1
|
Shingina A, Han X, Fan L, Murff H, Coffey R, Milne GL, Dai Q, Shrubsole M. Investigation of Novel Urinary Biomarkers in Hepatocellular Carcinoma Risk in a Predominantly African American Population: A Case-Control Study. Gastrointest Tumors 2023; 10:29-37. [PMID: 38590513 PMCID: PMC11001286 DOI: 10.1159/000538131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 02/01/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction African Americans are at increased risk of hepatocellular carcinoma (HCC) compared to other racial and ethnic groups. We investigated the associations of four urinary biomarkers of prostaglandin E2 (PGE-M), prostacyclin (PGI-M), and thromboxane (11dTxB2) synthesis and the ratio of PGI-M to 11dTXB2 with HCC risk in a cohort of predominantly African American populations. Methods We conducted a nested case-control study (50 cases; 43 with HCC, 151 controls) in the Southern Community Cohort Study (SCCS), a large prospective cohort study including over 80,000 study participants, of whom two-thirds are African Americans. Urine samples were collected at enrollment and subsequently analyzed to assess biomarker levels. Multivariable regression models adjusted for age, race, sex, BMI, smoking status, NSAID use, education level, income, and alcohol consumption were used to assess the relationship between the biomarker and HCC risk. Results Only 11dTxB2 (OR = 11.50; 95% CI [2.34-56.47] for highest tertile vs. lowest tertile, p = 0.004) and the PGI-M/11dTXB2 ratio of the second quartile (0.25-0.49) (OR = 5.16; 95% CI [1.44-18.47]; p = 0.01) were significantly associated with increased risk of liver cancer. Conclusion 11dTXB2 and PGI-M/11dTXB2 ratio may be urinary markers of HCC risk, particularly among African Americans, and future prospective studies are needed to evaluate this finding further and to develop accessible methods.
Collapse
Affiliation(s)
- Alexandra Shingina
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xijing Han
- International Epidemiology Field Station, Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lei Fan
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Harvey Murff
- Department of Geriatric Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert Coffey
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ginger L. Milne
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qi Dai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Martha Shrubsole
- International Epidemiology Field Station, Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
2
|
Bath PM, Coleman CM, Gordon AL, Lim WS, Webb AJ. Nitric oxide for the prevention and treatment of viral, bacterial, protozoal and fungal infections. F1000Res 2021; 10:536. [PMID: 35685687 PMCID: PMC9171293 DOI: 10.12688/f1000research.51270.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Although the antimicrobial potential of nitric oxide (NO) is widely published, it is little used clinically. NO is a key signalling molecule modulating vascular, neuronal, inflammatory and immune responses. Endogenous antimicrobial activity is largely mediated by high local NO concentrations produced by cellular inducible nitric oxide synthase, and by derivative reactive nitrogen oxide species including peroxynitrite and S-nitrosothiols. NO may be taken as dietary substrate (inorganic nitrate, L-arginine), and therapeutically as gaseous NO, and transdermal, sublingual, oral, intranasal and intravenous nitrite or nitrate. Numerous preclinical studies have demonstrated that NO has generic static and cidal activities against viruses (including β-coronaviruses such as SARS-CoV-2), bacteria, protozoa and fungi/yeasts in vitro. Therapeutic effects have been seen in animal models in vivo, and phase II trials have demonstrated that NO donors can reduce microbial infection. Nevertheless, excess NO, as occurs in septic shock, is associated with increased morbidity and mortality. In view of the dose-dependent positive and negative effects of NO, safety and efficacy trials of NO and its donors are needed for assessing their role in the prevention and treatment of infections. Trials should test dietary inorganic nitrate for pre- or post-exposure prophylaxis and gaseous NO or oral, topical or intravenous nitrite and nitrate for treatment of mild-to-severe infections, including due to SARS-CoV-2 (COVID-19). This review summarises the evidence base from in vitro, in vivo and early phase clinical studies of NO activity in viral, bacterial, protozoal and fungal infections.
Collapse
Affiliation(s)
- Philip M Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
- Stroke, Nottingham University Hospitals NHS Trust, Nottingham, Notts, NG7 2UH, UK
| | - Christopher M Coleman
- Division of Infection, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
| | - Adam L Gordon
- Unit of Injury, Inflammation and Recovery Sciences, University of Nottingham, Derby, Derbyshire, DE22 3NE, UK
- NIHR Applied Research Collaboration-East Midlands (ARC-EM), Nottingham, Notts, UK
| | - Wei Shen Lim
- Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, NG5 1PB, UK
| | - Andrew J Webb
- Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, Kings College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
3
|
Bath PM, Coleman CM, Gordon AL, Lim WS, Webb AJ. Nitric oxide for the prevention and treatment of viral, bacterial, protozoal and fungal infections. F1000Res 2021; 10:536. [PMID: 35685687 PMCID: PMC9171293 DOI: 10.12688/f1000research.51270.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 12/18/2023] Open
Abstract
Although the antimicrobial potential of nitric oxide (NO) is widely published, it is little used clinically. NO is a key signalling molecule modulating vascular, neuronal, inflammatory and immune responses. Endogenous antimicrobial activity is largely mediated by high local NO concentrations produced by cellular inducible nitric oxide synthase, and by derivative reactive nitrogen oxide species including peroxynitrite and S-nitrosothiols. NO may be taken as dietary substrate (inorganic nitrate, L-arginine), and therapeutically as gaseous NO, and transdermal, sublingual, oral, intranasal and intravenous nitrite or nitrate. Numerous preclinical studies have demonstrated that NO has generic static and cidal activities against viruses (including β-coronaviruses such as SARS-CoV-2), bacteria, protozoa and fungi/yeasts in vitro. Therapeutic effects have been seen in animal models in vivo, and phase II trials have demonstrated that NO donors can reduce microbial infection. Nevertheless, excess NO, as occurs in septic shock, is associated with increased morbidity and mortality. In view of the dose-dependent positive and negative effects of NO, safety and efficacy trials of NO and its donors are needed for assessing their role in the prevention and treatment of infections. Trials should test dietary inorganic nitrate for pre- or post-exposure prophylaxis and gaseous NO or oral, topical or intravenous nitrite and nitrate for treatment of mild-to-severe infections, including due to SARS-CoV-2 (COVID-19). This review summarises the evidence base from in vitro, in vivo and early phase clinical studies of NO activity in viral, bacterial, protozoal and fungal infections.
Collapse
Affiliation(s)
- Philip M. Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
- Stroke, Nottingham University Hospitals NHS Trust, Nottingham, Notts, NG7 2UH, UK
| | - Christopher M. Coleman
- Division of Infection, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
| | - Adam L. Gordon
- Unit of Injury, Inflammation and Recovery Sciences, University of Nottingham, Derby, Derbyshire, DE22 3NE, UK
- NIHR Applied Research Collaboration-East Midlands (ARC-EM), Nottingham, Notts, UK
| | - Wei Shen Lim
- Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, NG5 1PB, UK
| | - Andrew J. Webb
- Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, Kings College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
4
|
Zardi EM, Dobrina A, Amoroso A, Afeltra A. Prostacyclin in liver disease: a potential therapeutic option. Expert Opin Biol Ther 2007; 7:785-90. [PMID: 17555364 DOI: 10.1517/14712598.7.6.785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Complex molecular and cellular mechanisms are involved in the initiation and progression of hepatic fibrosis. Recent studies have shown that hepatic stellate cells, endothelin, cytokines and prostacyclin play crucial roles in this pathology. Prostacyclin exerts vasorelaxant, antioxidant and antifibrotic properties that prevent the development of fibrosis and cirrhosis in liver diseases. In this editorial, the authors discuss some of the molecular and cellular mechanisms involved in the initiation and progression of liver fibrosis and the role played by prostacyclin in counteracting it. At the moment, however, only limited information is available from clinical studies demonstrating the effectiveness of prostacyclin in liver diseases and this makes it difficult to draw any conclusions; further efforts are necessary to verify whether prostacyclin, alone or in combination with other drugs, may be a valid therapeutic option in liver diseases.
Collapse
|