1
|
Li Y, Zhang X, Tai W, Zhuang X, Shi H, Liao S, Yu X, Mei R, Chen X, Huang Y, Liu Y, Liu J, Liu Y, Zhu Y, Wang P, Tian M, Yu G, Li L, Cheng G. A substitution at the cytoplasmic tail of the spike protein enhances SARS-CoV-2 infectivity and immunogenicity. EBioMedicine 2024; 110:105437. [PMID: 39531918 PMCID: PMC11603013 DOI: 10.1016/j.ebiom.2024.105437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/26/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Global dissemination of SARS-CoV-2 Omicron sublineages has provided a sufficient opportunity for natural selection, thus enabling beneficial mutations to emerge. Characterisation of these mutations uncovers the underlying machinery responsible for the fast transmission of Omicron variants and guides vaccine development for combating the COVID-19 pandemic. METHODS Through systematic bioinformatics analysis of 496,606 sequences of Omicron variants, we obtained 40 amino acid substitutions that occurred with high frequency in the S protein. Utilising pseudoviruses and a trans-complementation system of SARS-CoV-2, we identified the effect of high-frequency mutations on viral infectivity and elucidated the molecular mechanisms. Finally, we evaluated the impact of a key emerging mutation on the immune protection induced by the SARS-CoV-2 VLP mRNA vaccine in a murine model. FINDINGS We identified a proline-to-leucine substitution at the 1263rd residue of the Spike protein, and upon investigating the relative frequencies across multiple Omicron sublineages, we found a trend of increasing frequency for P1263L. The substitution significantly enhances the capacity for S-mediated viral entry and improves the immunogenicity of a virus-like particle mRNA vaccine. Mechanistic studies showed that this mutation is located in the FERM binding motif of the cytoplasmic tail and impairs the interaction between the S protein and the Ezrin/Radixin/Moesin proteins. Additionally, this mutation facilitates the incorporation of S proteins into SARS-CoV-2 virions. INTERPRETATION This study offers mechanistic insight into the constantly increasing transmissibility of SARS-CoV-2 Omicron variants and provides a meaningful optimisation strategy for vaccine development against SARS-CoV-2. FUNDING This study was supported by grants from the National Key Research and Development Plan of China (2021YFC2302405, 2022YFC2303200, 2021YFC2300200 and 2022YFC2303400), the National Natural Science Foundation of China (32188101, 32200772, 82422049, 82241082, 32270182, 82372254, 82271872, 82341046, 32100755 and 82102389), Shenzhen Medical Research Fund (B2404002, A2303036), the Shenzhen Bay Laboratory Startup Fund (21330111), Shenzhen San-Ming Project for Prevention and Research on Vector-borne Diseases (SZSM202211023), Yunnan Provincial Science and Technology Project at Southwest United Graduate School (202302AO370010). The New Cornerstone Science Foundation through the New Cornerstone Investigator Program, and the Xplorer Prize from Tencent Foundation.
Collapse
Affiliation(s)
- Yuhan Li
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Xianwen Zhang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China.
| | - Wanbo Tai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Xinyu Zhuang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, China
| | - Huicheng Shi
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Shumin Liao
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinyang Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Rui Mei
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Xingzhao Chen
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Yanhong Huang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yubin Liu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Jianying Liu
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Yang Liu
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Yibin Zhu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, The University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Mingyao Tian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, China.
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Liang Li
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Southwest United Graduate School, Kunming 650092, China.
| |
Collapse
|
2
|
Lahiri P, Das S, Thakur S, Mehra R, Ranjan P, Wig N, Dar L, Bhattacharyya TK, Sengupta S, Lahiri B. Fast Viral Diagnostics: FTIR-Based Identification, Strain-Typing, and Structural Characterization of SARS-CoV-2. Anal Chem 2024; 96:14749-14758. [PMID: 39215696 DOI: 10.1021/acs.analchem.4c01260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered an ongoing global pandemic, necessitating rapid and accurate diagnostic tools to monitor emerging variants and preparedness for the next outbreak. This study introduces a multidisciplinary approach combining Fourier Transform Infrared (FTIR) microspectroscopy and Machine learning to comprehensively characterize and strain-type SARS-CoV-2 variants. FTIR analysis of pharyngeal swabs from different pandemic waves revealed distinct vibrational profiles, particularly in nucleic acid and protein vibrations. The spectral wavenumber range between 1150 and 1240 cm-1 was identified as the classification marker, distinguishing Healthy (noninfected) and infected samples. Machine learning algorithms, with neural networks exhibiting superior performance, successfully classified SARS-CoV-2 variants with a remarkable accuracy of 98.6%. Neural networks were also able to identify and differentiate a small cohort infected with influenza A variants, H1N1 and H3N2, from SARS-CoV-2-infected and Healthy samples. FTIR measurements further show distinct red shifts in vibrational energy and secondary structural alterations in the spike proteins of more transmissible forms of SARS-CoV-2 variants, providing experimental validation of the computational data. This integrated approach presents a promising avenue for rapid and reliable SARS-CoV-2 variant identification, enhancing our understanding of viral evolution and aiding in diagnostic advancements, particularly for an infectious disease with unknown etiology.
Collapse
Affiliation(s)
- Pooja Lahiri
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Souvik Das
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Shivani Thakur
- Department of Chemistry, Indian Institute of Technology Bhilai, Bhilai 491001, India
| | - Rukmankesh Mehra
- Department of Chemistry, Indian Institute of Technology Bhilai, Bhilai 491001, India
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Bhilai, Bhilai 491001, India
| | - Piyush Ranjan
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, Sri Aurobindo Marg, Ansari Nagar, Ansari Nagar East, New Delhi, Delhi 110029, India
| | - Naveet Wig
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, Sri Aurobindo Marg, Ansari Nagar, Ansari Nagar East, New Delhi, Delhi 110029, India
| | - Lalit Dar
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, Sri Aurobindo Marg, Ansari Nagar, Ansari Nagar East, New Delhi, Delhi 110029, India
| | - Tarun Kanti Bhattacharyya
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sanghamitra Sengupta
- Department of Biochemistry, Ballygunge Science College, University of Calcutta, Kolkata 700019, India
| | - Basudev Lahiri
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
3
|
Banerjee M, Chakraborty D, Chakraborty A. Molecular characterization, phylogenetic and variation analyses of SARS-CoV-2 strains in India. Virusdisease 2024; 35:462-477. [PMID: 39464729 PMCID: PMC11502728 DOI: 10.1007/s13337-024-00878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 06/18/2024] [Indexed: 10/29/2024] Open
Abstract
In the wake of the havoc caused by the COVID-19 pandemic, it is imperative to use the available genomic sequence data to gain insight into the mutational and genomic diversity of SARS-CoV-2. Here we have performed comparative phylogenetic, mutational and genetic diversity analysis on 1962 SARS-CoV-2 genome sequences from seven worst hit Indian states during the third Covid-19 wave, to determine the SARS-CoV-2 strains and mutations in circulation during the third wave and the transmission pattern and disease epidemiology across the states and gain valuable insight into the viral evolution. 6083 Single nucleotide polymorphisms (SNPs) were discovered in the analysis with 93 SNPs common to all states. The genetic relatedness among the statewise multilocus genotypes was visualized by plotting a minimum spanning tree based on Bruvo's distance framework. The phylogenetic tree based on Nei's genetic distance showed distinct clades. The AMOVA results indicated that large proportion of the total genetic variation is distributed within the samples, rather than between the samples within each population and between the populations. Our findings provide insight into the SARS-CoV-2 variants and mutations which dominated the third COVID-19 wave in India and thus provide a basis to monitor and further assess these variants and their sub lineages and mutations for their clinical impact and reaction to existing and newly designed drugs and vaccines. The genetic diversity analysis helps in comprehending the viral transmission scenarios across the Indian states so as to enable the State government and researchers in developing state specific prevention measures for future. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00878-7.
Collapse
Affiliation(s)
- Meghna Banerjee
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali, Rajasthan 304022 India
| | - Dipjyoti Chakraborty
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali, Rajasthan 304022 India
| | - Arindom Chakraborty
- Department of Statistics, Visva-Bharati University, Santiniketan, West Bengal 731235 India
| |
Collapse
|
4
|
Sipala F, Cavallaro G, Forte G, Satriano C, Giuffrida A, Fraix A, Spadaro A, Petralia S, Bonaccorso C, Fortuna CG, Ronsisvalle S. Different In Silico Approaches Using Heterocyclic Derivatives against the Binding between Different Lineages of SARS-CoV-2 and ACE2. Molecules 2023; 28:molecules28093908. [PMID: 37175318 PMCID: PMC10180195 DOI: 10.3390/molecules28093908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Over the last few years, the study of the SARS-CoV-2 spike protein and its mutations has become essential in understanding how it interacts with human host receptors. Since the crystallized structure of the spike protein bound to the angiotensin-converting enzyme 2 (ACE2) receptor was released (PDB code 6M0J), in silico studies have been performed to understand the interactions between these two proteins. Specifically, in this study, heterocyclic compounds with different chemical characteristics were examined to highlight the possibility of interaction with the spike protein and the disruption of the interaction between ACE2 and the spike protein. Our results showed that these compounds interacted with the spike protein and interposed in the interaction zone with ACE2. Although further studies are needed, this work points to these heterocyclic push-pull compounds as possible agents capable of interacting with the spike protein, with the potential for the inhibition of spike protein-ACE2 binding.
Collapse
Affiliation(s)
- Federica Sipala
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Gianfranco Cavallaro
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Forte
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Cristina Satriano
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Alessandro Giuffrida
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Aurore Fraix
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Angelo Spadaro
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Salvatore Petralia
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Carmela Bonaccorso
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Cosimo Gianluca Fortuna
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Simone Ronsisvalle
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
5
|
Fiaz N, Zahoor I, Saima S, Basheer A. Genomic landscape of alpha-variant of SARS-CoV-2 circulated in Pakistan. PLoS One 2022; 17:e0276171. [PMID: 36512569 PMCID: PMC9746927 DOI: 10.1371/journal.pone.0276171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
In this study, we investigated the genomic variability of alpha-VOC of SARS-CoV-2 in Pakistan, in context of the global population of this variant. A set of 461 whole-genome sequences of Pakistani samples of alpha-variant, retrieved from GISAID, were aligned in MAFFT and used as an input to the Coronapp web-application. Phylogenetic tree was constructed through maximum-likelihood method by downloading the 100 whole-genome sequences of alpha-variant for each of the 12 countries having the largest number of Pakistani diasporas. We detected 1725 mutations, which were further categorized into 899 missense mutations, 654 silent mutations, 52 mutations in non-coding regions, 25 in-frame deletions, 01 in-frame insertion, 51 frameshift deletions, 21 frameshift insertions, 21 stop-gained variants, and 1 stop-gained deletion. We found NSP3 and Spike as the most variable proteins with 355 and 233 mutations respectively. However, some characteristic mutations like Δ144(S), G204R(N), and T1001I, I2230T, del3675-3677(ORF1ab) were missing in the Pakistani population of alpha-variant. Likewise, R1518K(NSP3), P83L(NSP9), and A52V, H164Y(NSP13) were found for the first time in this study. Interestingly, Y145 deletion(S) had 99% prevalence in Pakistan but globally it was just 4.2% prevalent. Likewise, R68S substitution (ORF3a), F120 frameshift deletion, L120 insertion, L118V substitution (ORF8), and N280Y(NSP2) had 20.4%, 14.3%, 14.8%, 9.1%, 13.9% prevalence locally but globally they were just 0.1%, 0.2%, 0.04%, 1.5%, and 2.4% prevalent respectively. The phylogeny analysis revealed that majority of Pakistani samples were grouped together in the same clusters with Italian, and Spanish samples suggesting the transmission of alpha-variant to Pakistan from these western European countries.
Collapse
Affiliation(s)
- Nazia Fiaz
- Genetic and Genomic Laboratory, Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Imran Zahoor
- Genetic and Genomic Laboratory, Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Saima Saima
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Atia Basheer
- Genetic and Genomic Laboratory, Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
- * E-mail:
| |
Collapse
|
6
|
Analysis of the mutation dynamics of SARS-CoV-2 genome in the samples from Georgia State of the United States. Gene 2022; 841:146774. [PMID: 35905853 PMCID: PMC9323210 DOI: 10.1016/j.gene.2022.146774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/12/2022] [Accepted: 07/24/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND The COVID-19 is caused by a novel coronavirus SARS-CoV-2, which started from China. It spread rapidly throughout the world and was later declared a pandemic by the WHO. Over the course of time, SARS-CoV-2 has mutated for survival advantages, and this led to multiple variants. Multiple studies on mutations identification in SARS-CoV2 have been published covering extensive sample areas. The purpose of this study was to limit the sample area to the Georgia state in the U.S. and to analyze the genome sequences for mutation profiling across the genome and origin of variants. METHODS The genome sequences (n = 3,970) were obtained from the NCBI database as of June 12, 2021, with the filter of being complete sequenced genomes, homo-sapiens host, and only from Georgia State of the U.S. NextClade, an online tool was used for the analysis of the sequences using Wuhan-Hu-1/2019 as a reference genome. The algorithm was sequence alignment, translation, mutation calling, phylogenetic placement, clade assignment, and quality control (QC). Thirty-six samples with bad QC were removed from the mutational analysis. RESULTS A total 117,743 mutations in the nucleotides were identified (averaging 31.5 mutations per sample). The mutations A23403G, C3037T, C241T, and C14408T were detected in 98% of the samples. Also, a total of 75,517 mutations in the amino acid were identified (averaging 20.2 mutations per sample). The mutations D614G and P314L were identified in >97% samples whereas R203K, G204R, P681H, and N501Y were detected in >50% samples. Analysis also revealed 16 different clades with 20I (49.6%). Clades 20G (24.2%) and 20A (5.5%) being the most abundant, showed that SARS-CoV-2 in the Georgia State originated mainly from Southeast England, other parts of the U.S., and several countries in Western Europe. CONCLUSION Looking at the three most common variants in Georgia State of the U.S., we could determine the primary locations of transmission or origin for the virus, and our analyses indicates that majority of the cases originated from Southeast England (Clade 20I), the U.S. itself (Clade 20G), and from Western Europe (Clade 20C).
Collapse
|
7
|
Chen J, Xu W, Li L, Yi L, Jiang Y, Hao P, Xu Z, Zou W, Li P, Gao Z, Tian M, Jin N, Ren L, Li C. Immunogenicity and protective potential of chimeric virus-like particles containing SARS-CoV-2 spike and H5N1 matrix 1 proteins. Front Cell Infect Microbiol 2022; 12:967493. [PMID: 35923799 PMCID: PMC9339902 DOI: 10.3389/fcimb.2022.967493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 12/17/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), has posed a constant threat to human beings and the world economy for more than two years. Vaccination is the first choice to control and prevent the pandemic. However, an effective SARS-CoV-2 vaccine against the virus infection is still needed. This study designed and prepared four kinds of virus-like particles (VLPs) using an insect expression system. Two constructs encoded wild-type SARS-CoV-2 spike (S) fused with or without H5N1 matrix 1 (M1) (S and SM). The other two constructs contained a codon-optimized spike gene and/or M1 gene (mS and mSM) based on protein expression, stability, and ADE avoidance. The results showed that the VLP-based vaccine could induce high SARS-CoV-2 specific antibodies in mice, including specific IgG, IgG1, and IgG2a. Moreover, the mSM group has the most robust ability to stimulate humoral immunity and cellular immunity than the other VLPs, suggesting the mSM is the best immunogen. Further studies showed that the mSM combined with Al/CpG adjuvant could stimulate animals to produce sustained high-level antibodies and establish an effective protective barrier to protect mice from challenges with mouse-adapted strain. The vaccine based on mSM and Al/CpG adjuvant is a promising candidate vaccine to prevent the COVID-19 pandemic.
Collapse
Affiliation(s)
- Jing Chen
- College of Veterinary medicine, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wang Xu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lichao Yi
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yuhang Jiang
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Pengfei Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhiqiang Xu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wancheng Zou
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Peiheng Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zihan Gao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Mingyao Tian
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Chang Li, ; Linzhu Ren, ; Ningyi Jin,
| | - Linzhu Ren
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun, China
- *Correspondence: Chang Li, ; Linzhu Ren, ; Ningyi Jin,
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Chang Li, ; Linzhu Ren, ; Ningyi Jin,
| |
Collapse
|
8
|
Yavarian J, Nejati A, Salimi V, Shafiei Jandaghi NZ, Sadeghi K, Abedi A, Sharifi Zarchi A, Gouya MM, Mokhtari-Azad T. Whole genome sequencing of SARS-CoV2 strains circulating in Iran during five waves of pandemic. PLoS One 2022; 17:e0267847. [PMID: 35499994 PMCID: PMC9060343 DOI: 10.1371/journal.pone.0267847] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/14/2022] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Whole genome sequencing of SARS-CoV2 is important to find useful information about the viral lineages, variants of interests and variants of concern. As there are not enough data about the circulating SARS-CoV2 variants in Iran, we sequenced 54 SARS-CoV2 genomes during the 5 waves of pandemic in Iran. METHODS After viral RNA extraction from clinical samples collected during the COVID-19 pandemic, next generation sequencing was performed using the Nextseq platform. The sequencing data were analyzed and compared with reference sequences. RESULTS During the 1st wave, V and L clades were detected. The second wave was recognized by G, GH and GR clades. Circulating clades during the 3rd wave were GH and GR. In the fourth wave GRY (alpha variant), GK (delta variant) and one GH clade (beta variant) were detected. All viruses in the fifth wave were in clade GK (delta variant). There were different mutations in all parts of the genomes but Spike-D614G, NSP12-P323L, N-R203K and N-G204R were the most frequent mutants in these studied viruses. CONCLUSIONS These findings display the significance of SARS-CoV2 monitoring to help on time detection of possible variants for pandemic control and vaccination plans.
Collapse
Affiliation(s)
- Jila Yavarian
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Nejati
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kaveh Sadeghi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Adel Abedi
- Mathematics Department, Shahid Beheshti University, Tehran, Iran
| | - Ali Sharifi Zarchi
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Talat Mokhtari-Azad
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Papanikolaou V, Chrysovergis A, Ragos V, Tsiambas E, Katsinis S, Manoli A, Papouliakos S, Roukas D, Mastronikolis S, Peschos D, Batistatou A, Kyrodimos E, Mastronikolis N. From delta to Omicron: S1-RBD/S2 mutation/deletion equilibrium in SARS-CoV-2 defined variants. Gene 2022; 814:146134. [PMID: 34990799 PMCID: PMC8725615 DOI: 10.1016/j.gene.2021.146134] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
Coronavirus-related Severe Acute Respiratory Syndrome (SARS-CoV) in 2002/2003, Middle-East Respiratory Syndrome (MERS-CoV) in 2012/2013, and especially the current 2019/2021 Severe Acute Respiratory Syndrome-2 (SARS-CoV-2) affected negatively the national health systems’ endurance worldwide. SARS-Cov-2 virus belongs to lineage b of beta-CoVs demonstrating a strong phylogenetic similarity with BatCoVRaTG13 type. Spike (S) glycoprotein projections -consisting of two subunits S1/S2- provide a unique crown-like formation (corona) on virion’s surface. Concerning their functional role, S1 represents the main receptor-binding domain (RBD), whereas S2 is involved in the virus-cell membrane fusion mechanism. On Nov 26th 2021, WHO designated the new SARS-CoV-2 strain – named Omicron, from letter ‘’όμικρον’’ in the Greek alphabet - as a variant of concern (B.1.1529 variant). Potentially this new variant is associated with high transmissibility leading to elevated infectivity and probably increased re-infection rates. Its impact on morbidity/mortality remains under investigation. In the current paper, analyzing and comparing the alterations of SARS-CoV-2 S RNA sequences in the defined variants (Alpha to Omicron), we observed some interesting findings regarding the S1-RBD/S2 mutation/deletion equilibrium that maybe affect and modify its activity.
Collapse
Affiliation(s)
| | - Aris Chrysovergis
- 1ST ENT Department, Hippocration Hospital, University of Athens, Athens, Greece
| | - Vasileios Ragos
- Dept of Maxillofacial, Medical School, University of Ioannina, Greece
| | - Evangelos Tsiambas
- Dept of Maxillofacial, Medical School, University of Ioannina, Greece; Department of Cytology, Molecular Unit, 417 Veterans Army Hospital (NIMTS), Athens, Greece.
| | - Spyros Katsinis
- Department of Otorhinolaryngology, Thoracic Diseases General Hospital "Sotiria", Athens, Greece
| | - Arezina Manoli
- Department of Otorhinolaryngology, Thoracic Diseases General Hospital "Sotiria", Athens, Greece
| | | | - Dimitrios Roukas
- Department of Psychiatry, 417 Veterans Army Hospital (NIMTS), Athens, Greece
| | | | - Dimitrios Peschos
- Department of Physiology, Medical School, University of Ioannina, Greece
| | - Anna Batistatou
- ENT Department, Medical School, University of Patras, Greece
| | - Efthimios Kyrodimos
- 1ST ENT Department, Hippocration Hospital, University of Athens, Athens, Greece
| | | |
Collapse
|
10
|
Chakraborty C, Sharma AR, Bhattacharya M, Lee SS. A Detailed Overview of Immune Escape, Antibody Escape, Partial Vaccine Escape of SARS-CoV-2 and Their Emerging Variants With Escape Mutations. Front Immunol 2022; 13:801522. [PMID: 35222380 PMCID: PMC8863680 DOI: 10.3389/fimmu.2022.801522] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/05/2022] [Indexed: 01/08/2023] Open
Abstract
The infective SARS-CoV-2 is more prone to immune escape. Presently, the significant variants of SARS-CoV-2 are emerging in due course of time with substantial mutations, having the immune escape property. Simultaneously, the vaccination drive against this virus is in progress worldwide. However, vaccine evasion has been noted by some of the newly emerging variants. Our review provides an overview of the emerging variants' immune escape and vaccine escape ability. We have illustrated a broad view related to viral evolution, variants, and immune escape ability. Subsequently, different immune escape approaches of SARS-CoV-2 have been discussed. Different innate immune escape strategies adopted by the SARS-CoV-2 has been discussed like, IFN-I production dysregulation, cytokines related immune escape, immune escape associated with dendritic cell function and macrophages, natural killer cells and neutrophils related immune escape, PRRs associated immune evasion, and NLRP3 inflammasome associated immune evasion. Simultaneously we have discussed the significant mutations related to emerging variants and immune escape, such as mutations in the RBD region (N439K, L452R, E484K, N501Y, K444R) and other parts (D614G, P681R) of the S-glycoprotein. Mutations in other locations such as NSP1, NSP3, NSP6, ORF3, and ORF8 have also been discussed. Finally, we have illustrated the emerging variants' partial vaccine (BioNTech/Pfizer mRNA/Oxford-AstraZeneca/BBIBP-CorV/ZF2001/Moderna mRNA/Johnson & Johnson vaccine) escape ability. This review will help gain in-depth knowledge related to immune escape, antibody escape, and partial vaccine escape ability of the virus and assist in controlling the current pandemic and prepare for the next.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | | | - Sang-Soo Lee
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| |
Collapse
|
11
|
Saied AA, Metwally AA, Alobo M, Shah J, Sharun K, Dhama K. Bovine-derived antibodies and camelid-derived nanobodies as biotherapeutic weapons against SARS-CoV-2 and its variants: A review article. Int J Surg 2022; 98:106233. [PMID: 35065260 PMCID: PMC8768012 DOI: 10.1016/j.ijsu.2022.106233] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected 305 million individuals worldwide and killed about 5.5 million people as of January 10, 2022. SARS-CoV-2 is the third major outbreak caused by a new coronavirus in the previous two decades, following SARS-CoV and MERS-CoV. Even though vaccination against SARS-CoV-2 is considered a critical strategy for preventing virus spread in the population and limiting COVID-19 clinical manifestations, new therapeutic drugs, and management strategies are urgently needed, particularly in light of the growing number of SARS-CoV-2 variants (such as Delta and Omicron variants). However, the use of conventional antibodies has faced many challenges, such as viral escape mutants, increased instability, weak binding, large sizes, the need for large amounts of plasma, and high-cost manufacturing. Furthermore, the emergence of new SARS-CoV-2 variants in the human population and recurrent coronavirus spillovers highlight the need for broadly neutralizing antibodies that are not affected by an antigenic drift that could limit future zoonotic infection. Bovine-derived antibodies and camelid-derived nanobodies are more potent and protective than conventional human antibodies, thanks to their inbuilt characteristics, and can be produced in large quantities. In addition, it was reported that these biotherapeutics are effective against a broad spectrum of epitopes, reducing the opportunity of viral pathogens to develop mutational escape. In this review, we focus on the potential benefits behind our rationale for using bovine-derived antibodies and camelid-derived nanobodies in countering SARS-CoV-2 and its emerging variants and mutants.
Collapse
Affiliation(s)
- AbdulRahman A. Saied
- Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan, 81511, Egypt,Touristic Activities and Interior Offices Sector (Aswan Office), Ministry of Tourism and Antiquities, Aswan, 81511, Egypt,Corresponding author. Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan, 81511, Egypt
| | - Asmaa A. Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81511, Egypt,Corresponding author. Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Moses Alobo
- Grand Challenges Africa, Science for Africa Foundation, Nairobi, Kenya
| | - Jaffer Shah
- Medical Research Center, Kateb University, Kabul, Afghanistan
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
12
|
Obeng EM, Dzuvor CKO, Danquah MK. Anti-SARS-CoV-1 and -2 nanobody engineering towards avidity-inspired therapeutics. NANO TODAY 2022; 42:101350. [PMID: 34840592 PMCID: PMC8608585 DOI: 10.1016/j.nantod.2021.101350] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/22/2021] [Accepted: 11/18/2021] [Indexed: 05/15/2023]
Abstract
In the past two decades, the emergence of coronavirus diseases has been dire distress on both continental and global fronts and has resulted in the search for potent treatment strategies. One crucial challenge in this search is the recurrent mutations in the causative virus spike protein, which lead to viral escape issues. Among the current promising therapeutic discoveries is the use of nanobodies and nanobody-like molecules. While these nanobodies have demonstrated high-affinity interaction with the virus, the unpredictable spike mutations have warranted the need for avidity-inspired therapeutics of potent inhibitors such as nanobodies. This article discusses novel approaches for the design of anti-SARS-CoV-1 and -2 nanobodies to facilitate advanced innovations in treatment technologies. It further discusses molecular interactions and suggests multivalent protein nanotechnology and chemistry approaches to translate mere molecular affinity into avidity.
Collapse
Affiliation(s)
- Eugene M Obeng
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Christian K O Dzuvor
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, United States
| |
Collapse
|
13
|
Gurung AB, Ali MA, Lee J, Farah MA, Al-Anazi KM, Al-Hemaid F, Sami H. Structural and functional insights into the major mutations of SARS-CoV-2 Spike RBD and its interaction with human ACE2 receptor. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2022; 34:101773. [PMID: 34955621 PMCID: PMC8686452 DOI: 10.1016/j.jksus.2021.101773] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/30/2021] [Accepted: 12/14/2021] [Indexed: 05/05/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread around the world jeopardizing the global economy and health. The rapid proliferation and infectivity of the virus can be attributed to many accumulating mutations in the spike protein leading to continuous generation of variants. The spike protein is a glycoprotein that recognizes and binds to cell surface receptor known as angiotensin-converting enzyme 2 (ACE2) leading to the fusion of the viral and host cell membranes and entry into the host cells. These circulating variants in the population have greatly impacted the virulence, transmissibility, and immunological evasion of the host. The present study is aimed at understanding the impact of the major mutations (L452R, T478K and N501Y) in the receptor-binding domain (RBD) of spike protein and their consequences on the binding affinity to human ACE2 through protein-protein docking and molecular dynamics simulation approaches. Protein-protein docking and Molecular mechanics with generalised Born and surface area solvation (MM/GBSA) binding free energy analysis reveal that the spike mutants-L452R, T478K and N501Y have a higher binding affinity to human ACE2 as compared to the native spike protein. The increase in the number of interface residues, interface area and intermolecular forces such as hydrogen bonds, salt bridges and non-bonded contacts corroborated with the increase in the binding affinity of the spike mutants to ACE2. Further, 75 ns all-atom molecular dynamics simulation investigations show variations in the geometric properties such as root mean square deviation (RMSD), radius of gyration (Rg), total solvent accessible surface area (SASA) and number of hydrogen bonds (NHBs) in the mutant spike:ACE2 complexes with respect to the native spike:ACE2 complex. Therefore, the findings of this study unravel plausible molecular mechanisms of increase in binding affinity of spike mutants (L452R, T478K and N501Y) to human ACE2 leading to higher virulence and infectivity of emerging SARS-CoV-2 variants. The study will further aid in designing novel therapeutics targeting the interface residues between spike protein and ACE2 receptor.
Collapse
Affiliation(s)
- Arun Bahadur Gurung
- Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Joongku Lee
- Department of Environment and Forest Resources, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Mashay Al-Anazi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hiba Sami
- Department of Microbiology, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
14
|
Colson P, Delerce J, Burel E, Beye M, Fournier PE, Levasseur A, Lagier JC, Raoult D. Occurrence of a substitution or deletion of SARS-CoV-2 spike amino acid 677 in various lineages in Marseille, France. Virus Genes 2022; 58:53-58. [PMID: 34839413 PMCID: PMC8627157 DOI: 10.1007/s11262-021-01877-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/21/2021] [Indexed: 12/01/2022]
Abstract
Great concerns have been raised about SARS-CoV-2 variants over the past six months. At the end of 2020, an increasing incidence of spike substitutions Q677H/P was described in the USA, which involved six independent lineages. We searched for changes to this amino acid in the sequence database of SARS-CoV-2 genomes obtained at the IHU Méditerranée Infection (Marseille, France) from 3634 patients sampled between February 2020 and April 2021. In seven genomes (0.2%), we found a deletion of five amino acids at spike positions 675-679 (QTQTN) including Q677, and in 76 genomes (2.3%) we found a Q677H substitution. The 83 genomes were classified in ten different Pangolin lineages. Genomes with a spike Q677 deletion were obtained from respiratory samples collected in six cases between 28 March 2020 and 12 October 2020 and in one case on 1 February 2021. The Q677H substitution was found in genomes all obtained from respiratory samples collected from 19 January 2021 and were classified in seven different lineages. Most of these genomes (41 cases) were of UK variant. Two others were classified in the B.1.160 Pangolin lineage (Marseille-4 variant) which was first detected in July 2020 in our institute but was devoid of this substitution until 19 January 2021. Also, eight genomes were classified in the A.27/Marseille-501 lineage which was first detected in our institute in January 2021 and which either harboured or did not harbour the Q677H substitution. Thus, the spike Q677H substitution should be considered as another example of convergent evolution, as it is the case of spike substitutions L18F, E484K, L452R, and N501Y which also independently appeared in various lineages.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), 27 boulevard Jean Moulin, 13005, Marseille, France
| | - Jeremy Delerce
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Emilie Burel
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Mamadou Beye
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Pierre-Edouard Fournier
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), 27 boulevard Jean Moulin, 13005, Marseille, France
| | - Anthony Levasseur
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), 27 boulevard Jean Moulin, 13005, Marseille, France
| | - Jean-Christophe Lagier
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), 27 boulevard Jean Moulin, 13005, Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France.
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), 27 boulevard Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
15
|
Li G, Zhang L, Xue P. Codon usage divergence in Delta variants (B.1.617.2) of SARS-CoV-2. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 97:105175. [PMID: 34871776 PMCID: PMC8641433 DOI: 10.1016/j.meegid.2021.105175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 01/17/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads all over the world and brings great harm to humans in many countries. Many new SARS-CoV-2 variants appeared during its transmission. In the present study, the Delta variants (B.1.617.2) of SARS-CoV-2, which have appeared in many countries, were considered for analysis. In order to evaluate the evolutionary divergence of the Delta variants(B.1.617.2), the codon usage divergence in Delta variants (B.1.617.2) of SARS-CoV-2 was compared to that of the SARS-CoV-2 genomes emerged before June 2020. All Delta variants (B.1.617.2) and 350 early genomes of SARS-CoV-2 in the NCBI database were downloaded. Codon usage pattern including the basic composition, the GC ratio of the third position (GC3) and the first two positions (GC12) in codons, overall GC contents, the effective number of codons (ENC), the codon bias index (CBI), the relative synonymous codon usage (RSCU) values, etc., of all concerned important gene sequences were all calculated. Codon usage divergence of them was calculated via summing their standard deviations. The results suggested that base compositions in both Delta variants (B.1.617.2) of SARS-CoV-2 and the early SARS-CoV-2 genomes were similar to each other. However, the internal codon usage divergence for most genes in Delta variants (B.1.617.2) was significantly wider than that of SARS-CoV-2. The RSCU values were further used to explore the synonymous and non-synonymous mutations in the sequences of the Delta variants (B.1.617.2), and the results showed the synonymous mutations are more obvious than the non-synonymous in the concerned sequences. The related codon usage divergence analysis is helpful for further study on the adaptability and disease prognosis of the SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Gun Li
- Laboratory for Biodiversity Science, Department of Biomedical Engineering, School of Electronic Information Engineering, Xi'An Technological University, Xi'An, China.
| | - Liang Zhang
- Laboratory for Biodiversity Science, Department of Biomedical Engineering, School of Electronic Information Engineering, Xi'An Technological University, Xi'An, China
| | - Pei Xue
- Laboratory for Biodiversity Science, Department of Biomedical Engineering, School of Electronic Information Engineering, Xi'An Technological University, Xi'An, China
| |
Collapse
|
16
|
Si R, Yao Y, Zhang X, Lu Q, Aziz N. Investigating the Links Between Vaccination Against COVID-19 and Public Attitudes Toward Protective Countermeasures: Implications for Public Health. Front Public Health 2021; 9:702699. [PMID: 34368065 PMCID: PMC8333618 DOI: 10.3389/fpubh.2021.702699] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 12/23/2022] Open
Abstract
The COVID-19 pandemic caused by the novel coronavirus, SARS-CoV-2, is spreading globally at an unprecedented rate. To protect the world against this devastating catastrophe, vaccines for SARS-CoV-2 have been produced following consistent clinical trials. However, the durability of a protective immune response due to vaccination has not been confirmed. Moreover, COVID-19 vaccination against SARS-CoV-2 is not 100% guaranteed, as new variants arise due to mutations. Consequently, health officials are pleading with the public to take extra precautions against the virus and continue wearing masks, wash hands, and observe physical distancing even after vaccination. The current research collected data from 4,540 participants (1,825 vaccinated and 2,715 not vaccinated) in China to analyze this phenomenon empirically. The propensity score matching (PSM) model is employed to analyze the impact of vaccination against COVID-19 on participants' attitudes toward protective countermeasures. The findings showed that gender, age, education level, occupation risk, individual health risk perception, public health risk perception, social responsibility, peer effect, and government supervision are the main drivers for participants to be vaccinated with COVID-19's vaccines. The results further show that vaccination lessened participants' frequency of hand washing by 1.75 times and their compliance frequency intensity of observing physical distancing by 1.24 times. However, the rate of mask-wearing did not reduce significantly, implying that China's main countermeasure of effective mask-wearing effectively controls COVID-19. Moreover, the findings indicate that a reduction in the frequency of hand washing and observing physical distance could cause a resurgence of COVID-19. In conclusion, factors leading to the eradication of SARS-CoV-2 from the world are complex to be achieved, so the exploration of COVID-19 vaccination and people's attitude toward protective countermeasures may provide insights for policymakers to encourage vaccinated people to follow protective health measures and help in completely defeating the COVID-19 from the globe.
Collapse
Affiliation(s)
- Ruishi Si
- School of Public Administration, Xi'an University of Architecture and Technology, Xi'an, China
| | - Yumeng Yao
- School of Public Administration, Xi'an University of Architecture and Technology, Xi'an, China
| | - Xueqian Zhang
- School of Public Administration, Xi'an University of Architecture and Technology, Xi'an, China
| | - Qian Lu
- College of Economics and Management, Northwest A & F University, Yangling, China
| | - Noshaba Aziz
- College of Economics and Management, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|