1
|
Kepngop LRK, Wosula EN, Amour M, Ghomsi PGT, Wakam LN, Kansci G, Legg JP. Genetic Diversity of Whiteflies Colonizing Crops and Their Associated Endosymbionts in Three Agroecological Zones of Cameroon. INSECTS 2024; 15:657. [PMID: 39336625 PMCID: PMC11432237 DOI: 10.3390/insects15090657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Bemisia tabaci (Gennadius) is as a major pest of vegetable crops in Cameroon. These sap-sucking insects are the main vector of many viruses infecting plants, and several cryptic species have developed resistance against insecticides. Nevertheless, there is very little information about whitefly species on vegetable crops and the endosymbionts that infect them in Cameroon. Here, we investigated the genetic diversity of whiteflies and their frequency of infection by endosymbionts in Cameroon. Ninety-two whitefly samples were collected and characterized using mitochondrial cytochrome oxidase I (mtCOI) markers and Kompetitive Allele Specific PCR (KASP). The analysis of mtCOI sequences of whiteflies indicated the presence of six cryptic species (mitotypes) of Bemisia tabaci, and two distinct clades of Bemisia afer and Trialeurodes vaporariorum. Bemisia tabaci mitotypes identified included: MED on tomato, pepper, okra, and melon; and SSA1-SG1, SSA1-SG2, SSA1-SG5, SSA3, and SSA4 on cassava. The MED mitotype predominated in all regions on the solanaceous crops, suggesting that MED is probably the main phytovirus vector in Cameroonian vegetable cropping systems. The more diverse cassava-colonizing B. tabaci were split into three haplogroups (SNP-based grouping) including SSA-WA, SSA4, and SSA-ECA using KASP genotyping. This is the first time that SSA-ECA has been reported in Cameroon. This haplogroup is predominant in regions currently affected by the severe cassava mosaic virus disease (CMD) and cassava brown streak virus disease (CBSD) pandemics. Three endosymbionts including Arsenophonus, Rickettsia, and Wolbachia were present in female whiteflies tested in this study with varying frequency. Arsenophonus, which has been shown to influence the adaptability of whiteflies, was more frequent in the MED mitotype (75%). Cardinium and Hamiltonella were absent in all whitefly samples. These findings add to the knowledge on the diversity of whiteflies and their associated endosymbionts, which, when combined, influence virus epidemics and responses to whitefly control measures, especially insecticides.
Collapse
Affiliation(s)
- Lanvin R. K. Kepngop
- Laboratory for Phytobiochemistry and Medicinal Plants Studies, Antimicrobial & Biocontrol Agents Unit (AmBcAU), Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé P.O. Box 337, Cameroon
| | - Everlyne N. Wosula
- International Institute of Tropical Agriculture, Dar es Salaam P.O. Box 34441, Tanzania
| | - Massoud Amour
- International Institute of Tropical Agriculture, Dar es Salaam P.O. Box 34441, Tanzania
| | - Pierre G. T. Ghomsi
- Laboratory for Phytobiochemistry and Medicinal Plants Studies, Antimicrobial & Biocontrol Agents Unit (AmBcAU), Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé P.O. Box 337, Cameroon
| | - Louise N. Wakam
- Laboratory for Phytobiochemistry and Medicinal Plants Studies, Antimicrobial & Biocontrol Agents Unit (AmBcAU), Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé P.O. Box 337, Cameroon
| | - Germain Kansci
- Laboratory of Food Science and Nutrition, Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé P.O. Box 337, Cameroon
| | - James P. Legg
- International Institute of Tropical Agriculture, Dar es Salaam P.O. Box 34441, Tanzania
| |
Collapse
|
2
|
Li H, Jiang Z, Zhou J, Liu X, Zhang Y, Chu D. Ecological Factors Associated with the Distribution of Bemisia tabaci Cryptic Species and Their Facultative Endosymbionts. INSECTS 2023; 14:252. [PMID: 36975937 PMCID: PMC10053707 DOI: 10.3390/insects14030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The sweetpotato whitefly, Bemisia tabaci species complex, comprises at least 44 morphologically indistinguishable cryptic species, whose endosymbiont infection patterns often varied at the spatial and temporal dimension. However, the effects of ecological factors (e.g., climatic or geographical factors) on the distribution of whitefly and the infection frequencies of their endosymbionts have not been fully elucidated. We, here, analyzed the associations between ecological factors and the distribution of whitefly and their three facultative endosymbionts (Candidatus Cardinium hertigii, Candidatus Hamiltonella defensa, and Rickettsia sp.) by screening 665 individuals collected from 29 geographical localities across China. The study identified eight B. tabaci species via mitochondrial cytochrome oxidase I (mtCOI) gene sequence alignment: two invasive species, MED (66.9%) and MEAM1 (12.2%), and six native cryptic species (20.9%), which differed in distribution patterns, ecological niches, and high suitability areas. The infection frequencies of the three endosymbionts in different cryptic species were distinct and multiple infections were relatively common in B. tabaci MED populations. Furthermore, the annual mean temperature positively affected Cardinium sp. and Rickettsia sp. infection frequencies in B. tabaci MED but negatively affected the quantitative distribution of B. tabaci MED, which indicates that Cardinium sp. and Rickettsia sp. maybe play a crucial role in the thermotolerance of B. tabaci MED, although the host whitefly per se exhibits no resistance to high temperature. Our findings revealed the complex effects of ecological factors on the expansion of the invasive whitefly.
Collapse
Affiliation(s)
- Hongran Li
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 515100, China
| | - Zhihui Jiang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Jincheng Zhou
- Department of Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dong Chu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
3
|
Liu Y, He ZQ, Wen Q, Peng J, Zhou YT, Mandour N, McKenzie CL, Ahmed MZ, Qiu BL. Parasitoid-mediated horizontal transmission of Rickettsia between whiteflies. Front Cell Infect Microbiol 2023; 12:1077494. [PMID: 36683703 PMCID: PMC9846228 DOI: 10.3389/fcimb.2022.1077494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Intracellular bacterial endosymbionts of arthropods are mainly transmitted vertically from mother to offspring, but phylogenetically distant insect hosts often harbor identical endosymbionts, indicating that horizontal transmission from one species to another occurs in nature. Here, we investigated the parasitoid Encarsia formosa-mediated horizontal transmission of the endosymbiont Rickettsia between different populations of whitefly Bemisia tabaci MEAM1. Rickettsia was successfully transmitted from the positive MEAM1 nymphs (R +) into E. formosa and retained at least for 48 h in E. formosa adults. Fluorescence in situ hybridization (FISH) visualization results revealed that the ovipositors, mouthparts, and digestive tract of parasitoid adults get contaminated with Rickettsia. Random non-lethal probing of Rickettisia-negative (R- ) MEAM1 nymphs by these Rickettsia-carrying E. formosa resulted in newly infected MEAM1 nymphs, and the vertical transmission of Rickettsia within the recipient females can remain at least up to F3 generation. Further phylogenetic analyses revealed that Rickettsia had high fidelity during the horizontal transmission in whiteflies and parasitoids. Our findings may help to explain why Rickettsia bacteria are so abundant in arthropods and suggest that, in some insect species that shared the same parasitoids, Rickettsia may be maintained in populations by horizontal transmission.
Collapse
Affiliation(s)
- Yuan Liu
- Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Zi-Qi He
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Qin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Jing Peng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Yu-Tong Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Nasser Mandour
- Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
| | - Cindy L. McKenzie
- Subtropical Insects and Horticulture Research Unit, Agricultural Research Service, Unite States Department of Agriculture (USDA), Fort Pierce, FL, United States
| | - Muhammad Z. Ahmed
- Subtropical Insects and Horticulture Research Unit, Agricultural Research Service, Unite States Department of Agriculture (USDA), Fort Pierce, FL, United States
| | - Bao-Li Qiu
- Chongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China,*Correspondence: Bao-Li Qiu,
| |
Collapse
|
4
|
Conjard S, Meyer DF, Aprelon R, Pagès N, Gros O. Evidence of new strains of Wolbachia symbiont colonising semiaquatic bugs (Hemiptera: Gerroidea) in mangrove environment of the Lesser Antilles. PLoS One 2022; 17:e0273668. [PMID: 36040904 PMCID: PMC9426913 DOI: 10.1371/journal.pone.0273668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/12/2022] [Indexed: 11/19/2022] Open
Abstract
Wolbachia Hertig, 1936 is an intracellular bacterial symbiont colonizing many arthropods. Of the studies done on the bacteria present in the superfamily Gerroidea Leach, 1815, no report of Wolbachia infection had yet been made. Thus, we checked the presence of Wolbachia in six Gerroidea species which colonize tropical aquatic environments by PCR using wsp primer set before sequencing and phylogenetic analyses. Insects were collected in the marine fringe of mangroves, in river estuaries, in swampy mangroves, and in ponds from Guadeloupe islands (Caribbean). Two new strains of Wolbachia were detected in these Gerroidea. They were named wLfran and wRmang. The wsp sequences suggest that the strains belong to the already described E supergroup or similar. wLfran is present in Limnogonus franciscanus Stål, 1859 and Rheumatobates trinitatis (China, 1943) while wRmang appears to be present exclusively in R. mangrovensis (China, 1943). Three other species were analysed, but did not appear to be infected: Brachymetra albinerva (Amyot & Serville, 1843), Halobates micans Eschscheltz, 1822, and Microvelia pulchella Westwood, 1834. The results presented here highlight for the first time the presence of new intracellular Wolbachia strains in Gerroidea colonising tropical aquatic environments like mangrove habitats from inlands to sea shore.
Collapse
Affiliation(s)
- Suzanne Conjard
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles Pointe-à-Pitre, Guadeloupe, France
- * E-mail: (SC); (DFM)
| | - Damien F. Meyer
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, Université Montpellier, CIRAD, INRA, Montpellier, France
- * E-mail: (SC); (DFM)
| | - Rosalie Aprelon
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, Université Montpellier, CIRAD, INRA, Montpellier, France
| | - Nonito Pagès
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, Université Montpellier, CIRAD, INRA, Montpellier, France
| | - Olivier Gros
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles Pointe-à-Pitre, Guadeloupe, France
| |
Collapse
|