1
|
Manjunatha Reddy GB, Sumana K, Yogisharadhya R, Mohan HV, Lavanya VK, Chethankumar BH, Shivasharanappa N, Saminathan M, Basavaraj S, Dhama K, Bhadravati Sathish S. Structural and sequence analysis of the RPO30 gene of sheeppox and goatpox viruses from India. Vet Q 2024; 44:1-12. [PMID: 38523527 DOI: 10.1080/01652176.2024.2331524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/07/2023] [Indexed: 03/26/2024] Open
Abstract
Sheeppox and goatpox are transboundary viral diseases of sheep and goats that cause significant economic losses to small and marginal farmers worldwide, including India. Members of the genus Capripoxvirus (CaPV), namely Sheeppox virus (SPPV), Goatpox virus (GTPV), and Lumpy skin disease virus (LSDV), are antigenically similar, and species differentiation can only be accomplished using molecular approaches. The present study aimed to understand the molecular epidemiology and host specificity of SPPV and GTPV circulating in India through sequencing and structural analysis of the RNA polymerase subunit-30 kDa (RPO30) gene. A total of 29 field isolates from sheep (n = 19) and goats (n = 10) belonging to different geographical regions of India during the period: Year 2015 to 2023, were analyzed based on the sequence and structure of the full-length RPO30 gene/protein. Phylogenetically, all the CaPV isolates were separated into three major clusters: SPPV, GTPV, and LSDV. Multiple sequence alignment revealed a highly conserved RPO30 gene, with a stretch of 21 nucleotide deletion in all SPPV isolates. Additionally, the RPO30 gene of the Indian SPPV and GTPV isolates possessed several species-specific conserved signature residues/motifs that could act as genotyping markers. Secondary structure analysis of the RPO30 protein showed four α-helices, two loops, and three turns, similar to that of the E4L protein of vaccinia virus (VACV). All the isolates in the present study exhibited host preferences across different states of India. Therefore, in order to protect vulnerable small ruminants from poxviral infections, it is recommended to take into consideration a homologous vaccination strategy.
Collapse
Affiliation(s)
| | - Krishnappa Sumana
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| | - Revanaiah Yogisharadhya
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| | - Hosakote Venkatappa Mohan
- Veterinary College, Karnataka Veterinary, Animal & Fisheries Sciences University, Bengaluru, Karnataka, India
| | | | | | - Nayakwadi Shivasharanappa
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| | - Mani Saminathan
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Sajjanar Basavaraj
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | | |
Collapse
|
2
|
Smaraki N, Biswas SK, Mahajan S, Gairola V, Gulzar S, Deepa P, Sharma K, Jogi HR, Nautiyal S, Mishra R, Nandi S, Agrawal R, Mahendran K, Singh KP, Sharma GK. Design and assessment of a double antigen indirect ELISA for lumpy skin disease surveillance in India. J Virol Methods 2024; 329:114998. [PMID: 39059503 DOI: 10.1016/j.jviromet.2024.114998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Lumpy skin disease (LSD), caused by the lumpy skin disease virus of the genus Capripoxvirus, is rapidly emerging across most countries in Asia. Recently, LSD has been linked to very high morbidity and mortality rates. Until 2019, India remained free of LSD, resulting in a lack of locally developed diagnostic kits, biologicals, and other tools necessary for managing the disease in a country with such a large livestock population. Therefore, this study aimed to design and validate an indigenous and cost-effective in-house ELISA for large-scale screening of cattle samples for antibodies to LSDV. The viral major open reading frames ORF 095 and ORF 103 encoding virion core proteins were expressed in a prokaryotic system and the recombinant antigen cocktail was used for optimization and validation of an indirect ELISA (iELISA). The calculated relative diagnostic sensitivity and diagnostic specificity of the iELISA were 96.6 % and 95.1 %, respectively at the cut-off percent positivity (PP≥50 %). The in-house designed double-antigen iELISA was found effective to investigate the seroprevalence of LSDV in various geographical regions of India.
Collapse
Affiliation(s)
- Nabaneeta Smaraki
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122, India
| | - Sanchay Kumar Biswas
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122, India
| | - Sonalika Mahajan
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122, India
| | - Vivek Gairola
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122, India
| | - Sabahat Gulzar
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122, India
| | - Poloju Deepa
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122, India
| | - Kirtika Sharma
- Center for Wildlife, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122, India
| | - Harsh Rajeshbhai Jogi
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122, India
| | - Sushmita Nautiyal
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122, India
| | - Ragini Mishra
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122, India
| | - Sukdeb Nandi
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122, India
| | - Ravikant Agrawal
- Division of Biological Products, ICAR-Indian Veterinary Research Institute, Bareilly, UP 243122, India
| | - K Mahendran
- Division of Medicine, ICAR, Indian Veterinary Research Institute, Bareilly, UP 243122, India
| | - Karam Pal Singh
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122, India
| | - Gaurav Kumar Sharma
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122, India.
| |
Collapse
|
3
|
Salauddin M, Kayesh MEH, Ahammed MS, Saha S, Hossain MG. Development of membrane protein-based vaccine against lumpy skin disease virus (LSDV) using immunoinformatic tools. Vet Med Sci 2024; 10:e1438. [PMID: 38555573 PMCID: PMC10981917 DOI: 10.1002/vms3.1438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/09/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024] Open
Abstract
INTRODUCTION Lumpy skin disease, an economically significant bovine illness, is now found in previously unheard-of geographic regions. Vaccination is one of the most important ways to stop its further spread. AIM Therefore, in this study, we applied advanced immunoinformatics approaches to design and develop an effective lumpy skin disease virus (LSDV) vaccine. METHODS The membrane glycoprotein was selected for prediction of the different B- and T-cell epitopes by using the immune epitope database. The selected B- and T-cell epitopes were combined with the appropriate linkers and adjuvant resulted in a vaccine chimera construct. Bioinformatics tools were used to predict, refine and validate the 2D, 3D structures and for molecular docking with toll-like receptor 4 using different servers. The constructed vaccine candidate was further processed on the basis of antigenicity, allergenicity, solubility, different physiochemical properties and molecular docking scores. RESULTS The in silico immune simulation induced significant response for immune cells. In silico cloning and codon optimization were performed to express the vaccine candidate in Escherichia coli. This study highlights a good signal for the design of a peptide-based LSDV vaccine. CONCLUSION Thus, the present findings may indicate that the engineered multi-epitope vaccine is structurally stable and can induce a strong immune response, which should help in developing an effective vaccine towards controlling LSDV infection.
Collapse
Affiliation(s)
- Md. Salauddin
- Department of Microbiology and Public HealthKhulna Agricultural UniversityKhulnaBangladesh
| | | | - Md. Suruj Ahammed
- Department of ChemistryBangladesh University of Engineering and TechnologyDhakaBangladesh
| | - Sukumar Saha
- Department of Microbiology and HygieneBangladesh Agricultural UniversityMymensinghBangladesh
| | - Md. Golzar Hossain
- Department of Microbiology and HygieneBangladesh Agricultural UniversityMymensinghBangladesh
| |
Collapse
|
4
|
Long Q, Wei M, Wang Y, Pang F. Design of a multi-epitope vaccine against goatpox virus using an immunoinformatics approach. Front Cell Infect Microbiol 2024; 13:1309096. [PMID: 38487680 PMCID: PMC10937444 DOI: 10.3389/fcimb.2023.1309096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/22/2023] [Indexed: 03/17/2024] Open
Abstract
Introduction Goatpox, a severe infectious disease caused by goatpox virus (GTPV), leads to enormous economic losses in the livestock industry. Traditional live attenuated vaccines cause serious side effects and exist a risk of dispersal. Therefore, it is urgent to develop efficient and safer vaccines to prevent and control of GTPV. Methods In the present study, we are aimed to design a multi-epitope subunit vaccine against GTPV using an immunoinformatics approach. Various immunodominant cytotoxic T lymphocytes (CTL) epitopes, helper T lymphocytes (HTL) epitopes, and B-cell epitopes from P32, L1R, and 095 proteins of GTPV were screened and liked by the AAY, GPGPG, and KK connectors, respectively. Furthermore, an adjuvant β-defensin was attached to the vaccine's N-terminal using the EAAAK linker to enhance immunogenicity. Results The constructed vaccine was soluble, non-allergenic and non-toxic and exhibited high levels of antigenicity and immunogenicity. The vaccine's 3D structure was subsequently predicted, refined and validated, resulting in an optimized model with a Z-value of -3.4. Molecular docking results demonstrated that the vaccine had strong binding affinity with TLR2(-27.25 kcal/mol), TLR3(-39.84 kcal/mol), and TLR4(-59.42 kcal/mol). Molecular dynamics simulation results indicated that docked vaccine-TLR complexes were stable. Immune simulation analysis suggested that the vaccine can induce remarkable increase in antibody titers of IgG and IgM, higher levels of IFN-γ and IL-2. Conclusion The designed GTPV multi-epitope vaccine is structurally stable and can induce robust humoral and cellular immune responses, which may be a promising vaccine candidate against GTPV.
Collapse
Affiliation(s)
| | | | | | - Feng Pang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
5
|
Mustafa G, Mahrosh HS, Salman M, Ali M, Arif R, Ahmed S, Ebaid H. In Silico Analysis of Honey Bee Peptides as Potential Inhibitors of Capripoxvirus DNA-Directed RNA Polymerase. Animals (Basel) 2023; 13:2281. [PMID: 37508058 PMCID: PMC10376589 DOI: 10.3390/ani13142281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The genus Capripoxvirus belongs to the Poxviridae family. The sheeppox, goatpox, and lumpy skin disease viruses are three species of this genus with 96% identity in their genomes. These are financially devastating viral infections among cattle, which cause a reduction in animal products and lead to a loss in livestock industries. In the current study, the phylogenetic analysis was carried out to reveal the evolutionary relationships of Capripoxvirus species (i.e., sheeppox virus (SPPV), goatpox virus (GTPV), and lumpy skin disease virus (LSDV)) with other viruses from the Poxviridae family with >96% query coverage to find the similarity index among all members. The three viruses (i.e., SPPV, GTPV, and LSDV) joined the clade of Capripoxvirus of the Poxviridae family in the phylogenetic tree and exhibited close evolutionary relationships. The multiple sequence alignment using ClustalOmega revealed significant variations in the protein sequences of the DNA-dependent RNA polymerase of SPPV, GTPV, and LSDV. The three-dimensional structures of five selected bee peptides and DNA-directed RNA polymerase of SPPV, GTPV, and LSDV were predicted using trRosetta and I-TASSER and used for molecular docking and simulation studies. The protein-protein docking was carried out using HADDOCK server to explore the antiviral activity of peptides as honey bee proteins against SPPV, GTPV, and LSDV. In total, five peptides were docked to DNA-directed RNA polymerase of these viruses. The peptides mellitin and secapin-1 displayed the lowest binding scores (-106.9 +/- 7.2 kcal/mol and -101.4 +/- 11.3 kcal/mol, respectively) and the best patterns with stable complexes. The molecular dynamics simulation indicated that the complex of protein DNA-dependent RNA polymerase and the peptide melittin stayed firmly connected and the peptide binding to the receptor protein was stable. The findings of this study provide the evidence of bee peptides as potent antimicrobial agents against sheeppox, goatpox, and lumpy skin disease viruses with no complexity.
Collapse
Affiliation(s)
- Ghulam Mustafa
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38060, Pakistan
| | - Hafiza Salaha Mahrosh
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Mahwish Salman
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38060, Pakistan
| | - Muhammad Ali
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Rawaba Arif
- Department of Biochemistry, University of Jhang, Jhang 35200, Pakistan
| | - Sibtain Ahmed
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Hossam Ebaid
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Uddin MB, Tanni FY, Hoque SF, Sajib EH, Faysal MA, Rahman MA, Galib A, Emon AA, Hossain MM, Hasan M, Ahmed SSU. A candidate multi-epitope vaccine against Lumpy skin disease. Transbound Emerg Dis 2022; 69:3548-3561. [PMID: 36183192 DOI: 10.1111/tbed.14718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 02/07/2023]
Abstract
Lumpy skin disease (LSD) is a fulminant infectious disease that mostly affects cattle and causes considerable economic loss throughout the globe. This study was conducted to develop a new multi-epitope-based vaccine against LSD that can elicit immunological responses using an in silico reverse vaccinology approach. Initially, three antigenic proteins, protein E5, E3 ubiquitin-protein ligase LAP and 62 kDa protein, were manipulated to recognize potential T-cell and B-cell epitopes. To identify superior epitopes, a variety of bioinformatic techniques including antigenicity testing, transmembrane topology screening, allergenicity assessment, conservancy analysis, and toxicity evaluation were used. Finally, three new subunit vaccines (construct V1, V2 and V3) were developed employing the most effective epitopes, suitable adjuvants, pan HLA DR-binding epitope (PADRE) and linkers. Then, based on the antigenicity, solubility, and validation score of the 3D structures, construct V2 was chosen as one of the best candidate vaccines. The results of the molecular dynamic simulation and disulphide engineering indicated that the vaccine (construct V2) was stable. Additionally, the immunological simulation findings supported the vaccine candidate's ability to trigger humoral and cellular immune responses. Further validation of the proposed vaccine candidate may necessitate additional in vitro and in vivo investigations.
Collapse
Affiliation(s)
- Md Bashir Uddin
- Department of Medicine, Sylhet Agricultural University, Sylhet, Bangladesh.,Department of Microbiology & Immunology, University of Texas Medical Branch (UTMB), Galveston, United States
| | | | - Syeda Farjana Hoque
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Emran Hossain Sajib
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md Atik Faysal
- Department of Medicine, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md Anisur Rahman
- Department of Medicine, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Asaduzzaman Galib
- Department of Medicine, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Ahsan Al Emon
- Department of Medicine, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md Mukter Hossain
- Department of Medicine, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Syed Sayeem Uddin Ahmed
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet, Bangladesh
| |
Collapse
|
7
|
Clemmons EA, Alfson KJ, Dutton JW. Transboundary Animal Diseases, an Overview of 17 Diseases with Potential for Global Spread and Serious Consequences. Animals (Basel) 2021; 11:2039. [PMID: 34359167 PMCID: PMC8300273 DOI: 10.3390/ani11072039] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Animals provide food and other critical resources to most of the global population. As such, diseases of animals can cause dire consequences, especially disease with high rates of morbidity or mortality. Transboundary animal diseases (TADs) are highly contagious or transmissible, epidemic diseases, with the potential to spread rapidly across the globe and the potential to cause substantial socioeconomic and public health consequences. Transboundary animal diseases can threaten the global food supply, reduce the availability of non-food animal products, or cause the loss of human productivity or life. Further, TADs result in socioeconomic consequences from costs of control or preventative measures, and from trade restrictions. A greater understanding of the transmission, spread, and pathogenesis of these diseases is required. Further work is also needed to improve the efficacy and cost of both diagnostics and vaccines. This review aims to give a broad overview of 17 TADs, providing researchers and veterinarians with a current, succinct resource of salient details regarding these significant diseases. For each disease, we provide a synopsis of the disease and its status, species and geographic areas affected, a summary of in vitro or in vivo research models, and when available, information regarding prevention or treatment.
Collapse
Affiliation(s)
- Elizabeth A. Clemmons
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| | - Kendra J. Alfson
- Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
| | - John W. Dutton
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| |
Collapse
|