1
|
Sabino-Pinto J, Maan ME. The Amphibian Major Histocompatibility Complex-A Review and Future Outlook. J Mol Evol 2025:10.1007/s00239-024-10223-7. [PMID: 39774934 DOI: 10.1007/s00239-024-10223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
The major histocompatibility complex (MHC) is a cluster of functionally related genes encoding proteins which, among other functions, mediate immune system activation. While the MHC of many vertebrates has been extensively studied, less is known about the amphibian MHC. This represents an important knowledge gap because amphibians mark the evolutionary transition from an aquatic to a terrestrial lifestyle and often maintain a biphasic lifestyle. Hence, they tend to be exposed to both aquatic and terrestrial pathogen communities, providing opportunities to gain fundamental insights into how the immune system responds to different environmental challenges. Moreover, amphibians are globally threatened by invasive pathogens and the MHC may play a role in combating population decline. In this review, we summarize the current state of knowledge regarding the amphibian MHC and identify the major differences with other vertebrates. We also review how the number of MHC gene copies varies across amphibian groups and how MHC-based variation relates to amphibian ontogeny, behaviour, disease, and phylogeography. We conclude by identifying knowledge gaps and proposing priorities for future research.
Collapse
Affiliation(s)
- Joana Sabino-Pinto
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.
| | - Martine E Maan
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
2
|
Zhang H, Ruan P, Cong H, Xu L, Yang B, Ren T, Zhang D, Chen H, Hu P, Wang Z, Pan H, Yang X, Han Y, Zeng Y, Zhao Y, Liu D, Ceccobelli S, E G. Genomic Insights into Pig Domestication and Adaptation: An Integrated Approach Using Genome-Wide Selection Analysis and Multiple Public Datasets. Animals (Basel) 2024; 14:3159. [PMID: 39518882 PMCID: PMC11545170 DOI: 10.3390/ani14213159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
As a global focus of animal husbandry, pigs provide essential meat resources for humans. Therefore, analyzing the genetic basis of adaptability, domestication, and artificial selection in pigs will contribute to further breeding. This study performed a genome-wide selection sweep analysis to identify candidate genes related to domestication and adaptive selection via data from 2413 public genotypes. Two complementary statistical analyses, FST (fixation index) and XP-EHH (cross-population extended haplotype homozygosity) were applied. The results revealed that numerous candidate genes were associated with high-altitude adaptability (e.g., SIRPA, FRS2, and GRIN2B) and habitat temperature adaptability (e.g., MITF, PI3KC2A, and FRS2). In addition, candidate genes related to the domestic genetic imprint of indigenous pigs (e.g., TNR, NOCT, and SPATA5) and strong artificial selection pressure in commercial breeds (e.g., ITPR2, HSD17B12, and UGP2) were identified in this study. Specifically, some MHC-related genes (e.g., ZRTB12, TRIM26, and C7H6orf15) were also under selection during domestication and artificial selection. Additionally, a phylogenetic comparative analysis revealed that the genetic divergence between populations does not fully follow the geographical distribution and management history in the major histocompatibility complex region/major histocompatibility complex II haplotypes, unlike that of the genome-wide genotypes. Furthermore, the higher heterozygosity and haplotype alleles of MHC reduce the differences between populations. Briefly, this study not only helps promote the relative theoretical understanding of environmental adaptive selection and domestication but also provides a theoretical reference for disease-resistant breeding in pigs.
Collapse
Affiliation(s)
- Haoyuan Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Pengcheng Ruan
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - He Cong
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Lu Xu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Baigao Yang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Tao Ren
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China (D.L.)
| | - Hongyue Chen
- Chongqing Animal Husbandry Technology Extension Station, Chongqing 401121, China
| | - Pengfei Hu
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130000, China
| | - Zhen Wang
- Chongqing Animal Husbandry Technology Extension Station, Chongqing 401121, China
| | - Hongmei Pan
- Chongqing Academy of Animal Sciences, Chongqing 408599, China
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yanguo Han
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yan Zeng
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China (D.L.)
| | - Simone Ceccobelli
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Guangxin E
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Fu M. Evolutionary analysis of major histocompatibility complex variants in chytrid-resistant and susceptible amphibians. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105544. [PMID: 38216106 DOI: 10.1016/j.meegid.2023.105544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/09/2023] [Accepted: 12/17/2023] [Indexed: 01/14/2024]
Abstract
An amphibian emerging infectious disease (EID), chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), originated in Asia but primarily led to declines and extinctions in amphibian populations outside of Asia. Host major histocompatibility complex (MHC) molecules exhibit high polymorphism, and the evolution of MHC can be influenced by recombination and pathogens. Previous studies have indicated that host MHC class II is associated with Bd resistance. In this study, I conducted recombination and selection tests on functional MHC IIß1 alleles from an Asian Bd-resistant anuran species (Bufo gargarizans) and an Australasian Bd-susceptible species (Litoria caerulea). Recombination at the same site was identified in both species, supporting the hypothesis that recombination contributes to MHC IIß1 diversity in amphibians. Positive selection was observed in MHC IIß1 alleles in both species. In L. caerulea, at least four amino acid sites were identified under significant positive selection in the MHC IIß1, whereas these sites were either negatively selected or conserved in B. gargarizans. This suggests these sites might be selected for Bd resistance. Hydrophobicity was detected in certain amino acid sites relating to Bd resistance, suggesting this physicochemical property may be a factor selected to counteract Bd infection. These findings of this study provide an evolutionary basis for understanding how amphibian MHC IIß1 may undergo selection in response to chytrid infection.
Collapse
Affiliation(s)
- Minjie Fu
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Fu M, Eimes JA, Kong S, Lamichhaney S, Waldman B. Identification of major histocompatibility complex genotypes associated with resistance to an amphibian emerging infectious disease. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105470. [PMID: 37336279 DOI: 10.1016/j.meegid.2023.105470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Amphibian chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), emerged from Asia and spread globally. By comparing functional MHC IIß1 alleles from an Asian Bd-resistant anuran species (Bufo gargarizans) with those of an Australasian Bd-susceptible species (Litoria caerulea), we identified MHC genotypes associated with Bd resistance. These alleles encode a glycine deletion (G90β1) and adjacent motifs in the deepest pathogen-derived peptide-binding groove. Every Bd-resistant individual, but no susceptible individuals, possessed at least one allele encoding the variant. We detected trans-species polymorphism at the end of the MHC IIβ1 sequences. The G90β1 deletion was encoded by different alleles in the two species, suggesting it may have evolved independently in each species rather than having been derived from a common ancestor. These results are consistent with a scenario by which MHC adaptations that confer resistance to the pathogen have evolved by convergent evolution. Immunogenetic studies such as this are critical to ongoing conservation efforts.
Collapse
Affiliation(s)
- Minjie Fu
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea.
| | - John A Eimes
- University College, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Sungsik Kong
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Sangeet Lamichhaney
- Department of Biological Sciences, Kent State University, Kent, OH 44243, USA
| | - Bruce Waldman
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|