1
|
Rad EY, Saboori S, Tammam J, Thondre PS, Coe S. The effect of niacin on inflammatory markers and adipokines: a systematic review and meta-analysis of interventional studies. Eur J Nutr 2024; 63:2011-2024. [PMID: 38761279 PMCID: PMC11377601 DOI: 10.1007/s00394-024-03425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
PURPOSE Niacin (nicotinic acid), known for its lipid-modifying effects, has been explored for its potential anti-inflammatory properties and potential to affect adipokines secretion from adipose tissue. The aim of this systematic review and meta-analysis was to assess the effects of niacin on inflammatory markers and adipokines. METHODS A comprehensive search was conducted across five databases: PubMed, Scopus, Cochrane Library, Embase, and ISI Web of Science. Randomized controlled trials exploring the effects of niacin on inflammatory markers (CRP, IL-6, TNF-α) and adipokines (Adiponectin, Leptin) were included. Pooled effect sizes were analysed using a random-effects model, and additional procedures including subgroup analyses, sensitivity analysis and dose-response analysis were also performed. RESULTS From an initial 1279 articles, fifteen randomized controlled trials (RCTs) were included. Niacin administration demonstrated a notable reduction in CRP levels (SMD: -0.88, 95% CI: -1.46 to -0.30, p = 0.003). Subgroup analyses confirmed CRP reductions in trials with intervention durations ≤ 24 weeks, doses ≤ 1000 mg/day, and elevated baseline CRP levels (> 3 mg/l). The meta-analysis of IL-6 and TNF-α revealed significant TNF-α reductions, while IL-6 reduction did not reach statistical significance. Niacin administration also substantially elevated Adiponectin (SMD: 3.52, 95% CI: 0.95 to 6.1, p = 0.007) and Leptin (SMD: 1.90, 95% CI: 0.03 to 3.77, p = 0.04) levels. CONCLUSION Niacin treatment is associated with significant reductions in CRP and TNF-α levels, suggesting potential anti-inflammatory effects. Additionally, niacin positively influences adipokines, increasing Adiponectin and Leptin levels. These findings provide insights for future research and clinical applications targeting inflammation and metabolic dysregulation.
Collapse
Affiliation(s)
- Esmaeil Yousefi Rad
- Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford, OX3 0BP, UK
| | - Somayeh Saboori
- Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford, OX3 0BP, UK
| | - Jonathan Tammam
- Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford, OX3 0BP, UK
| | - Pariyarath Sangeetha Thondre
- Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford, OX3 0BP, UK
| | - Shelly Coe
- Oxford Brookes Centre for Nutrition and Health (OxBCNH), Department of Sport, Health Sciences and Social Work, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford, OX3 0BP, UK.
| |
Collapse
|
2
|
DAYI T, HOCA M. Is Niacine a Potential Agent to Decrease Dyslipidemia Risk? İSTANBUL GELIŞIM ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2022. [DOI: 10.38079/igusabder.1112685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cardiovascular diseases are the most common non-communicable diseases with the highest prevalence and mortality rate in the all around the world. There are some risk factors -such as modifiable and non-modifiable- which are effective on the development of these diseases. Modifiable risk factors are closely related to dyslipidemia, which forms the basis of cardiovascular diseases. Dyslipidemia is characterized by high triacylglycerol (TAG) and free fatty acids, decreased high density lipoprotein (HDL) level and function, increased low density lipoprotein (LDL) level and apolipoprotein B (Apo B) production. There is a relation between dyslipidemia with nutritional and physical activity behaviors. In particular, adherence to the Mediterranean diet and lifestyle behaviors instead of the Western diet can potentially decrease dyslipidemia risk. On the other hand, some of micronutrients such as niacin can potentially decrease dyslipidemia risk as a nutritional supplement. Niacin -which is a water-soluble, B group vitamin- can potentially decrease TAG, free fatty acids, Apo B, very low density lipoprotein (VLDL) and LDL levels and increase HDL and apolipoprotein A (Apo A) levels in plasma. Due to these potential beneficial effects, niacin acts a pharmacological agent to decrease both of dyslipidemia risk and symptoms. However, niacin is used more than tolerable upper intake level (35 mg/day) to show these potential effects (1-3 g). This situation may cause to ‘niacin flush’ symptom. In addition, there is a need for the studies which aim to determine the negative effects of high dose niacin intake on human’s health in long-term. In this review article, potential effects of the niacin on dyslipidemia are examined within the current literature.
Collapse
|
3
|
Goswami KK, Bose A, Baral R. Macrophages in tumor: An inflammatory perspective. Clin Immunol 2021; 232:108875. [PMID: 34740843 DOI: 10.1016/j.clim.2021.108875] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 01/08/2023]
Abstract
Inflammation is a part of carefully co-ordinated healing immune exercise to eliminate injurious stimuli. However, in substantial number of cancer types, it contributes in shaping up of robust tumor microenvironment (TME). Solid TME promotes infiltration of tumor associated macrophages (TAMs) that contributes to cancer promotion. TAMs are functionally heterogeneous and display an extraordinary degree of plasticity, which allow 'Switching' of macrophages into an 'M2', phenotype, linked with immunosuppression, advancement of tumor angiogenesis with metastatic consequences. In contrary to the classical M1 macrophages, these M2 TAMs are high-IL-10, TGF-β secreting-'anti-inflammatory'. In this review, we will discuss the modes of infiltration and switching of TAMs into M2 anti-inflammatory state in the TME to promote immunosuppression and inflammation-driven cancer.
Collapse
Affiliation(s)
- Kuntal Kanti Goswami
- Department of Microbiology, Asutosh College, 92, S. P. Mukherjee Road, Kolkata 700026, India.
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| |
Collapse
|
4
|
|
5
|
Jonnalagadda VG, Char HP, Samudrala PK. Re: Cohen et al.:Impact of Statin Intake on Kidney Stone Formation (Urology 2018). Urology 2018; 118:244. [PMID: 29852191 DOI: 10.1016/j.urology.2018.02.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 02/15/2018] [Accepted: 02/17/2018] [Indexed: 10/14/2022]
Affiliation(s)
- Venu Gopal Jonnalagadda
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, C/O NETES Institute of Technology & Science, Mirza, Assam, India
| | | | - Pavan Kumar Samudrala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, C/O NETES Institute of Technology & Science, Mirza, Assam, India
| |
Collapse
|
6
|
Bühler S, Frahm J, Liermann W, Tienken R, Kersten S, Meyer U, Huber K, Dänicke S. Effects of energy supply and nicotinic acid supplementation on phagocytosis and ROS production of blood immune cells of periparturient primi- and pluriparous dairy cows. Res Vet Sci 2018; 116:62-71. [DOI: 10.1016/j.rvsc.2017.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/31/2017] [Accepted: 09/09/2017] [Indexed: 01/02/2023]
|
7
|
Li J, Kong D, Wang Q, Wu W, Tang Y, Bai T, Guo L, Wei L, Zhang Q, Yu Y, Qian Y, Zuo S, Liu G, Liu Q, Wu S, Zang Y, Zhu Q, Jia D, Wang Y, Yao W, Ji Y, Yin H, Nakamura M, Lazarus M, Breyer RM, Wang L, Yu Y. Niacin ameliorates ulcerative colitis via prostaglandin D 2-mediated D prostanoid receptor 1 activation. EMBO Mol Med 2017; 9:571-588. [PMID: 28341703 PMCID: PMC5412792 DOI: 10.15252/emmm.201606987] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Niacin, as an antidyslipidemic drug, elicits a strong flushing response by release of prostaglandin (PG) D2. However, whether niacin is beneficial for inflammatory bowel disease (IBD) remains unclear. Here, we observed niacin administration‐enhanced PGD2 production in colon tissues in dextran sulfate sodium (DSS)‐challenged mice, and protected mice against DSS or 2,4,6‐trinitrobenzene sulfonic acid (TNBS)‐induced colitis in D prostanoid receptor 1 (DP1)‐dependent manner. Specific ablation of DP1 receptor in vascular endothelial cells, colonic epithelium, and myeloid cells augmented DSS/TNBS‐induced colitis in mice through increasing vascular permeability, promoting apoptosis of epithelial cells, and stimulating pro‐inflammatory cytokine secretion of macrophages, respectively. Niacin treatment improved vascular permeability, reduced apoptotic epithelial cells, promoted epithelial cell update, and suppressed pro‐inflammatory gene expression of macrophages. Moreover, treatment with niacin‐containing retention enema effectively promoted UC clinical remission and mucosal healing in patients with moderately active disease. Therefore, niacin displayed multiple beneficial effects on DSS/TNBS‐induced colitis in mice by activation of PGD2/DP1 axis. The potential efficacy of niacin in management of IBD warrants further investigation.
Collapse
Affiliation(s)
- Juanjuan Li
- Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Deping Kong
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qi Wang
- Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wu
- Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanping Tang
- Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Bai
- Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Guo
- Department of Breast Surgery, Breast Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lumin Wei
- Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qianqian Zhang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Yu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuting Qian
- Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengkai Zuo
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guizhu Liu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qian Liu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Sheng Wu
- Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zang
- Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Zhu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Daile Jia
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuanyang Wang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Weiyan Yao
- Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Ji
- The Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, Nanjing Jiangsu, China
| | - Huiyong Yin
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Masataka Nakamura
- Human Gene Sciences Center, Tokyo Medical and Dental University, Bunkyo-ku Tokyo, Japan
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba City Ibaraki, Japan
| | - Richard M Breyer
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lifu Wang
- Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Yu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China .,Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
8
|
Bühler S, Frahm J, Tienken R, Kersten S, Meyer U, Huber K, Dänicke S. Effects of energy supply and nicotinic acid supplementation on serum anti-oxidative capacity and on expression of oxidative stress-related genes in blood leucocytes of periparturient primi- and pluriparous dairy cows. J Anim Physiol Anim Nutr (Berl) 2017; 102:e87-e98. [DOI: 10.1111/jpn.12705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/02/2017] [Indexed: 12/28/2022]
Affiliation(s)
- S. Bühler
- Institute of Animal Nutrition; Friedrich-Loeffler-Institute (FLI); Federal Research Institute for Animal Health; Braunschweig Germany
| | - J. Frahm
- Institute of Animal Nutrition; Friedrich-Loeffler-Institute (FLI); Federal Research Institute for Animal Health; Braunschweig Germany
| | - R. Tienken
- Institute of Animal Nutrition; Friedrich-Loeffler-Institute (FLI); Federal Research Institute for Animal Health; Braunschweig Germany
| | - S. Kersten
- Institute of Animal Nutrition; Friedrich-Loeffler-Institute (FLI); Federal Research Institute for Animal Health; Braunschweig Germany
| | - U. Meyer
- Institute of Animal Nutrition; Friedrich-Loeffler-Institute (FLI); Federal Research Institute for Animal Health; Braunschweig Germany
| | - K. Huber
- Institute of Animal Sciences; University of Hohenheim; Stuttgart Germany
| | - S. Dänicke
- Institute of Animal Nutrition; Friedrich-Loeffler-Institute (FLI); Federal Research Institute for Animal Health; Braunschweig Germany
| |
Collapse
|
9
|
Abstract
On the basis of studies that extend back to the early 1900s, regression and stabilization of atherosclerosis in humans has progressed from being a concept to one that is achievable. Successful attempts at regression generally applied robust measures to improve plasma lipoprotein profiles. Possible mechanisms responsible for lesion shrinkage include decreased retention of atherogenic apolipoprotein B within the arterial wall, efflux of cholesterol and other toxic lipids from plaques, emigration of lesional foam cells out of the arterial wall, and influx of healthy phagocytes that remove necrotic debris as well as other components of the plaque. Currently available clinical agents, however, still fail to stop most cardiovascular events. For years, HDL has been considered the 'good cholesterol.' Clinical intervention studies to causally link plasma HDL-C levels to decreased progression or to the regression of atherosclerotic plaques are relatively few because of the lack of therapeutic agents that can selectively and potently increase HDL-C. The negative results of studies that were carried out have led to uncertainty as to the role that HDL plays in atherosclerosis. It is becoming clearer, however, that HDL function rather than quantity is most crucial and, therefore, discovery of agents that enhance the quality of HDL should be the goal.
Collapse
|
10
|
Bühler S, Frahm J, Tienken R, Kersten S, Meyer U, Huber K, Dänicke S. Influence of energy level and nicotinic acid supplementation on apoptosis of blood leukocytes of periparturient dairy cows. Vet Immunol Immunopathol 2016; 179:36-45. [DOI: 10.1016/j.vetimm.2016.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 01/21/2023]
|
11
|
Bahaeddin Z, Yans A, Khodagholi F, Hajimehdipoor H, Sahranavard S. Hazelnut and neuroprotection: Improved memory and hindered anxiety in response to intra-hippocampal Aβ injection. Nutr Neurosci 2016; 20:317-326. [PMID: 26808646 DOI: 10.1080/1028415x.2015.1126954] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Corylus avellana L. (hazelnut) is known to be a delicious and nutritious food. This study was carried out to evaluate the use of hazelnut as a therapy for memory impairment because in Iranian traditional medicine, it is recommended for those suffering from a particular type of dementia, with symptoms of Alzheimer's disease. METHODS In this study, rats were fed with hazelnut kernel [(without skin) 800 mg/kg/day] during 1 week before stereotaxic surgery to 24 hours before behavioral testing (in general, for 16 consecutive days) and the effect of hazelnut eating on memory, anxiety, neuroinflammation and apoptosis was assessed in the amyloid beta-injected rat. RESULTS The results of this study showed that feeding with hazelnut improved memory, (which was examined by using Y-maze test and shuttle box apparatus), and reduced anxiety-related behavior, that was evaluated using elevated plus maze. Also, western blotting analysis of cyclooxygenase-2, interleukin-1β, tumor necrosis factor-α, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein, and caspase-3 showed that hazelnut has an ameliorating effect on the neuroinflammation and apoptosis caused by Aβ. DISCUSSION These findings suggest that hazelnut, as a dietary supplement, improves healthy aging and could be a beneficial diet for the treatment of AD.
Collapse
Affiliation(s)
- Zahra Bahaeddin
- a Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy , School of Traditional Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Asal Yans
- b Neuroscience Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Fariba Khodagholi
- b Neuroscience Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran.,c NeuroBiology Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Homa Hajimehdipoor
- a Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy , School of Traditional Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Shamim Sahranavard
- a Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy , School of Traditional Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
12
|
Phillips MD, Rola KS, Christensen KV, Ross JW, Mitchell JB. Preexercise Energy Drink Consumption Does Not Improve Endurance Cycling Performance But Increases Lactate, Monocyte, and Interleukin-6 Response. J Strength Cond Res 2014; 28:1443-53. [DOI: 10.1519/jsc.0000000000000275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Feig JE. Regression of atherosclerosis: insights from animal and clinical studies. Ann Glob Health 2013; 80:13-23. [PMID: 24751561 DOI: 10.1016/j.aogh.2013.12.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/25/2014] [Accepted: 03/15/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Based on studies that date back to the 1920s, regression and stabilization of atherosclerosis in humans has gone from just a dream to one that is achievable. Review of the literature indicates that the successful attempts at regression generally applied robust measures to improve plasma lipoprotein profiles. Examples include extensive lowering of plasma concentrations of atherogenic apolipoprotein B and enhancement of reverse cholesterol transport from atheromata to the liver. FINDINGS Possible mechanisms responsible for lesion shrinkage include decreased retention of atherogenic apolipoprotein B within the arterial wall, efflux of cholesterol and other toxic lipids from plaques, emigration of lesional foam cells out of the arterial wall, and influx of healthy phagocytes that remove necrotic debris as well as other components of the plaque. This review will highlight the role key players such as LXR, HDL and CCR7 have in mediating regression. CONCLUSION Although much progress has been made, there are many unanswered questions. There is, therefore, a clear need for preclinical and clinical testing of new agents expected to facilitate atherosclerosis regression with the hope that additional mechanistic insights will allow further progress.
Collapse
Affiliation(s)
- Jonathan E Feig
- Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai Medical Center, New York, NY.
| |
Collapse
|
14
|
Abstract
Niacin (nicotinic acid) has been used for decades as a lipid-lowering drug. The clinical use of niacin to treat dyslipidemic conditions is limited by its side effects. Niacin, along with fibrates, are the only approved drugs which elevate high density lipoprotein cholesterol (HDLc) along with its effects on low density lipoprotein cholesterol (LDLc) and triglycerides. Whether niacin has a beneficial role in lowering cardiovascular risk on the background of well-controlled LDLc has not been established. In fact, it remains unclear whether niacin, either in the setting of well-controlled LDLc or in combination with other lipid-lowering agents, confers any therapeutic benefit and if so, by which mechanism. The results of recent trials reject the hypothesis that simply raising HDLc is cardioprotective. However, in the case of the clinical trials, structural limitations of trial design complicate their interpretation. This is also true of the most recent Heart Protection Study 2-Treatment of HDLc to Reduce the Incidence of Vascular Events (HPS2-THRIVE) trial in which niacin is combined with an antagonist of the D prostanoid (DP) receptor. Human genetic studies have also questioned the relationship between cardiovascular benefit and HDLc. It remains to be determined whether niacin may have clinical utility in particular subgroups, such as statin intolerant patients with hypercholesterolemia or those who cannot achieve a sufficient reduction in LDLc. It also is unclear whether a potentially beneficial effect of niacin is confounded by DP antagonism in HPS2-THRIVE.
Collapse
Affiliation(s)
- Wen-Liang Song
- Institute for Translational Medicine and Therapeutics, Departments of Pharmacology and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | |
Collapse
|
15
|
Mandrika I, Petrovska R, Klovins J. Evidence for constitutive dimerization of niacin receptor subtypes. Biochem Biophys Res Commun 2010; 395:281-7. [PMID: 20380810 DOI: 10.1016/j.bbrc.2010.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 04/02/2010] [Indexed: 11/17/2022]
Abstract
The recently deorphanized niacin receptor subtypes NIACR1 (GPR109A) and NIACR2 (GPR109B) play an essential role in the regulation of metabolic processes and immune reactions. Both receptors belong to the G-protein-coupled receptor (GPCR) family, whose members have traditionally been treated as monomeric entities, but now appear to exist and function as both homodimers and heterodimers. In this study, a close physical interaction is shown between the highly homologous niacin receptor subtypes, NIACR1 and NIACR2, using bioluminescence resonance energy transfer (BRET(2)) in living cells. The extent of homo- and hetero-dimerization of the niacin receptors did not vary after activation of the receptors with selective agonists, indicating that the dimerization state of NIACR1 and NIACR2 is not regulated by ligand binding. Moreover, detection of niacin receptor dimers in both plasma membrane- and endoplasmic reticulum-enriched fractions suggests that they are formed early in the biosynthetic pathway. Taken together, these results demonstrate that niacin receptor dimerization is a constitutive process occurring early during biosynthesis.
Collapse
Affiliation(s)
- Ilona Mandrika
- Latvian Biomedical Research and Study Centre, Riga, LV 1067, Latvia.
| | | | | |
Collapse
|
16
|
Joshi PH, Jacobson TA. Therapeutic Options to Further Lower C-Reactive Protein for Patients on Statin Treatment. Curr Atheroscler Rep 2010; 12:34-42. [DOI: 10.1007/s11883-009-0075-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Friedewald VE, Cather JC, Gelfand JM, Gordon KB, Gibbons GH, Grundy SM, Jarratt MT, Krueger JG, Ridker PM, Stone N, Roberts WC. AJC editor's consensus: psoriasis and coronary artery disease. Am J Cardiol 2008; 102:1631-43. [PMID: 19064017 DOI: 10.1016/j.amjcard.2008.10.004] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 10/29/2008] [Indexed: 11/30/2022]
Affiliation(s)
- Vincent E Friedewald
- Department of Internal Medicine, The University of Texas Medical School at Houston, Houston, Texas, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Athyros VG, Tziomalos K, Mikhailidis DP, Pagourelias ED, Kakafika AI, Skaperdas A, Hatzitolios A, Karagiannis A. Do we need a statin-nicotinic acid-aspirin mini-polypill to treat combined hyperlipidaemia? Expert Opin Pharmacother 2007; 8:2267-77. [DOI: 10.1517/14656566.8.14.2267] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Vaccari CS, Hammoud RA, Nagamia SH, Ramasamy K, Dollar AL, Khan BV. Revisiting niacin: reviewing the evidence. J Clin Lipidol 2007; 1:248-55. [DOI: 10.1016/j.jacl.2007.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2007] [Revised: 06/23/2007] [Accepted: 07/22/2007] [Indexed: 11/24/2022]
|