1
|
Hosseini I, Mac Gabhann F. APOBEC3G-Augmented Stem Cell Therapy to Modulate HIV Replication: A Computational Study. PLoS One 2013; 8:e63984. [PMID: 23724012 PMCID: PMC3661658 DOI: 10.1371/journal.pone.0063984] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 04/10/2013] [Indexed: 11/19/2022] Open
Abstract
The interplay between the innate immune system restriction factor APOBEC3G and the HIV protein Vif is a key host-retrovirus interaction. APOBEC3G can counteract HIV infection in at least two ways: by inducing lethal mutations on the viral cDNA; and by blocking steps in reverse transcription and viral integration into the host genome. HIV-Vif blocks these antiviral functions of APOBEC3G by impeding its encapsulation. Nonetheless, it has been shown that overexpression of APOBEC3G, or interfering with APOBEC3G-Vif binding, can efficiently block in vitro HIV replication. Some clinical studies have also suggested that high levels of APOBEC3G expression in HIV patients are correlated with increased CD4+ T cell count and low levels of viral load; however, other studies have reported contradictory results and challenged this observation. Stem cell therapy to replace a patient's immune cells with cells that are more HIV-resistant is a promising approach. Pre-implantation gene transfection of these stem cells can augment the HIV-resistance of progeny CD4+ T cells. As a protein, APOBEC3G has the advantage that it can be genetically encoded, while small molecules cannot. We have developed a mathematical model to quantitatively study the effects on in vivo HIV replication of therapeutic delivery of CD34+ stem cells transfected to overexpress APOBEC3G. Our model suggests that stem cell therapy resulting in a high fraction of APOBEC3G-overexpressing CD4+ T cells can effectively inhibit in vivo HIV replication. We extended our model to simulate the combination of APOBEC3G therapy with other biological activities, to estimate the likelihood of improved outcomes.
Collapse
Affiliation(s)
- Iraj Hosseini
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.
| | | |
Collapse
|
2
|
Hosseini I, Mac Gabhann F. Multi-scale modeling of HIV infection in vitro and APOBEC3G-based anti-retroviral therapy. PLoS Comput Biol 2012; 8:e1002371. [PMID: 22346743 PMCID: PMC3276540 DOI: 10.1371/journal.pcbi.1002371] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 12/20/2011] [Indexed: 11/19/2022] Open
Abstract
The human APOBEC3G is an innate restriction factor that, in the absence of Vif, restricts HIV-1 replication by inducing excessive deamination of cytidine residues in nascent reverse transcripts and inhibiting reverse transcription and integration. To shed light on impact of A3G-Vif interactions on HIV replication, we developed a multi-scale computational system consisting of intracellular (single-cell), cellular and extracellular (multicellular) events by using ordinary differential equations. The single-cell model describes molecular-level events within individual cells (such as production and degradation of host and viral proteins, and assembly and release of new virions), whereas the multicellular model describes the viral dynamics and multiple cycles of infection within a population of cells. We estimated the model parameters either directly from previously published experimental data or by running simulations to find the optimum values. We validated our integrated model by reproducing the results of in vitro T cell culture experiments. Crucially, both downstream effects of A3G (hypermutation and reduction of viral burst size) were necessary to replicate the experimental results in silico. We also used the model to study anti-HIV capability of several possible therapeutic strategies including: an antibody to Vif; upregulation of A3G; and mutated forms of A3G. According to our simulations, A3G with a mutated Vif binding site is predicted to be significantly more effective than other molecules at the same dose. Ultimately, we performed sensitivity analysis to identify important model parameters. The results showed that the timing of particle formation and virus release had the highest impacts on HIV replication. The model also predicted that the degradation of A3G by Vif is not a crucial step in HIV pathogenesis.
Collapse
Affiliation(s)
- Iraj Hosseini
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Feilim Mac Gabhann
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
3
|
Benedict KF, Mac Gabhann F, Amanfu RK, Chavali AK, Gianchandani EP, Glaw LS, Oberhardt MA, Thorne BC, Yang JH, Papin JA, Peirce SM, Saucerman JJ, Skalak TC. Systems analysis of small signaling modules relevant to eight human diseases. Ann Biomed Eng 2010; 39:621-35. [PMID: 21132372 PMCID: PMC3033523 DOI: 10.1007/s10439-010-0208-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 11/11/2010] [Indexed: 12/26/2022]
Abstract
Using eight newly generated models relevant to addiction, Alzheimer’s disease, cancer, diabetes, HIV, heart disease, malaria, and tuberculosis, we show that systems analysis of small (4–25 species), bounded protein signaling modules rapidly generates new quantitative knowledge from published experimental research. For example, our models show that tumor sclerosis complex (TSC) inhibitors may be more effective than the rapamycin (mTOR) inhibitors currently used to treat cancer, that HIV infection could be more effectively blocked by increasing production of the human innate immune response protein APOBEC3G, rather than targeting HIV’s viral infectivity factor (Vif), and how peroxisome proliferator-activated receptor alpha (PPARα) agonists used to treat dyslipidemia would most effectively stimulate PPARα signaling if drug design were to increase agonist nucleoplasmic concentration, as opposed to increasing agonist binding affinity for PPARα. Comparative analysis of system-level properties for all eight modules showed that a significantly higher proportion of concentration parameters fall in the top 15th percentile sensitivity ranking than binding affinity parameters. In infectious disease modules, host networks were significantly more sensitive to virulence factor concentration parameters compared to all other concentration parameters. This work supports the future use of this approach for informing the next generation of experimental roadmaps for known diseases.
Collapse
Affiliation(s)
- Kelly F. Benedict
- Department of Biomedical Engineering, University of Virginia, P.O. Box 800759, Health System, Charlottesville, VA 22908 USA
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering, University of Virginia, P.O. Box 800759, Health System, Charlottesville, VA 22908 USA
| | - Robert K. Amanfu
- Department of Biomedical Engineering, University of Virginia, P.O. Box 800759, Health System, Charlottesville, VA 22908 USA
| | - Arvind K. Chavali
- Department of Biomedical Engineering, University of Virginia, P.O. Box 800759, Health System, Charlottesville, VA 22908 USA
| | - Erwin P. Gianchandani
- Department of Biomedical Engineering, University of Virginia, P.O. Box 800759, Health System, Charlottesville, VA 22908 USA
| | - Lydia S. Glaw
- Department of Biomedical Engineering, University of Virginia, P.O. Box 800759, Health System, Charlottesville, VA 22908 USA
| | - Matthew A. Oberhardt
- Department of Biomedical Engineering, University of Virginia, P.O. Box 800759, Health System, Charlottesville, VA 22908 USA
| | - Bryan C. Thorne
- Department of Biomedical Engineering, University of Virginia, P.O. Box 800759, Health System, Charlottesville, VA 22908 USA
| | - Jason H. Yang
- Department of Biomedical Engineering, University of Virginia, P.O. Box 800759, Health System, Charlottesville, VA 22908 USA
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, P.O. Box 800759, Health System, Charlottesville, VA 22908 USA
| | - Shayn M. Peirce
- Department of Biomedical Engineering, University of Virginia, P.O. Box 800759, Health System, Charlottesville, VA 22908 USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, P.O. Box 800759, Health System, Charlottesville, VA 22908 USA
| | - Thomas C. Skalak
- Department of Biomedical Engineering, University of Virginia, P.O. Box 400896, One Boar’s Head Pointe, Charlottesville, VA 22904 USA
| |
Collapse
|
4
|
Towards Inhibition of Vif-APOBEC3G Interaction: Which Protein to Target? Adv Virol 2010; 2010:649315. [PMID: 22347227 PMCID: PMC3275931 DOI: 10.1155/2010/649315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 07/31/2010] [Accepted: 08/14/2010] [Indexed: 11/17/2022] Open
Abstract
APOBEC proteins appeared in the cellular battle against HIV-1 as part of intrinsic cellular immunity. The antiretroviral activity of some of these proteins is overtaken by the action of HIV-1 Viral Infectivity Factor (Vif) protein. Since the discovery of APOBEC3G (A3G) as an antiviral factor, many advances have been made to understand its mechanism of action in the cell and how Vif acts in order to counteract its activity. The mainstream concept is that Vif overcomes the innate antiviral activity of A3G by direct protein binding and promoting its degradation via the cellular ubiquitin/proteasomal pathway. Vif may also inhibit A3G through mechanisms independent of proteasomal degradation. Binding of Vif to A3G is essential for its degradation since disruption of this interaction is predicted to stimulate intracellular antiviral immunity. In this paper we will discuss the different binding partners between both proteins as one of the major challenges for the development of new antiviral drugs.
Collapse
|
5
|
Piantadosi A, Humes D, Chohan B, McClelland RS, Overbaugh J. Analysis of the percentage of human immunodeficiency virus type 1 sequences that are hypermutated and markers of disease progression in a longitudinal cohort, including one individual with a partially defective Vif. J Virol 2009; 83:7805-14. [PMID: 19494014 PMCID: PMC2715790 DOI: 10.1128/jvi.00280-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 05/21/2009] [Indexed: 11/20/2022] Open
Abstract
Hypermutation, the introduction of excessive G-to-A substitutions by host proteins in the APOBEC family, can impair replication of the human immunodeficiency virus (HIV). Because hypermutation represents a potential antiviral strategy, it is important to determine whether greater hypermutation is associated with slower disease progression in natural infection. We examined the level of HIV-1 hypermutation among 28 antiretroviral-naive Kenyan women at two times during infection. By examining single-copy gag sequences from proviral DNA, hypermutation was detected in 16 of 28 individuals. Among individuals with any hypermutation, a median of 15% of gag sequences were hypermutated (range, 5 to 43%). However, there was no association between the level of gag hypermutation and the viral load or CD4 count. Thus, we observed no overall relationship between hypermutation and markers of disease progression among individuals with low to moderate levels of hypermutation. In addition, one individual sustained a typical viral load despite having a high level of hypermutation. This individual had 43% of gag sequences hypermutated and harbored a partially defective Vif, which was found to permit hypermutation in a peripheral blood mononuclear cell culture. Overall, our results suggest that a potential antiviral therapy based on hypermutation may need to achieve a substantially higher level of hypermutation than is naturally seen in most individuals to impair virus replication and subsequent disease progression.
Collapse
|
6
|
Pillai SK, Wong JK, Barbour JD. Turning up the volume on mutational pressure: is more of a good thing always better? (A case study of HIV-1 Vif and APOBEC3). Retrovirology 2008; 5:26. [PMID: 18339206 PMCID: PMC2323022 DOI: 10.1186/1742-4690-5-26] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Accepted: 03/13/2008] [Indexed: 11/10/2022] Open
Abstract
APOBEC3G and APOBEC3F are human cytidine deaminases that serve as innate antiviral defense mechanisms primarily by introducing C-to-U changes in the minus strand DNA of retroviruses during replication (resulting in G-to-A mutations in the genomic sense strand sequence). The HIV-1 Vif protein counteracts this defense by promoting the proteolytic degradation of APOBEC3G and APOBEC3F in the host cell. In the absence of Vif expression, APOBEC3 is incorporated into HIV-1 virions and the viral genome undergoes extensive G-to-A mutation, or "hypermutation", typically rendering it non-viable within a single replicative cycle. Consequently, Vif is emerging as an attractive target for pharmacological intervention and therapeutic vaccination. Although a highly effective Vif inhibitor may result in mutational meltdown of the viral quasispecies, a partially effective Vif inhibitor may accelerate the evolution of drug resistance and immune escape due to the codon structure and recombinogenic nature of HIV-1. This hypothesis rests on two principal assumptions which are supported by experimental evidence: a) there is a dose response between intracellular APOBEC concentration and degree of viral hypermutation, and, b) HIV-1 can tolerate an elevated mutation rate, and a true error or extinction threshold is as yet undetermined. Rigorous testing of this hypothesis will have timely and critical implications for the therapeutic management of HIV/AIDS, and delve into the complexities underlying the induction of lethal mutagenesis in a viral pathogen.
Collapse
Affiliation(s)
- Satish K Pillai
- Department of Medicine, University of California, San Francisco, CA 94121, USA.
| | | | | |
Collapse
|
7
|
Avila-Ríos S, Reyes-Terán G, Espinosa E. Cornering HIV: taking advantage of interactions between selective pressures. Med Hypotheses 2007; 69:422-31. [PMID: 17280799 DOI: 10.1016/j.mehy.2006.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 12/03/2006] [Indexed: 10/23/2022]
Abstract
Adaptive immune responses, cellular restrictive factors and antiretroviral drugs, target multiple regions in the Human Immunodeficiency Virus (HIV) proteome, imposing diverse pressures to viral adaptation. However, the virus is remarkably able to escape from these pressures as mutations are selected. In many cases these mutants have diminished viral fitness. We propose that the concerted action of strategically placed agents and pressures in a host can limit HIV variation capacity while inhibiting its replication. These mechanisms would corner HIV by selecting conflicting adaptive mutations, each having a disadvantage in face of another selective pressure. This would keep the virus unable to efficiently escape the suppressive effects of selective pressures. Cornering between antiretroviral drugs and cytotoxic T lymphocytes may explain recent observations, and can be predicted and used in viral control strategies. This idea can be extended to numerous other identified sites in the viral genome that confer selective pressures. We describe these other sites and how they could be induced to interact in prophylactic or therapeutic cornering strategies, as well as their experimental verifications. Cornering would control HIV infection better than current strategies, focused on few, albeit important, sites in the HIV genome.
Collapse
Affiliation(s)
- S Avila-Ríos
- Center for Infectious Diseases Research, National Institute of Respiratory Diseases, Calzada de Tlalpan 4502, CP 14080 Mexico City, Mexico
| | | | | |
Collapse
|