1
|
Ekundayo TC, Ijabadeniyi OA. Systematic review and meta-analysis of human bocavirus as food safety risk in shellfish. Sci Rep 2024; 14:26968. [PMID: 39505884 DOI: 10.1038/s41598-024-75744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Human bocavirus (HBoV) is an emerging pathogen causing gastroenteritis/respiratory tract infection. Shellfish has been implicated in foodborne HBoV dissemination. The present investigation aimed at synthesising shellfish-associated HBoV data. Shellfish-HBoV data were mined from public repositories using topic-specific algorithm. A total of 30 data sources was identified of which 5 were synthesised. The average HBoV positivity and sample-size was 12 ± 9.2 and 134.2 ± 113.6, respectively. HBoV was studied in mollusc with 3.7-83.3% crude prevalence. The pooled HBoV prevalence in shellfish was 9.2% (7.2-11.8; 5 studies) and 12.9% (1.8-53.9; 5 studies) in common-effects and random-effects model respectively, with 0.12-94.89% prediction interval (PI). Sensitivity analysis yielded 8.7% (6.7-11.2; PI = 1.99-29.48%) prevalence. HBoV1 and HBoV2 pooled prevalence in shellfish was 7.91% (1.61-31.09; 3 studies) and 12.52% (0.01-99.60; 3 studies), respectively. HBoV3 prevalence was reported in one single study as 6.96% (4.41-10.35). In conclusion, the present study revealed high HBoV prevalence in shellfish, signifying the need to characterise HBoV and subtypes circulating in non-mollusc shellfish. Furthermore, there is an urgent need to mitigate the food safety risk that may result from HBoV contaminated shellfish since shellfish-borne HBoV is not routinely assessed and might be underestimated at present.
Collapse
Affiliation(s)
- Temitope C Ekundayo
- Department of Biotechnology and Food Science, Durban University of Technology, Steve Biko Campus, Steve Biko Rd, Musgrave, Berea, Durban, 4001, South Africa.
- Department of Microbiology, University of Medical Sciences Ondo, Ondo, Nigeria.
| | - Oluwatosin A Ijabadeniyi
- Department of Biotechnology and Food Science, Durban University of Technology, Steve Biko Campus, Steve Biko Rd, Musgrave, Berea, Durban, 4001, South Africa
| |
Collapse
|
2
|
Rupprom K, Thongpanich Y, Sukkham W, Utrarachkij F, Kittigul L. Surveillance of norovirus, SARS-CoV-2, and bocavirus in air samples collected from a tertiary care hospital in Thailand. Sci Rep 2024; 14:22240. [PMID: 39333786 PMCID: PMC11437068 DOI: 10.1038/s41598-024-73369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
This study aims to determine the presence of norovirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and bocavirus in air samples from a tertiary care hospital in Bangkok, Thailand. Air samples were collected in water using the BioSampler and concentrated using speedVac centrifugation. Based on RT-qPCR, norovirus RNA and SARS-CoV-2 RNA were detected in 13/60 (21.7%) and 3/60 (5.0%) of samples, respectively. One air sample had a weak positivity for both norovirus and SARS-CoV-2 RNAs. Detection rate of norovirus genogroup (G) II (13.3%) was higher than norovirus GI (6.7%). One air sample (1.7%) tested positive for GI and GII. The norovirus GI RNA concentration was 6.0 × 102 genome copies/m3. The norovirus GII RNA concentrations ranged from 3.4 × 101 to 5.0 × 103 genome copies/m3. Based on RT-nested PCR, norovirus GII was detected in two (3.3%) samples. All samples tested negative for GI RNA and bocavirus DNA. By phylogenetic analysis, GII.17, which is closely related to the outbreak Kawasaki308/JPN/2015 strain, was found in the RT-nested PCR-positive samples. This study highlights the potential of aerosols for norovirus and SARS-CoV-2 transmission and probably cause gastrointestinal and respiratory illnesses, respectively.
Collapse
Affiliation(s)
- Kitwadee Rupprom
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Yuwanda Thongpanich
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand
| | - Woravat Sukkham
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand
| | - Fuangfa Utrarachkij
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand
| | - Leera Kittigul
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand.
| |
Collapse
|
3
|
Peng L, Yang F, Shi J, Pan L, Liu Y, Mao D, Luo Y. Molecular characterization of human bocavirus in municipal wastewaters using amplicon target sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170674. [PMID: 38316309 DOI: 10.1016/j.scitotenv.2024.170674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Human bocavirus (HBoV) is an emerging health concern worldwide, associated with range of clinical manifestations, including gastroenteritis and respiratory infections. Therefore, it is crucial to comprehend and minimize their prevalence in different systems. In this study, we conducted regular sampling throughout the year in two different sizes and work processes of wastewater treatment plants (WWTPs) in Tianjin, China. Our objective was to investigate the occurrence, prevalence, and endurance of HBoV in wastewater, while also evaluating the efficacy of amplicon target sequencing in directly detecting HBoV in wastewater. At two WWTPs, HBoV2 (45.51 %-45.67 %) and HBoV3 (38.30 %-40.25 %) were the most common genotypes identified, and the mean concentration range of HBoV was 2.54-7.40 log10 equivalent copies/l as determined by multiplex real-time quantitative PCR assay. A positive rate of HBoV was found in 96.6 % (29/30) samples of A-WWTP, and 96.6 % (26/27) samples of B-WWTP. The phylogenetic analysis indicated that the nucleotide similarity between the HBoV DNA sequences to the reference HBoV sequences published globally ranged from 90.14 %-100 %. A significant variation in the read abundance of HBoV2 and HBoV3 in two wastewater treatment plants (p < 0.05) was detected, specifically in the Winter and Summer seasons. The findings revealed a strong correlation between the genotypes detected in wastewater and the clinical data across various regions in China. In addition, it is worth mentioning that HBoV4 was exclusively detected in wastewater and not found in the clinical samples from patients. This study highlights the high prevalence of human bocavirus in municipal wastewater. This finding illustrates that amplicon target sequencing can amplify a wide variety of viruses, enabling the identification of newly discovered viruses.
Collapse
Affiliation(s)
- Liang Peng
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Jingliang Shi
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Liuzhu Pan
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yixin Liu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China; State Key Laboratory of Pollution Control and Resource reuse, School of the Environment, Nanjing university, Nanjing 210093, China.
| |
Collapse
|
4
|
Rector A, Bloemen M, Thijssen M, Pussig B, Beuselinck K, Van Ranst M, Wollants E. Respiratory Viruses in Wastewater Compared with Clinical Samples, Leuven, Belgium. Emerg Infect Dis 2024; 30:141-145. [PMID: 38147067 PMCID: PMC10756384 DOI: 10.3201/eid3001.231011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023] Open
Abstract
In a 2-year study in Leuven, Belgium, we investigated the use of wastewater sampling to assess community spread of respiratory viruses. Comparison with the number of positive clinical samples demonstrated that wastewater data reflected circulation levels of typical seasonal respiratory viruses, such as influenza, respiratory syncytial virus, and enterovirus D68.
Collapse
|
5
|
Colazo Salbetti MB, Boggio GA, Moreno L, Adamo MP. Human bocavirus respiratory infection: Tracing the path from viral replication and virus-cell interactions to diagnostic methods. Rev Med Virol 2023; 33:e2482. [PMID: 37749807 DOI: 10.1002/rmv.2482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
Human bocaviruses were first described between 2005 and 2010, identified in respiratory and enteric tract samples of children. Screening studies have shown worldwide distribution. Based on phylogenetic analysis, they were classified into four genotypes (HBoV1-4). From a clinical perspective, human bocavirus 1 (HBoV1) is considered the most relevant, since it can cause upper and lower acute respiratory tract infection, mainly in infants, including common cold, bronchiolitis, and pneumonia, as well as wheezing in susceptible patients. However, the specific processes leading to structural, biochemical, and functional changes resulting in the different clinical presentations have not been elucidated yet. This review surveys the interactions between the virus and target cells that can potentially explain disease-causing mechanisms. It also summarises the clinical phenotype of cases, stressing the role of HBoV1 as an aetiological agent of lower acute respiratory infection in infants, together with laboratory tests for detection and diagnosis. By exploring the current knowledge on the epidemiology of HBoV1, insights into the complex scenario of paediatric respiratory infections are presented, as well as the potential effects that changes in the circulation can have on the dynamics of respiratory agents, spotlighting the benefits of comprehensively increase insights into incidence, interrelationships with co-circulating agents and potential control of HBoV1.
Collapse
Affiliation(s)
- María Belén Colazo Salbetti
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Gabriel Amilcar Boggio
- Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Laura Moreno
- Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| | - María Pilar Adamo
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| |
Collapse
|