1
|
Tang Q, Cheng T, Liu W. Egg Protein Compositions over Embryonic Development in Haemaphysalis hystricis Ticks. Animals (Basel) 2024; 14:3466. [PMID: 39682431 DOI: 10.3390/ani14233466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Tick eggs contain a series of proteins that play important roles in egg development. A thorough characterization of egg protein expression throughout development is essential for understanding tick embryogenesis and for screening candidate molecules to develop novel interventions. In this study, eggs at four developmental stages (0, 7, 14, and 21 incubation days) were collected, and their protein extraction was profiled using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). On the first day of egg protein extraction, protein bands from day-1 eggs were re-collected and subsequently analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The dynamic changes in forty egg proteins during development were further investigated using LC-parallel reaction monitoring (PRM)/MS analysis. A total of 108 transcripts were detected in day-1 eggs. Based on protein functions and families, these transcripts were classified into eight categories: transporters, enzymes, immunity and antimicrobial proteins, proteinase inhibitors, cytoskeletal proteins, heat shock proteins, secreted proteins, and uncharacterized proteins. Identification of the protein bands revealed that nine bands predominantly consisted of vitellogenin and vitellin-A, while other notable proteins included cathepsins and Kunitz domain-containing proteins. LC-PRM/MS analysis indicated that 28 transcripts increased significantly in abundance, including 13/18 enzymes, 1/1 antimicrobial peptide, 2/2 neutrophil elastase inhibitors, 3/4 vitellogenins, 3/3 heat shock proteins, 3/3 cytoskeletal proteins, 1/1 elongation factor-1, and 1/1 uncharacterized protein. Conversely, five transcripts showed a decrease significantly, including 1/1 Kunitz domain-containing protein, 2/6 aspartic proteases, and 2/5 serpins. This research provides a comprehensive overview of egg proteins and highlights the dynamic changes in protein expression during embryonic development, which may be pivotal for understanding protein functions and selecting potential candidates for further study.
Collapse
Affiliation(s)
- Qiwu Tang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Tianyin Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Wei Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
2
|
Sang MK, Patnaik HH, Park JE, Song DK, Jeong JY, Hong CE, Kim YT, Shin HJ, Ziwei L, Hwang HJ, Park SY, Kang SW, Park SH, Cha SJ, Ko JH, Shin EH, Park HS, Jo YH, Han YS, Patnaik BB, Lee YS. Transcriptome analysis of Haemaphysalis flava female using Illumina HiSeq 4000 sequencing: de novo assembly, functional annotation and discovery of SSR markers. Parasit Vectors 2023; 16:367. [PMID: 37848984 PMCID: PMC10583488 DOI: 10.1186/s13071-023-05923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/09/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Ticks are ectoparasites capable of directly damaging their hosts and transmitting vector-borne diseases. The ixodid tick Haemaphysalis flava has a broad distribution that extends from East to South Asia. This tick is a reservoir of severe fever with thrombocytopenia syndrome virus (SFTSV) that causes severe hemorrhagic disease, with cases reported from China, Japan and South Korea. Recently, the distribution of H. flava in South Korea was found to overlap with the occurrence of SFTSV. METHODS This study was undertaken to discover the molecular resources of H. flava female ticks using the Illumina HiSeq 4000 system, the Trinity de novo sequence assembler and annotation against public databases. The locally curated Protostome database (PANM-DB) was used to screen the putative adaptation-related transcripts classified to gene families, such as angiotensin-converting enzyme, aquaporin, adenylate cyclase, AMP-activated protein kinase, glutamate receptors, heat shock proteins, molecular chaperones, insulin receptor, mitogen-activated protein kinase and solute carrier family proteins. Also, the repeats and simple sequence repeats (SSRs) were screened from the unigenes using RepeatMasker (v4.0.6) and MISA (v1.0) software tools, followed by the designing of SSRs flanking primers using BatchPrimer 3 (v1.0) software. RESULTS The transcriptome produced a total of 69,822 unigenes, of which 46,175 annotated to the homologous proteins in the PANM-DB. The unigenes were also mapped to the EuKaryotic Orthologous Groups (KOG), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) specializations. Promiscuous presence of protein kinase, zinc finger (C2H2-type), reverse transcriptase, and RNA recognition motif domains was observed in the unigenes. A total of 3480 SSRs were screened, of which 1907 and 1274 were found as tri- and dinucleotide repeats, respectively. A list of primer sequences flanking the SSR motifs was detailed for validation of polymorphism in H. flava and the related tick species. CONCLUSIONS The reference transcriptome information on H. flava female ticks will be useful for an enriched understanding of tick biology, its competency to act as a vector and the study of species diversity related to disease transmission.
Collapse
Affiliation(s)
- Min Kyu Sang
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Hongray Howrelia Patnaik
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
| | - Jie Eun Park
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Dae Kwon Song
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Asan, Chungnam, South Korea
| | - Jun Yang Jeong
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
| | - Chan Eui Hong
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
| | - Yong Tae Kim
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
| | - Hyeon Jun Shin
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
| | - Liu Ziwei
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
| | - Hee Ju Hwang
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
| | - So Young Park
- Biodiversity Research Team, Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Gyeongbuk, South Korea
| | - Se Won Kang
- Biological Resource Center (BRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, South Korea
| | - Seung-Hwan Park
- Biological Resource Center (BRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, South Korea
| | - Sung-Jae Cha
- Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jung Ho Ko
- Police Science Institute, Korean National Police University, Asan, Chungnam, 31539, South Korea
| | - E Hyun Shin
- Research Institute, Korea Pest Control Association, Seoul, 08501, South Korea
| | - Hong Seog Park
- Research Institute, GnC BIO Co., LTD., 621-6 Banseok-dong, Yuseong-gu, Daejeon, 34069, South Korea
| | - Yong Hun Jo
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
| | - Yeon Soo Han
- College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Bharat Bhusan Patnaik
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea
- PG Department of Biosciences and Biotechnology, Fakir Mohan University, Nuapadhi, Balasore , Odisha, 756089, India
| | - Yong Seok Lee
- Korea Native Animal Resources Utilization Convergence Research Institute (KNAR), Soonchunhyang University, Asan, Chungnam, South Korea.
- Research Support Center for Bio-Bigdata Analysis and Utilization of Biological Resources, Soonchunhyang University, Asan, Chungnam, South Korea.
- Department of Biology, College of Natural Sciences, Soonchunhyang University, Asan, 31538, Chungnam, South Korea.
| |
Collapse
|
3
|
Zhao Y, Qu ZH, Jiao FC. De novo transcriptome sequencing and comparative profiling of the ovary in partially engorged and fully engorged Haemaphysalis flava ticks. Parasitol Int 2021; 83:102344. [PMID: 33894390 DOI: 10.1016/j.parint.2021.102344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 11/16/2022]
Abstract
Haemaphysalis flava is the vector of several pathogens and has medical and veterinary importance. Transcriptome information of the ovary of H. flava is unavailable and limits understanding of its molecular basis of reproduction. We studied the ovary transcriptome of partially engorged and fully engorged H. flava using high-throughput RNA sequencing technology. A total of 53,025,360 and 57,942,890 clean reads were obtained with 7.95 GB and 8.69 GB clean bases in partially engorged ticks (PETs) and fully engorged ticks (FETs), respectively. The clean reads were assembled into 138,711 unigenes. A total of 72,043 unigenes (51.93%) were annotated and 66,668 unigenes (48.07%) were unknown. A total of 38,487 differentially expressed genes (DEGs) were found between PET and FET with 19,031 upregulated genes and 19,456 downregulated genes. The RNA-seq results were validated by qRT-PCR, including six upregulated genes and three downregulated genes. Some unigenes coding for nutrient transporters, proteases, and protease inhibitors were found and analyzed. This study was the first time to perform the transcriptome sequences of the ovary of partially engorged and fully engorged H. flava. The results can benefit the understanding of the molecular basis of ovary maturation and oogenesis of the H. flava and boost the development of the strategies for control of H. flava.
Collapse
Affiliation(s)
- Yu Zhao
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang 464000, Henan province, China; Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Zhe-Hui Qu
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang 464000, Henan province, China
| | - Feng-Chao Jiao
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang 464000, Henan province, China.
| |
Collapse
|
4
|
Couto J, Seixas G, Stutzer C, Olivier NA, Maritz-Olivier C, Antunes S, Domingos A. Probing the Rhipicephalusbursa Sialomes in Potential Anti-Tick Vaccine Candidates: A Reverse Vaccinology Approach. Biomedicines 2021; 9:363. [PMID: 33807386 PMCID: PMC8067113 DOI: 10.3390/biomedicines9040363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 11/16/2022] Open
Abstract
In the wake of the 'omics' explosion of data, reverse vaccinology approaches are being applied more readily as an alternative for the discovery of candidates for next generation diagnostics and vaccines. Promising protective antigens for the control of ticks and tick-borne diseases can be discovered by mining available omics data for immunogenic epitopes. The present study aims to explore the previously obtained Rhipicephalus bursa sialotranscriptome during both feeding and Babesia infection, to select antigenic targets that are either membrane-associated or a secreted protein, as well as unique to the ectoparasite and not present in the mammalian host. Further, they should be capable of stimulating T and B cells for a potential robust immune response, and be non-allergenic or toxic to the host. From the R. bursa transcriptome, 5706 and 3025 proteins were identified as belonging to the surfaceome and secretome, respectively. Following a reverse genetics immunoinformatics pipeline, nine preferred candidates, consisting of one transmembrane-related and eight secreted proteins, were identified. These candidates showed a higher predicted antigenicity than the Bm86 antigen, with no homology to mammalian hosts and exposed regions. Only four were functionally annotated and selected for further in silico analysis, which examined their protein structure, surface accessibility, flexibility, hydrophobicity, and putative linear B and T-cell epitopes. Regions with overlapping coincident epitopes groups (CEGs) were evaluated to select peptides that were further analyzed for their physicochemical characteristics, potential allergenicity, toxicity, solubility, and potential propensity for crystallization. Following these procedures, a set of three peptides from the three R. bursa proteins were selected. In silico results indicate that the designed epitopes could stimulate a protective and long-lasting immune response against those tick proteins, reflecting its potential as anti-tick vaccines. The immunogenicity of these peptides was evaluated in a pilot immunization study followed by tick feeding to evaluate its impact on tick behavior and pathogen transmission. Combining in silico methods with in vivo immunogenicity evaluation enabled the screening of vaccine candidates prior to expensive infestation studies on the definitive ovine host animals.
Collapse
Affiliation(s)
- Joana Couto
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; (G.S.); (A.D.)
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM-IHMT-UNL), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Gonçalo Seixas
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; (G.S.); (A.D.)
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM-IHMT-UNL), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Christian Stutzer
- Division of Genetics, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (C.S.); (C.M.-O.)
| | - Nicholas A. Olivier
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa;
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Christine Maritz-Olivier
- Division of Genetics, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (C.S.); (C.M.-O.)
| | - Sandra Antunes
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; (G.S.); (A.D.)
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM-IHMT-UNL), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Ana Domingos
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; (G.S.); (A.D.)
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM-IHMT-UNL), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| |
Collapse
|
5
|
Chlastáková A, Kotál J, Beránková Z, Kaščáková B, Martins LA, Langhansová H, Prudnikova T, Ederová M, Kutá Smatanová I, Kotsyfakis M, Chmelař J. Iripin-3, a New Salivary Protein Isolated From Ixodes ricinus Ticks, Displays Immunomodulatory and Anti-Hemostatic Properties In Vitro. Front Immunol 2021; 12:626200. [PMID: 33732248 PMCID: PMC7957079 DOI: 10.3389/fimmu.2021.626200] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Tick saliva is a rich source of pharmacologically and immunologically active molecules. These salivary components are indispensable for successful blood feeding on vertebrate hosts and are believed to facilitate the transmission of tick-borne pathogens. Here we present the functional and structural characterization of Iripin-3, a protein expressed in the salivary glands of the tick Ixodes ricinus, a European vector of tick-borne encephalitis and Lyme disease. Belonging to the serpin superfamily of protease inhibitors, Iripin-3 strongly inhibited the proteolytic activity of serine proteases kallikrein and matriptase. In an in vitro setup, Iripin-3 was capable of modulating the adaptive immune response as evidenced by reduced survival of mouse splenocytes, impaired proliferation of CD4+ T lymphocytes, suppression of the T helper type 1 immune response, and induction of regulatory T cell differentiation. Apart from altering acquired immunity, Iripin-3 also inhibited the extrinsic blood coagulation pathway and reduced the production of pro-inflammatory cytokine interleukin-6 by lipopolysaccharide-stimulated bone marrow-derived macrophages. In addition to its functional characterization, we present the crystal structure of cleaved Iripin-3 at 1.95 Å resolution. Iripin-3 proved to be a pluripotent salivary serpin with immunomodulatory and anti-hemostatic properties that could facilitate tick feeding via the suppression of host anti-tick defenses. Physiological relevance of Iripin-3 activities observed in vitro needs to be supported by appropriate in vivo experiments.
Collapse
Affiliation(s)
- Adéla Chlastáková
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Jan Kotál
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Zuzana Beránková
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Barbora Kaščáková
- Laboratory of Structural Chemistry, Institute of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Larissa Almeida Martins
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Helena Langhansová
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Tatyana Prudnikova
- Laboratory of Structural Chemistry, Institute of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Monika Ederová
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Ivana Kutá Smatanová
- Laboratory of Structural Chemistry, Institute of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Michail Kotsyfakis
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| |
Collapse
|