Patkar AA, Rozen S, Mannelli P, Matson W, Pae CU, Krishnan KR, Kaddurah-Daouk R. Alterations in tryptophan and purine metabolism in cocaine addiction: a metabolomic study.
Psychopharmacology (Berl) 2009;
206:479-89. [PMID:
19649617 DOI:
10.1007/s00213-009-1625-1]
[Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 07/14/2009] [Indexed: 12/20/2022]
Abstract
BACKGROUND
Mapping metabolic "signatures" can provide new insights into addictive mechanisms and potentially identify biomarkers and therapeutic targets.
OBJECTIVE
We examined the differences in metabolites related to the tyrosine, tryptophan, purine, and oxidative stress pathways between cocaine-dependent subjects and healthy controls. Several of these metabolites serve as biological indices underlying the mechanisms of reinforcement, toxicity, and oxidative stress.
METHODS
Metabolomic analysis was performed in 18 DSM-IV-diagnosed cocaine-dependent individuals with at least 2 weeks of abstinence and ten drug-free controls. Plasma concentrations of 37 known metabolites were analyzed and compared using a liquid chromatography electrochemical array platform. Multivariate analyses were used to study the relationship between severity of drug use [Addiction Severity Index (ASI) scores] and biological measures.
RESULTS
Cocaine subjects showed significantly higher levels of n-methylserotonin (p < 0.0017) and guanine (p < 0.0031) and lower concentrations of hypoxanthine (p < 0.0002), anthranilate (p < 0.0024), and xanthine (p < 0.012), compared to controls. Multivariate analyses showed that a combination of n-methylserotonin and xanthine contributed to 73% of the variance in predicting the ASI scores (p < 0.0001). Logistic regression showed that a model combining n-methylserotonin, xanthine, xanthosine, and guanine differentiated cocaine and control groups with no overlap.
CONCLUSIONS
Alterations in the methylation processes in the serotonin pathways and purine metabolism seem to be associated with chronic exposure to cocaine. Given the preliminary nature and cross-sectional design of the study, the findings need to be confirmed in larger samples of cocaine-dependent subjects, preferably in a longitudinal design.
Collapse