afzal
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Farrukh Jamil
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| |
Collapse
|
36
|
Farnudian-Habibi A, Mirjani M, Montazer V, Aliebrahimi S, Katouzian I, Abdolhosseini S, Rahmani A, Keyvani H, Ostad SN, Rad-Malekshahi M. Review on Approved and Inprogress COVID-19 Vaccines. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH 2022; 21:e124228. [PMID: 36060923 PMCID: PMC9420219 DOI: 10.5812/ijpr.124228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 11/24/2022]
Abstract
The last generation of Coronavirus named COVID-19 is responsible for the recent worldwide outbreak. Concerning the widespread and quick predominance, there is a critical requirement for designing appropriate vaccines to surmount this grave problem. Correspondingly, in this revision, COVID-19 vaccines (which are being developed until March 29th, 2021) are classified into specific and non-specific categories. Specific vaccines comprise genetic-based vaccines (mRNA, DNA), vector-based, protein/recombinant protein vaccines, inactivated viruses, live-attenuated vaccines, and novel strategies including microneedle arrays (MNAs), and nanoparticles vaccines. Moreover, specific vaccines such as BCG, MRR, and a few other vaccines are considered Non-specific. What is more, according to the significance of Bioinformatic sciences in the cutting-edge vaccine design and rapid outbreak of COVID-19, herein, Bioinformatic principles including reverse vaccinology, epitopes prediction/selection and, their further applications in the design of vaccines are discussed. Last but not least, safety, challenges, advantages, and future prospects of COVID-19 vaccines are highlighted.
Collapse
Affiliation(s)
- Amir Farnudian-Habibi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobina Mirjani
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahideh Montazer
- Department of Clinical Pharmacy, Virtual University of Medical Sciences, Tehran, Iran
| | - Shima Aliebrahimi
- Department of Medical Education, Virtual University of Medical Sciences, Tehran, Iran
| | - Iman Katouzian
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), 8054 Monash University LPO, Clayton, 3168, Victoria, Australia
| | - Saeed Abdolhosseini
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, 14395-515 Tehran, Iran
| | - Ali Rahmani
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Nasser Ostad
- Toxicology and Poisoning Research Centre, Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Corresponding Author: Toxicology and Poisoning Research Centre, Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Vilela Rodrigues TC, Jaiswal AK, Lemes MR, da Silva MV, Sales-Campos H, Alcântara LCJ, Tosta SFDO, Kato RB, Alzahrani KJ, Barh D, Azevedo VADC, Tiwari S, Soares SDC. An immunoinformatics-based designed multi-epitope candidate vaccine (mpme-VAC/STV-1) against Mycoplasma pneumoniae. Comput Biol Med 2021; 142:105194. [PMID: 35007945 DOI: 10.1016/j.compbiomed.2021.105194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022]
Abstract
Pneumonia is a serious global health problem that accounts for over one million deaths annually. Among the main microorganisms causing pneumonia, Mycoplasma pneumoniae is one of the most common ones for which a vaccine is immediately required. In this context, a multi-epitope vaccine against this pathogen could be the best option that can induce effective immune response avoiding any serious adverse reactions. In this study, using an immunoinformatics approach we have designed a multi-epitope vaccine (mpme-VAC/STV-1) against M. pneumoniae. Our designed mpme-VAC/STV-1 is constructed using CTL (cytotoxic T lymphocyte), HTL (Helper T lymphocyte), and B-cell epitopes. These epitopes are selected from the core proteins of 88 M. pneumoniae genomes that were previously identified through reverse vaccinology approaches. The epitopes were filtered according to their immunogenicity, population coverage, and several other criteria. Sixteen CTL/B- and thirteen HTL/B- epitopes that belong to 5 core proteins were combined together through peptide linkers to develop the mpme-VAC/STV-1. The heat-labile enterotoxin from E. coli was used as an adjuvant. The designed mpme-VAC/STV-1 is predicted to be stable, non-toxic, non-allergenic, non-host homologous, and with required antigenic and immunogenic properties. Docking and molecular dynamic simulation of mpme-VAC/STV-1 shows that it can stimulate TLR2 pathway mediated immunogenic reactions. In silico cloning of mpme-VAC/STV-1 in an expression vector also shows positive results. Finally, the mpme-VAC/STV-1 also shows promising efficacy in immune simulation tests. Therefore, our constructed mpme-VAC/STV-1 could be a safe and effective multi-epitope vaccine for immunization against pneumonia. However, it requires further experimental and clinical validations.
Collapse
Affiliation(s)
- Thaís Cristina Vilela Rodrigues
- Programa PG Em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Arun Kumar Jaiswal
- Programa PG Em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcela Rezende Lemes
- Department of Immunology, Microbiology and Parasitology, Institute of Biological Science and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, 38025-180, MG, Brazil
| | - Marcos Vinícius da Silva
- Department of Immunology, Microbiology and Parasitology, Institute of Biological Science and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, 38025-180, MG, Brazil
| | - Helioswilton Sales-Campos
- Institute of Tropical Pathology and Public Health, Federal University of Goias (UFG), Goiânia, 74605-050, GO, Goiás, Brazil
| | | | - Sthephane Fraga de Oliveira Tosta
- Programa PG Em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Bentes Kato
- Programa PG Em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Debmalya Barh
- Programa PG Em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, 721172, India
| | - Vasco Ariston de Carvalho Azevedo
- Programa PG Em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sandeep Tiwari
- Programa PG Em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Siomar de Castro Soares
- Department of Immunology, Microbiology and Parasitology, Institute of Biological Science and Natural Sciences, Federal University of Triângulo Mineiro (UFTM), Uberaba, 38025-180, MG, Brazil.
| |
Collapse
|
38
|
Fatemi SA, Seifi N, Rasekh S, Amiri S, Moezzi SMI, Bagheri A, Fathi S, Negahdaripour M. Immunotherapeutic approaches for HPV-caused cervical cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 129:51-90. [PMID: 35305725 DOI: 10.1016/bs.apcsb.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cervical cancer, the fourth most frequent women cancer worldwide, is mostly (about 99%) associated with human papillomavirus (HPV). Despite availability of three effective prophylactic vaccines for more than one decade and some other preventive measures, it is still the fourth cause of cancer death among women globally. Thus, development of therapeutic vaccines seems essential, which has been vastly studied using different vaccine platforms. Even with very wide efforts during the past years, no therapeutic vaccine has been approved yet, which might be partly due to the complex events and interactions taken place in the tumor microenvironment. On the other hand, immunotherapy has opened its way into the management plans of some cancers. The recent approval of pembrolizumab for the treatment of metastatic/recurrent cervical cancer brings new hopes to the management of this disease, while some other immunotherapeutic approaches are also under investigation either alone or in combination with vaccines. Here, following a summary about HPV and its pathogenesis, cervical cancer therapeutic vaccines would be reviewed. Cell-based vaccines as well as immunomodulation and other modalities used along with vaccines would be also discussed.
Collapse
Affiliation(s)
- Seyed Amirreza Fatemi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nadia Seifi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Rasekh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sogand Amiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Iman Moezzi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ashkan Bagheri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Fathi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
39
|
Development of Multi-epitope Subunit Vaccine Against Pseudomonas aeruginosa Using OprF/OprI and PopB Proteins. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2021. [DOI: 10.5812/archcid.118243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The emerging problem of antibiotic resistance in Pseudomonas aeruginosa is a global health concern; hence, revealing innovative therapeutic approaches (such as designing an immunogenic vaccine candidate) is needed. There is no evidence of the availability of an effective vaccine that can combat the infection caused by this microorganism. Objectives: This research was conducted to develop a potential chimeric vaccine against P. aeruginosa using reverse vaccinology approaches. Methods: The present vaccine candidate comprised outer membrane protein F and I (OprF/OprI) and PopB with appropriate linkers. After applying meticulous immune-informatics investigation, the multi-epitope vaccine was created, including helper T lymphocyte (HTL), cytotoxic T lymphocyte (CTL), interferon gamma (IFN-γ), and interleukin 4 (IL-4) epitopes. Then, the physicochemical characteristics, allergenicity, toxicity, and antigenicity were analyzed. After investigating the secondary structure, the tertiary structure (3D) model was generated, refined, and validated via computational methods. Besides, the strong protein-ligand interaction and stability between the vaccine candidate and toll-like receptor 4 (TLR4) were determined via molecular docking and dynamics analyses. Moreover, in silico cloning accompanied by pET-22b (+) was used to achieve high translation efficiency. Results: Our results presumed that the chimeric-designed vaccine was thermostable and contained optimal physicochemical properties. This vaccine candidate was nontoxic and highly soluble and had stable protein and TLR4 interaction, adequately overexpressed in Escherichia coli. Overall, it could induce immune responses and repress this microorganism. Conclusions: Therefore, to inhibit Pseudomonas infections experimentally, the efficacy and safety of the vaccine design need to be validated.
Collapse
|
40
|
Sami SA, Marma KKS, Mahmud S, Khan MAN, Albogami S, El-Shehawi AM, Rakib A, Chakraborty A, Mohiuddin M, Dhama K, Uddin MMN, Hossain MK, Tallei TE, Emran TB. Designing of a Multi-epitope Vaccine against the Structural Proteins of Marburg Virus Exploiting the Immunoinformatics Approach. ACS OMEGA 2021; 6:32043-32071. [PMID: 34870027 PMCID: PMC8638006 DOI: 10.1021/acsomega.1c04817] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/10/2021] [Indexed: 05/08/2023]
Abstract
Marburg virus disease (MVD) caused by the Marburg virus (MARV) generally appears with flu-like symptoms and leads to severe hemorrhagic fever. It spreads via direct contact with infected individuals or animals. Despite being considered to be less threatening in terms of appearances and the number of infected patients, the high fatality rate of this pathogenic virus is a major concern. Until now, no vaccine has been developed to combat this deadly virus. Therefore, vaccination for this virus is necessary to reduce its mortality. Our current investigation focuses on the design and formulation of a multi-epitope vaccine based on the structural proteins of MARV employing immunoinformatics approaches. The screening of potential T-cell and B-cell epitopes from the seven structural proteins of MARV was carried out through specific selection parameters. Afterward, we compiled the shortlisted epitopes by attaching them to an appropriate adjuvant and linkers. Population coverage analysis, conservancy analysis, and MHC cluster analysis of the shortlisted epitopes were satisfactory. Importantly, physicochemical characteristics, human homology assessment, and structure validation of the vaccine construct delineated convenient outcomes. We implemented disulfide bond engineering to stabilize the tertiary or quaternary interactions. Furthermore, stability and physical movements of the vaccine protein were explored using normal-mode analysis. The immune simulation study of the vaccine complexes also exhibited significant results. Additionally, the protein-protein docking and molecular dynamics simulation of the final construct exhibited a higher affinity toward toll-like receptor-4 (TLR4). From simulation trajectories, multiple descriptors, namely, root mean square deviations (rmsd), radius of gyration (Rg), root mean square fluctuations (RMSF), solvent-accessible surface area (SASA), and hydrogen bonds, have been taken into account to demonstrate the inflexible and rigid nature of receptor molecules and the constructed vaccine. Inclusively, our findings suggested the vaccine constructs' ability to regulate promising immune responses against MARV pathogenesis.
Collapse
Affiliation(s)
- Saad Ahmed Sami
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Kay Kay Shain Marma
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Shafi Mahmud
- Microbiology
Laboratory, Bioinformatics Division, Department of Genetic Engineering
and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md. Asif Nadim Khan
- Department of Biochemistry and Molecular
Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Sarah Albogami
- Department
of Biotechnology, College of Science, Taif
University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M. El-Shehawi
- Department
of Biotechnology, College of Science, Taif
University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed Rakib
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Agnila Chakraborty
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Mostafah Mohiuddin
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary
Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Mir Muhammad Nasir Uddin
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Mohammed Kamrul Hossain
- Department of Pharmacy,
Faculty of Biological Sciences, University
of Chittagong, Chittagong 4331, Bangladesh
| | - Trina Ekawati Tallei
- Department of Biology,
Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, North Sulawesi 95115, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
41
|
Akıl M, Aykur M, Karakavuk M, Can H, Döşkaya M. Construction of a multiepitope vaccine candidate against Fasciola hepatica: an in silico design using various immunogenic excretory/secretory antigens. Expert Rev Vaccines 2021; 21:993-1006. [PMID: 34666598 DOI: 10.1080/14760584.2022.1996233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Fasciola hepatica is an important pathogen that causes liver fluke disease in definitive hosts such as livestock animals and humans. Various excretory/secretory products have been used in serological diagnosis and vaccination studies targeting fasciolosis. There are no commercial vaccines against fasciolosis yet. Bioinformatic analysis based on computational methods have lower cost and provide faster output compared to conventional vaccine antigen discovery techniques. The aim of this study was to predict B- and T-cell specific epitopes of four excretory/secretory antigens (Kunitz-type serine protease inhibitor, cathepsin L1, helminth defense molecule, and glutathione S-transferase) of Fasciola hepatica and to construct a multiepitope vaccine candidate against fasciolosis. METHODS AND RESULTS Initially, nonallergic and the highest antigenic B- and T- cell epitopes were selected and then, physico-chemical parameters, secondary and tertiary structures of designed multiepitope vaccine candidate were predicted. Tertiary structure was refined and validated using online bioinformatic tools. Linear and discontinuous B-cell epitopes and disulfide bonds were determined. Finally, molecular docking analysis for MHC-I and MHC-II receptors was performed. CONCLUSION This multi-epitope vaccine candidate antigen, with high immunological properties, can be considered as a promising vaccine candidate for animal experiments and wet lab studies.
Collapse
Affiliation(s)
- Mesut Akıl
- Faculty of Medicine, Department of Parasitology, Istanbul Medeniyet University, Istanbul, TURKEY
| | - Mehmet Aykur
- Faculty of Medicine, Department of Parasitology, Tokat Gaziosmanpasa University, Tokat, TURKEY
| | - Muhammet Karakavuk
- Odemis Vocational School, Ege University, Izmir, TURKEY.,Faculty of Medicine, Department of Parasitology, Ege University, Izmir, TURKEY
| | - Hüseyin Can
- Faculty of Science, Department of Biology, Molecular Biology Section, Ege University, Izmir, TURKEY
| | - Mert Döşkaya
- Faculty of Medicine, Department of Parasitology, Ege University, Izmir, TURKEY
| |
Collapse
|
42
|
Khan T, Khan A, Wei DQ. MMV-db: vaccinomics and RNA-based therapeutics database for infectious hemorrhagic fever-causing mammarenaviruses. Database (Oxford) 2021; 2021:baab063. [PMID: 34679165 PMCID: PMC8533362 DOI: 10.1093/database/baab063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/24/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022]
Abstract
The recent viral outbreaks and the current pandemic situation urges us to timely address any emerging viral infections by designing therapeutic strategies. Multi-omics and therapeutic data are of great interest to develop early remedial interventions. This work provides a therapeutic data platform (Mammarenavirus (MMV)-db) for pathogenic mammarenaviruses with potential catastrophic effects on human health around the world. The database integrates vaccinomics and RNA-based therapeutics data for seven human pathogenic MMVs associated with severe viral hemorrhagic fever and lethality in humans. Protein-specific cytotoxic T lymphocytes, B lymphocytes, helper T-cell and interferon-inducing epitopes were mapped using a cluster of immune-omics-based algorithms and tools for the seven human pathogenic viral species. Furthermore, the physiochemical and antigenic properties were also explored to guide protein-specific multi-epitope subunit vaccine for each species. Moreover, highly efficacious RNAs (small Interfering RNA (siRNA), microRNA and single guide RNA (sgRNA)) after extensive genome-based analysis with therapeutic relevance were explored. All the therapeutic RNAs were further classified and listed on the basis of predicted higher efficacy. The online platform (http://www.mmvdb.dqweilab-sjtu.com/index.php) contains easily accessible data sets and vaccine designs with potential utility in further computational and experimental work. Conclusively, the current study provides a baseline data platform to secure better future therapeutic interventions against the hemorrhagic fever causing mammarenaviruses. Database URL: http://www.mmvdb.dqweilab-sjtu.com/index.php.
Collapse
Affiliation(s)
- Taimoor Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, P.R. China
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, P.R. China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, P.R. China
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong 518055, P.R China
| |
Collapse
|
43
|
Bagheri A, Nezafat N, Eslami M, Ghasemi Y, Negahdaripour M. Designing a therapeutic and prophylactic candidate vaccine against human papillomavirus through vaccinomics approaches. INFECTION GENETICS AND EVOLUTION 2021; 95:105084. [PMID: 34547435 DOI: 10.1016/j.meegid.2021.105084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Human papillomavirus (HPV) is the main cause of cervical cancer, the 4th prominent cause of death in women globally. Previous vaccine development projects have led to several approved prophylactic vaccines available commercially, all of which are made using major capsid-based (L1). Administration of minor capsid protein (L2) gave rise to the second generation investigational prophylactic HPV vaccines, none of which are approved yet due to low immunogenicity provided by the L2 capsid protein. On the other hand, post-translation proteins, E6 and E7, have been utilized to develop experimental therapeutic vaccines. Here, in silico designing of a therapeutic and prophylactic vaccine against HPV16 is performed. METHODS In this study, several immunoinformatic and computational tools were administered to identify and design a vaccine construct with dual prophylactic and therapeutic applications consisting of several epitope regions on L2, E6, and E7 proteins of HPV16. RESULTS Immunodominant epitope regions (aa 12-23 and 78-78 of L2 protein, aa 11-27 of E6 protein, and aa 70-89 of E7 protein) were employed, which offered adequate immunogenicity to induce immune responses. Resuscitation-promoting factors (RpfB and RpfE) of Mycobacterium tuberculosis were integrated in two separate constructs as TLR4 agonists to act as vaccine adjuvants. Following physiochemical and structural evaluations carried out by various bioinformatics tools, the designed constructs were modeled and validated, resulting in two 3D structures. Molecular docking and molecular dynamic simulations suggested stable ligand-receptor interactions between the designed construct and TLR4. CONCLUSION Ultimately, this study led to suggest the designed construct as a potential vaccine candidate with both prophylactic and therapeutic applications against HPV by promoting Th1, Th2, CTL, and B cell immune responses, which should be further confirmed in experimental studies.
Collapse
Affiliation(s)
- Ashkan Bagheri
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Mahboobeh Eslami
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
44
|
Khan A, Khan S, Ahmad S, Anwar Z, Hussain Z, Safdar M, Rizwan M, Waseem M, Hussain A, Akhlaq M, Khan T, Ali SS, Wei DQ. HantavirusesDB: Vaccinomics and RNA-based therapeutics database for the potentially emerging human respiratory pandemic agents. Microb Pathog 2021; 160:105161. [PMID: 34461244 DOI: 10.1016/j.micpath.2021.105161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/29/2022]
Abstract
Hantaviruses are etiological agents of several severe respiratory illnesses in humans and their human-to-human transmission has been reported. To cope with any potential pandemic, this group of viruses needs further research and a data platform. Therefore, herein we developed a database "HantavirusesDB (HVdb)", where genomics, proteomics, immune resource, RNAi based therapeutics and information on the 3D structures of druggable targets of the Orthohantaviruses are provided on a single platform. The database allows the researchers to effectively map the therapeutic strategies by designing multi-epitopes subunit vaccine and RNA based therapeutics. Moreover, the ease of the web interface allow the users to retrieve specific information from the database. Because of the high quality and excellent functionality of the HVdb, therapeutic research of Hantaviruses can be accelerated, and data analysis might be a foundation to design better treatment strategies targeting the hantaviruses. The database is accessible at http://hvdb.dqweilab-sjtu.com/index.php.
Collapse
Affiliation(s)
- Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Shahzeb Khan
- Center for Biotechnology and Microbiology, University of Swat, Swat, KP, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan
| | - Zeeshan Anwar
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Zahid Hussain
- Center for Biotechnology and Microbiology, University of Swat, Swat, KP, Pakistan
| | - Muhammad Safdar
- Faculty of Pharmacy, Gomal University, DI Khan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Rizwan
- Center for Biotechnology and Microbiology, University of Swat, Swat, KP, Pakistan
| | - Muhammad Waseem
- Faculty of Rehabilitation and Allied Health Science, Riphah International University, Islamabad, Pakistan
| | - Abid Hussain
- Department of Pharmacy, University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Muhammad Akhlaq
- Faculty of Pharmacy, Gomal University, DI Khan, Khyber Pakhtunkhwa, Pakistan
| | - Taimoor Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, KP, Pakistan
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, PR China.
| |
Collapse
|
45
|
Deep survey for designing a vaccine against SARS-CoV-2 and its new mutations. Biologia (Bratisl) 2021; 76:3465-3476. [PMID: 34421121 PMCID: PMC8369332 DOI: 10.1007/s11756-021-00866-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023]
Abstract
The ongoing global pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has prompted worldwide vaccine development. Several vaccines have been authorized by WHO, FDA, or MOH of different countries. However, issues such as need for cold chain, price, and most importantly access problems have limited vaccine usage in some nations especially developing countries. Moreover, the vast global demand justifies further attempts for vaccine development. Multi-epitope polypeptide vaccines enjoy several key features including safety and lower production and transfer costs and could be designed by in silico tools. Spike protein (S), membrane protein (M), and nucleocapsid protein (N), the three major structural proteins of SARS-CoV-2, are ideal candidates for epitope selection. ORF3a (open reading frame3a), a transmembrane protein with pro-apoptotic functions, could be another proper target. Thus, a novel multi-epitope vaccine against SARS-CoV-2 was designed using these four proteins and LL37, a TLR3 agonist adjuvant, through different immunoinformatics and bioinformatics tools. The proposed multi-epitope vaccine is expected to induce robust humoral and cellular immune responses against SARS-CoV-2 with a population coverage of 76.92 % due to containing different immunodominant epitopes and LL37 adjuvant. Selecting epitopes derived from one functional and three structural proteins suggests the protective ability of the vaccine irrespective of probable virus mutations. The computationally observed proper interaction of LL37 with TLR3 implies its ability to induce immune responses effectively. Besides, it showed acceptable structural and physicochemical properties. The in-silico cloning results predicted its high efficiency production in Escherichia coli. Future experimental studies could further confirm its immunological efficacy.
Collapse
|
46
|
Negahdaripour M, Shafiekhani M, Moezzi SMI, Amiri S, Rasekh S, Bagheri A, Mosaddeghi P, Vazin A. Administration of COVID-19 vaccines in immunocompromised patients. Int Immunopharmacol 2021; 99:108021. [PMID: 34352567 PMCID: PMC8316069 DOI: 10.1016/j.intimp.2021.108021] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/11/2021] [Accepted: 07/23/2021] [Indexed: 12/23/2022]
Abstract
Since the beginning of vaccination programs against COVID-19 in different countries, several populations such as patients with specific immunological conditions have been considered as the priorities for immunization. In this regard, patients with autoimmune diseases or those receiving immunosuppressive agents and anti-cancer therapies, need special attention. However, no confirmed data is presently available regarding COVID-19 vaccines in these populations due to exclusion from the conducted clinical trials. Given the probable suppression or over-activation of the immune system in such patients, reaching a consensus for their vaccination is critical, besides gathering data and conducting trials, which could probably clarify this matter in the future. In this review, besides a brief on the available COVID-19 vaccines, considerations and available knowledge about administering similar vaccines in patients with cancer, hematopoietic stem cell transplantation, solid organ transplantation, multiple sclerosis (MS), inflammatory bowel disease (IBD), and rheumatologic and dermatologic autoimmune disorders are summarized to help in decision making. As discussed, live-attenuated viruses, which should be avoided in these groups, are not employed in the present COVID-19 vaccines. Thus, the main concern regarding efficacy could be met using a potent COVID-19 vaccine. Moreover, the vaccination timing for maximum efficacy could be decided according to the patient’s condition, indicated medications, and the guides provided here. Post-vaccination monitoring is also advised to ensure an adequate immune response. Further studies in this area are urgently warranted.
Collapse
Affiliation(s)
- Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Shafiekhani
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Iman Moezzi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sogand Amiri
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Rasekh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ashkan Bagheri
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pouria Mosaddeghi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsaneh Vazin
- Clinical Pharmacy Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
47
|
Morowvat MH. Meet Our Editorial Board Member. Curr Pharm Biotechnol 2021. [DOI: 10.2174/138920102209210518104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mohammad H. Morowvat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz,Iran
| |
Collapse
|
48
|
Sanami S, Azadegan-Dehkordi F, Rafieian-Kopaei M, Salehi M, Ghasemi-Dehnoo M, Mahooti M, Alizadeh M, Bagheri N. Design of a multi-epitope vaccine against cervical cancer using immunoinformatics approaches. Sci Rep 2021; 11:12397. [PMID: 34117331 PMCID: PMC8196015 DOI: 10.1038/s41598-021-91997-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
Cervical cancer, caused by human papillomavirus (HPV), is the fourth most common type of cancer among women worldwide. While HPV prophylactic vaccines are available, they have no therapeutic effects and do not clear up existing infections. This study aims to design a therapeutic vaccine against cervical cancer using reverse vaccinology. In this study, the E6 and E7 oncoproteins from HPV16 were chosen as the target antigens for epitope prediction. Cytotoxic T lymphocytes (CTL) and helper T lymphocytes (HTL) epitopes were predicted, and the best epitopes were selected based on antigenicity, allergenicity, and toxicity. The final vaccine construct was composed of the selected epitopes, along with the appropriate adjuvant and linkers. The multi-epitope vaccine was evaluated in terms of physicochemical properties, antigenicity, and allergenicity. The tertiary structure of the vaccine construct was predicted. Furthermore, several analyses were also carried out, including molecular docking, molecular dynamics (MD) simulation, and in silico cloning of the vaccine construct. The results showed that the final proposed vaccine could be considered an effective therapeutic vaccine for HPV; however, in vitro and in vivo experiments are required to validate the efficacy of this vaccine candidate.
Collapse
Affiliation(s)
- Samira Sanami
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Azadegan-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Maryam Ghasemi-Dehnoo
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehran Mahooti
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
49
|
Khan A, Khan S, Saleem S, Nizam-Uddin N, Mohammad A, Khan T, Ahmad S, Arshad M, Ali SS, Suleman M, Wei DQ. Immunogenomics guided design of immunomodulatory multi-epitope subunit vaccine against the SARS-CoV-2 new variants, and its validation through in silico cloning and immune simulation. Comput Biol Med 2021; 133:104420. [PMID: 33930764 PMCID: PMC8064902 DOI: 10.1016/j.compbiomed.2021.104420] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 11/17/2022]
Abstract
Reports of the novel and more contagious strains of SARS-CoV-2 originating in different countries have further aggravated the pandemic situation. The recent substitutions in spike protein may be critical for the virus to evade the host's immune system and therapeutics that have already been developed. Thus, this study has employed an immunoinformatics pipeline to target the spike protein of this novel strain to construct an immunogenic epitope (CTL, HTL, and B cell) vaccine against the new variant. Our investigation revealed that 12 different epitopes imparted a critical role in immune response induction. This was validated by an exploration of physiochemical properties and experimental feasibility. In silico and host immune simulation confirmed the expression and induction of both primary and secondary immune factors such as IL, cytokines, and antibodies. The current study warrants further lab experiments to demonstrate its efficacy and safety.
Collapse
Affiliation(s)
- Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shahzeb Khan
- Center for Biotechnology and Microbiology, University of Swat, Swat, KP, Pakistan
| | - Shoaib Saleem
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - N Nizam-Uddin
- Biomedical Engineering Department, HITEC University, Taxila, Pakistan
| | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait
| | - Taimoor Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Muhammad Arshad
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, KP, Pakistan
| | - Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Swat, KP, Pakistan
| | - Dong-Qing Wei
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, PR China; State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China.
| |
Collapse
|
50
|
Verma S, Bansal A, Gaur M, Kumar B. Robust immunity induced by multi-epitope DnaK peptides, potential vaccine candidates against Salmonella: An in vitro study. Immunol Lett 2021; 236:61-67. [PMID: 34058259 DOI: 10.1016/j.imlet.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 05/17/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
Enteric fever is a common yet serious issue, most troublesome in underdeveloped and developing nations affecting all age group primarily children. Pitfalls of existing vaccines along with rapidly rising Multi-Drug-Resistant Salmonella strains necessitate the need for the development of new vaccine candidates having potential to provide complete protection. Several vaccine strategies are being pursued to stimulate protective immunity against typhoid, including conjugate vaccines for the elicitation of cellular and humoral responses as both arms of immunity are essential for complete protection. Bacterial HSPs are highly immunogenic to produce humoral and cellular immune responses. In this study, we are reporting in vitro immunostimulatory activity of immunodominant multi-epitope protective antigenic DnaK peptides identified earlier by immunoinformatics approach. Remarkable increase in antibody titer, lymphocyte proliferation, cytokines and NO level with individual /mixture of DnaK peptides as compared to control demonstrate immunogenic potential of these peptides that effectively augments both humoral and cellular immune responses. None of the peptides cause any hemolysis in human RBCs. Overall; our findings strongly elucidate the immune-stimulatory potential of DnaK peptides to be explored as potent vaccine candidates against multiple pathogens.
Collapse
Affiliation(s)
- Shivani Verma
- Additional Director, Head, Dept of Experimental Biology & Genomics, Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi, India - 110054
| | - Anju Bansal
- Additional Director, Head, Dept of Experimental Biology & Genomics, Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi, India - 110054.
| | - Manvi Gaur
- Additional Director, Head, Dept of Experimental Biology & Genomics, Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi, India - 110054
| | - Bhuvnesh Kumar
- Additional Director, Head, Dept of Experimental Biology & Genomics, Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, Timarpur, Delhi, India - 110054
| |
Collapse
|