1
|
Lester GM, Wilson WJ, Timmer BHB, Ladwa RM. Audiological ototoxicity monitoring guidelines: a review of current evidence and appraisal of quality using the AGREE II tool. Int J Audiol 2024; 63:747-752. [PMID: 38062855 DOI: 10.1080/14992027.2023.2278018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 10/02/2024]
Abstract
OBJECTIVE The effectiveness of audiological monitoring for detecting early hearing changes in patients receiving ototoxic medication could be limited by the lack of adequate audiological ototoxicity monitoring (OtoM) guidelines. This study aimed to evaluate existing OtoM guidelines using the AGREE II tool for guideline evaluation. DESIGN Guideline Review. STUDY SAMPLE Three audiological OtoM guidelines. RESULTS An online search identified three audiological OtoM guidelines published by the American Speech-Language and Hearing Association (ASHA), the American Academy of Audiology (AAA) and the Health Professionals Council of South Africa (HPCSA). Evaluation using the Appraisal of Guidelines for Research and Evaluation (AGREE) II tool found the HPCSA audiological OtoM guideline scored higher than the ASHA and AAA guidelines in five of the six tool domains. All guidelines received average domain ratings of less than 50% with each reviewer recommending all three guidelines for use following modification. CONCLUSION The findings of this study could partly explain the poor uptake of audiological OtoM practices internationally, further investigation is needed to identify the specific factors limiting the implementation of audiological OtoM in clinical practice.
Collapse
Affiliation(s)
- Georgia M Lester
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | - Wayne J Wilson
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | - Barbra H B Timmer
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
- Sonova AG, Staefa, Switzerland
| | - Rahul M Ladwa
- Princess Alexandra Hospital, Metro South Hospital and Health Service, Queensland Health, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
2
|
Identification of Target Proteins Involved in Cochlear Hair Cell Progenitor Cytotoxicity following Gentamicin Exposure. J Clin Med 2022; 11:jcm11144072. [PMID: 35887836 PMCID: PMC9319054 DOI: 10.3390/jcm11144072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Given the non-labile, terminal differentiation of inner-ear sensory cells, preserving their function is critical since sensory cell damage results in irreversible hearing loss. Gentamicin-induced cytotoxicity is one of the major causes of sensory cell damage and consequent sensorineural hearing loss. However, the precise molecular mechanisms and target proteins involved in ototoxicity are still unknown. The objective of the present study was to identify target proteins involved in gentamicin-induced cytotoxicity to better characterize the molecular pathways involved in sensory cell damage following ototoxic drug administration using House Ear Institute-Organ of Corti 1 (HEI-OC1) cells and high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). We identified several unique proteins involved in gentamicin-induced cytotoxicity, expression of which were further confirmed using confocal microscopy. Further investigation of these pathways can inform the design and discovery of novel treatment modalities to prevent sensory cell damage and preserve their function.
Collapse
|
3
|
Biocompatibility of Bone Marrow-Derived Mesenchymal Stem Cells in the Rat Inner Ear following Trans-Tympanic Administration. J Clin Med 2020; 9:jcm9061711. [PMID: 32498432 PMCID: PMC7355977 DOI: 10.3390/jcm9061711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Recent advancements in stem cell therapy have led to an increased interest within the auditory community in exploring the potential of mesenchymal stem cells (MSCs) in the treatment of inner ear disorders. However, the biocompatibility of MSCs with the inner ear, especially when delivered non-surgically and in the immunocompetent cochlea, is not completely understood. In this study, we determined the effect of intratympanic administration of rodent bone marrow MSCs (BM-MSCs) on the inner ear in an immunocompetent rat model. The administration of MSCs did not lead to the generation of any oxidative stress in the rat inner ear. There was no significant production of proinflammatory cytokines, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-12, due to BM-MSCs administration into the rat cochlea. BM-MSCs do not activate caspase 3 pathway, which plays a central role in sensory cell damage. Additionally, transferase dUTP nick end labeling (TUNEL) staining determined that there was no significant cell death associated with the administration of BM-MSCs. The results of the present study suggest that trans-tympanic administration of BM-MSCs does not result in oxidative stress or inflammatory response in the immunocompetent rat cochlea.
Collapse
|
4
|
Flores-López LZ, Espinoza-Gómez H, Somanathan R. Silver nanoparticles: Electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review. J Appl Toxicol 2018; 39:16-26. [PMID: 29943411 DOI: 10.1002/jat.3654] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 01/15/2023]
Abstract
The industry of nanotechnology has had a rapid development in the last decades. In particular, silver nanoparticles (AgNPs) have unique properties so they can be used in different industrial applications, mainly in areas such as electronics, environment, medicine, biosensors and biotechnology; as well as household and healthcare-related products, like cosmetics, due to their antimicrobial properties. These beneficial effects are also offset by the higher chemical reactivity of these NPs due to their surface area to volume ratio, leading to the increased formation of reactive oxygen species (ROS) within cells. AgNPs, however, have a dark side: they increase the formation of reactive oxygen species (ROS). With increased human exposure to AgNPs, the risk and safety standards have attracted much attention. This review highlights the beneficial and toxicological effects of AgNPs in terms of cytotoxicity and genotoxicity.
Collapse
Affiliation(s)
- Lucía Z Flores-López
- Centro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, Blvd. Alberto Limón Padilla S/N, Mesa de Otay, CP 22500, Tijuana, BC, Mexico
| | - Heriberto Espinoza-Gómez
- Universidad Autónoma de Baja California, Facultad de Ciencias Químicas e Ingeniería. Calzada Universidad 14418 Parque Industrial Internacional, CP 22390, Tijuana, BC, Mexico
| | - Ratnasamy Somanathan
- Centro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, Blvd. Alberto Limón Padilla S/N, Mesa de Otay, CP 22500, Tijuana, BC, Mexico
| |
Collapse
|
5
|
Prevalence of ototoxic medication use among older adults in Beaver Dam, Wisconsin. J Am Assoc Nurse Pract 2018; 30:27-34. [PMID: 29757919 DOI: 10.1097/jxx.0000000000000011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND PURPOSE Drug-related ototoxicity may exacerbate presbycusis (age-related hearing loss); yet, few data are available on the prevalence of ototoxic medication use by older adults. The purposes of this study were to assess the impact of aging and ototoxicity on hearing loss, the prevalence of ototoxic medication use, and select characteristics associated with ototoxic medication use among older adults. METHODS Cross-sectional analyses were conducted using select variables extracted from the baseline and 10-year follow-up assessments of the two population-based epidemiological studies to compare two points in time. RESULTS Ninety-one percent of the sample was taking a medication reported to be ototoxic. Nonsteroidal anti-inflammatory drugs were the most commonly used (75.2%), followed by acetaminophen (39.9%) and diuretics (35.6%). Hypertension, diabetes, cardiovascular disease, and history of smoking were associated with ototoxic medication use. Participants with hearing loss were taking a significantly greater number of ototoxic medications than those without hearing loss. CONCLUSION Known ototoxic medications are widely used. Any subsequent ototoxicity may interact with age changes and a more severe hearing loss than that associated with only age. IMPLICATIONS FOR PRACTICE Nurse practitioners should inform older adults about the possibility of drug-related ototoxicity and monitor hearing acuity of all older adults taking known ototoxic medications.
Collapse
|
6
|
Tavanai E, Mohammadkhani G, Farahani S, Jalaie S. Protective Effects of Silymarin Against Age-Related Hearing Loss in an Aging Rat Model. Indian J Otolaryngol Head Neck Surg 2018; 71:1248-1257. [PMID: 31750160 DOI: 10.1007/s12070-018-1294-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 03/07/2018] [Indexed: 01/21/2023] Open
Abstract
Age-related hearing loss (ARHL) is one of the most common chronic degenerative disorders. Several studies have indicated that supplementation with some antioxidants can slow down the progression of ARHL. Despite several lines of evidence about the potent antioxidant and anti-aging effects of silymarin, its protective effect against ARHL has not evaluated yet. The aim of the current study was to investigate the effects of silymarin in prevention of ARHL in a d-Galactose-induced aging rat model for the first time. 45 male wistar rats aged 3-month old were divided into 5 groups: group 1, 2 and 3 received 500 mg/kg/day d-Gal plus 100, 200 and 300 mg/kg/day silymarin respectively for 8 weeks, placebo group received 500 mg/kg/day d-Gal plus propylene glycol as placebo, and control group received normal saline during this period of time. Auditory brainstem responses were measured at several frequencies (4, 6, 8, 12 and 16 kHz) before and after the intervention. Placebo group and group 3 showed significant ABR threshold increase across frequencies of 4, 6, 16 kHz compared with the other groups (P < 0.05). However, rats treated with silymarin 100 and 200 mg/kg/day plus d-Gal did not show any significant ABR threshold shifts. Similarly, ABR amplitude of P2 at 4, 8 kHz and P1, P4 at 4 kHz in the placebo group and group 3 were decreased significantly compared with other groups (P < 0.05). However, no significant differences are found in ABR absolute and inter-peak latencies between groups (P > 0.05). The findings indicates that silymarin with doses of 100 and 200 mg/kg/day has protective effect against ARHL and it can be supplemented into the diet of older people to slow down the progression of age-related hearing loss.
Collapse
Affiliation(s)
- Elham Tavanai
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Pich-e-Shemiran, Enghelab Ave, Tehran, Iran
| | - Ghassem Mohammadkhani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Pich-e-Shemiran, Enghelab Ave, Tehran, Iran
| | - Saeid Farahani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Pich-e-Shemiran, Enghelab Ave, Tehran, Iran
| | - Shohreh Jalaie
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Pich-e-Shemiran, Enghelab Ave, Tehran, Iran
| |
Collapse
|
7
|
Einarsson EJ, Patel M, Petersen H, Wiebe T, Fransson PA, Magnusson M, Moëll C. Elevated visual dependency in young adults after chemotherapy in childhood. PLoS One 2018; 13:e0193075. [PMID: 29466416 PMCID: PMC5821353 DOI: 10.1371/journal.pone.0193075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 02/05/2018] [Indexed: 11/21/2022] Open
Abstract
Chemotherapy in childhood can result in long-term neurophysiological side-effects, which could extend to visual processing, specifically the degree to which a person relies on vision to determine vertical and horizontal (visual dependency). We investigated whether adults treated with chemotherapy in childhood experience elevated visual dependency compared to controls and whether any difference is associated with the age at which subjects were treated. Visual dependency was measured in 23 subjects (mean age 25.3 years) treated in childhood with chemotherapy (CTS) for malignant, solid, non-CNS tumors. We also stratified CTS into two groups: those treated before 12 years of age and those treated from 12 years of age and older. Results were compared to 25 healthy, age-matched controls. The subjective visual horizontal (SVH) and vertical (SVV) orientations was recorded by having subjects position an illuminated rod to their perceived horizontal and vertical with and without a surrounding frame tilted clockwise and counter-clockwise 20° from vertical. There was no significant difference in rod accuracy between any CTS groups and controls without a frame. However, when assessing visual dependency using a frame, CTS in general (p = 0.006) and especially CTS treated before 12 years of age (p = 0.001) tilted the rod significantly further in the direction of the frame compared to controls. Our findings suggest that chemotherapy treatment before 12 years of age is associated with elevated visual dependency compared to controls, implying a visual bias during spatial activities. Clinicians should be aware of symptoms such as visual vertigo in adults treated with chemotherapy in childhood.
Collapse
Affiliation(s)
- Einar-Jón Einarsson
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Mitesh Patel
- Division of Brain Sciences, Imperial College London, London, United Kingdom
| | - Hannes Petersen
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Otorhinolaryngology, Landspitali University Hospital, Reykjavik, Iceland
| | - Thomas Wiebe
- Department of Pediatrics, Skåne University Hospital, Lund, Sweden
| | | | - Måns Magnusson
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Otorhinolaryngology, Skåne University Hospital, Lund, Sweden
| | - Christian Moëll
- Department of Pediatrics, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
8
|
Chang-Chien J, Yen YC, Li SY, Hsu TC, Yang JJ. Ferulic acid-mediated protection against neomycin-induced hair cell loss in transgenic zebrafish. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
9
|
Tavanai E, Mohammadkhani G. Role of antioxidants in prevention of age-related hearing loss: a review of literature. Eur Arch Otorhinolaryngol 2016; 274:1821-1834. [PMID: 27858145 DOI: 10.1007/s00405-016-4378-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/08/2016] [Indexed: 01/21/2023]
Abstract
Age-related hearing loss (ARHL), also known as presbycusis, is one of the most prevalent chronic degenerative conditions. It is characterized by a decline in auditory function. ARHL is caused by the interaction of multiple factors, including cochlear aging, environment, genetic predisposition, and health comorbidities. The primary pathology of ARHL includes the hair cells loss, stria vascularis atrophy, and loss of spiral ganglion neurons as well as the changes in central auditory pathways. The research to date suggests that oxidative stress and mitochondrial DNA deletion (mtDNA) play a major role in pathophysiology of ARHL. Therefore, similar to other otological conditions, several studies have also showed that antioxidants can slow ARHL, but some also indicate that antioxidant therapy is not a magic elixir that will prevent or treat hearing loss associated with aging completely, but why? All available clinical trials, including animal and human studies, in English language that examined the protective effects of antioxidants against ARHL were reviewed. Materials were obtained by searching ELSEVIER, PubMed, Scopus, Web of knowledge, Google Scholar databases, Clinical trials, and Cochrane database of systematic reviews. Although ARHL has been shown to be slowed by supplementation with antioxidants, particularly in laboratory animals, a few studies have investigated the effect of interventions against ARHL in humans. High-quality clinical trials are needed to investigate if ARHL can be delayed or prevented in humans. However, it seems that targeting several cell-death pathways is better than targeting the only oxidative stress pathway.
Collapse
Affiliation(s)
- Elham Tavanai
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Piche-Shemiran, Enghelab Ave, Tehran, Iran
| | - Ghassem Mohammadkhani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Piche-Shemiran, Enghelab Ave, Tehran, Iran.
| |
Collapse
|
10
|
Decreased postural control in adult survivors of childhood cancer treated with chemotherapy. Sci Rep 2016; 6:36784. [PMID: 27830766 PMCID: PMC5103202 DOI: 10.1038/srep36784] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/12/2016] [Indexed: 11/08/2022] Open
Abstract
The objective of cancer treatment is to secure survival. However, as chemotherapeutic agents can affect the central and peripheral nervous systems, patients must undergo a process of central compensation. We explored the effectiveness of this compensation process by measuring postural behaviour in adult survivors of childhood cancer treated with chemotherapy (CTS). We recruited sixteen adults treated with chemotherapy in childhood for malignant solid (non-CNS) tumours and 25 healthy age-matched controls. Subjects performed posturography with eyes open and closed during quiet and perturbed standing. Repeated balance perturbations through calf vibrations were used to study postural adaptation. Subjects were stratified into two groups (treatment before or from 12 years of age) to determine age at treatment effects. Both quiet (p = 0.040) and perturbed standing (p ≤ 0.009) were significantly poorer in CTS compared to controls, particularly with eyes open and among those treated younger. Moreover, CTS had reduced levels of adaptation compared to controls, both with eyes closed and open. Hence, adults treated with chemotherapy for childhood cancer may suffer late effects of poorer postural control manifested as reduced contribution of vision and as reduced adaptation skills. These findings advocate development of chemotherapeutic agents that cause fewer long-term side effects when used for treating children.
Collapse
|
11
|
Sisto R, Moleti A, Palkovičová Murínová Ľ, Wimmerová S, Lancz K, Tihányi J, Čonka K, Šovčíková E, Hertz-Picciotto I, Jusko TA, Trnovec T. Environmental exposure to organochlorine pesticides and deficits in cochlear status in children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:14570-8. [PMID: 25989860 PMCID: PMC4592791 DOI: 10.1007/s11356-015-4690-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 05/11/2015] [Indexed: 05/24/2023]
Abstract
The aim of this study was to examine the hypothesis that organochlorine pesticides (OCPs), hexachlorobenzene (HCB), β-hexachlorocyclohexane (β-HCH), and 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (p,p'-DDT) and its metabolite 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (p,p'- DDE) are ototoxic to humans. A multivariate general linear model was designed, in which the statistical relation between blood serum concentrations of HCB, β-HCH, p,p'-DDT, or p,p'-DDE at different ages (at birth, 6, 16, and 45 months) and the distortion product otoacoustic emissions (DPOAEs) was treated as multivariate outcome variables. Polychlorinated biphenyl (PCB) congeners and OCPs were strongly correlated in serum of children from our cohort. To ascertain that the association between DPOAEs at a given frequency and concentration of a pesticide is not influenced by PCBs or other OCP also present in serum, we calculated benchmark concentrations (BMCs) relating DPOAEs to a serum pesticide alone and in presence of confounding PCB-153 or other OCPs. We found that BMCs relating DPOAEs to serum pesticides are not affected by confounders. DPOAE amplitudes were associated with serum OCPs at all investigated time intervals, however, in a positive way with prenatal exposure and in a negative way with all postnatal exposures. We observed tonotopicity in the association of pesticides with amplitude of DPOAEs as its strength was frequency dependent. We conclude that exposure to OCPs in infancy at environmental concentrations may be associated with hearing deficits.
Collapse
Affiliation(s)
- Renata Sisto
- Department of Occupational Hygiene, INAIL, Monte Porzio Catone, Italy
| | - Arturo Moleti
- Department of Physics, University of Rome Tor Vergata, Rome, Italy
| | | | - Soňa Wimmerová
- Institute of Biophysics, Informatics and Biostatistics, Slovak Medical University, Limbová 12, 83303, Bratislava, Slovakia
| | - Kinga Lancz
- Department of Environmental Medicine, Slovak Medical University, Limbová 12, 83303, Bratislava, Slovakia
| | - Juraj Tihányi
- Department of Environmental Medicine, Slovak Medical University, Limbová 12, 83303, Bratislava, Slovakia
| | - Kamil Čonka
- Department of Toxic Organic Pollutants, Slovak Medical University, Limbová 12, 83303, Bratislava, Slovakia
| | - Eva Šovčíková
- Department of Environmental Medicine, Slovak Medical University, Limbová 12, 83303, Bratislava, Slovakia
| | - Irva Hertz-Picciotto
- Division of Environmental and Occupational Health, Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, USA
| | - Todd A Jusko
- Division of Epidemiology, Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, 265 Crittenden Blvd, CU420644, Rochester, NY, 14642, USA
| | - Tomáš Trnovec
- Department of Environmental Medicine, Slovak Medical University, Limbová 12, 83303, Bratislava, Slovakia.
| |
Collapse
|
12
|
Decreased postural control in adolescents born with extremely low birth weight. Exp Brain Res 2015; 233:1651-62. [DOI: 10.1007/s00221-015-4239-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
|
13
|
Dexmedetomidine preconditioning attenuates Cisplatin-induced ototoxicity in zebrafish. Clin Exp Otorhinolaryngol 2014; 7:275-80. [PMID: 25436046 PMCID: PMC4240484 DOI: 10.3342/ceo.2014.7.4.275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/12/2013] [Accepted: 12/27/2013] [Indexed: 11/25/2022] Open
Abstract
Objectives Utilisation of high-frequency drills is known to increase noise induced hearing loss due to increasing the damages of inner ear cells. This study aimed to investigate whether preconditioning by using dexmedetomidine (DEX) decreased the occurrence of ischemia in inner cells of the ear. Methods We utilised a transgenic zebrafish line Brn3C, and the embryos were collected from breeding adult zebrafish. Five-day-old larvae were cultured at the density of 50 embryos, and the larvae were classified into 4 groups: control, cisplatin group, DEX group, and DEX+yohimbine; adrenoreceptor blocker group. The DEX group was categorised into 3 subgroups by dosage; 0.1, 1, and 10 µM. Preconditioning was performed for 150 minutes and then exposed to cisplatin for 6 hours. The experiment was performed in 7 replicates for each group and the number of hair cells in 3 parts of the neuromasts of each fish was determined. Results Hair cell apoptosis by cisplatin was attenuated more significantly in the DEX preconditioning group than in the control group. However, the preconditioning effects were not blocked by yohimbine. Conclusion The results of this study suggest that hearing loss caused by vibration-induced noise could be reduced by using DEX and may occur through other mechanisms rather than adreno-receptors.
Collapse
|
14
|
Neurotrophic and antioxidant effects of silymarin comparable to 4-methylcatechol in protection against gentamicin-induced ototoxicity in guinea pigs. Pharmacol Rep 2014; 67:317-25. [PMID: 25712657 DOI: 10.1016/j.pharep.2014.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/14/2014] [Accepted: 10/06/2014] [Indexed: 11/21/2022]
Abstract
BACKGROUND Despite that gentamicin is a very effective aminoglycoside, its potential ototoxicity which is of irreversible nature makes a challenge and limitation for its use. This study was designed to investigate possible neurotrophic and antioxidant effects of silymarin comparable to 4-methylcatechol in protection against gentamicin-induced ototoxicity. METHODS AND RESULTS Twenty pigmented guinea pigs were divided into four equal groups, where group I served as normal control group. The other groups received gentamicin (120 mg/kg/day, ip) for 19 days where group II given vehicle of 1% CMC, group III and group IV were pre-treated 2h before gentamicin by 4-methylcatechol (10 μg/kg, ip) and silymarin (100mg/kg, oral gavage), respectively. The main findings indicated that silymarin exhibited restoration of nerve growth factor (NGF) levels and increased tropomyosin-related kinase receptors-A (Trk-A) m-RNA expression in cochlear tissue and preservation of hair cells of organ of Corti by scanning electron microscopy (SEM) with significant decrease in auditory brainstem response (ABR) threshold compared to 4-methylcatechol. Only silymarin caused significant amelioration in oxidative stress state by reducing malondialdehyde (MDA) levels and increasing catalase activity. CONCLUSIONS Silymarin exerts superiority over 4-methylcatechol when recommended as protective agent against gentamicin ototoxicity based on its efficient neurotrophic and antioxidant activities.
Collapse
|
15
|
Kovacic P, Somanathan R. Toxicity of imine-iminium dyes and pigments: electron transfer, radicals, oxidative stress and other physiological effects. J Appl Toxicol 2014; 34:825-34. [DOI: 10.1002/jat.3005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Peter Kovacic
- Department of Chemistry and Biochemistry; San Diego State University; San Diego CA USA
| | - Ratnasamy Somanathan
- Department of Chemistry and Biochemistry; San Diego State University; San Diego CA USA
- Centro de Graduados e Investigación del Instituto Tecnológico de Tijuana, Apdo; postal 1166 Tijuana B.C., Mexico
| |
Collapse
|
16
|
Kovacic P, Somanathan R. Nitroaromatic compounds: Environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanism. J Appl Toxicol 2014; 34:810-24. [PMID: 24532466 DOI: 10.1002/jat.2980] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022]
Abstract
Vehicle pollution is an increasing problem in the industrial world. Aromatic nitro compounds comprise a significant portion of the threat. In this review, the class includes nitro derivatives of benzene, biphenyls, naphthalenes, benzanthrone and polycyclic aromatic hydrocarbons, plus nitroheteroaromatic compounds. The numerous toxic manifestations are discussed. An appreciable number of drugs incorporate the nitroaromatic structure. The mechanistic aspects of both toxicity and therapy are addressed in the context of a unifying mechanism involving electron transfer, reactive oxygen species, oxidative stress and antioxidants.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, USA
| | | |
Collapse
|
17
|
Kovacic P, Ott N, Cooksy AL. Benzodiazepines: electron affinity, receptors and cell signaling - a multifaceted approach. J Recept Signal Transduct Res 2013; 33:338-43. [PMID: 23971627 DOI: 10.3109/10799893.2013.830129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This report entails a multifaceted approach to benzodiazepine (BZ) action, involving electron affinity, receptors, cell signaling and other aspects. Computations of the electron affinities (EAs) of different BZs have been carried out to establish the effect of various substituents on their EA. These computations were undertaken to serve as a first step in determining what role electron transfer (ET) plays in BZ activity. The calculations were conducted on the premise that the nature of the substituent will either decrease or increase the electron density of the benzene ring, thus altering the ability of the molecule to accept an electron. Investigations were performed on the effect of drug protonation on EA. Similarities involving substituent effects in prior electrochemical studies are also discussed. As part of the multifaceted approach, EA is linked to ET, which appears to play a role in therapeutic activity and toxicity. There is extensive literature dealing with the role of receptors in BZ activity. Significant information on receptor involvement was reported more than 40 years ago. Gamma-aminobutyric acid (GABA) is known to be importantly involved. GABA is a probable mediator of BZ effects. BZ and GABA receptors, although not identical, are physiologically linked. Cell signaling is known to play a part in the biochemistry of BZ action. Various factors participated, such as gene expression, allosteric influence, toxic effects and therapeutic action. Evidence points to involvement of EA and ET in the mode of action in cell signaling. Oxidative stress and antioxidant effects are also addressed.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University , San Diego, CA , USA
| | | | | |
Collapse
|
18
|
Kovacic P, Somanathan R. Nanoparticles: toxicity, radicals, electron transfer, and antioxidants. Methods Mol Biol 2013; 1028:15-35. [PMID: 23740111 DOI: 10.1007/978-1-62703-475-3_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years, nanoparticles have received increasing attention in research and technology, including a variety of practical applications. The bioactivity appears to be related to the small particle size, in addition to inherent chemical activity as electron transfer (ET) agents, generators of reactive oxygen species (ROS) with subsequent oxidative stress (OS), and as antioxidants (AOs). The mechanism of toxicity, therapeutic action, and AO property is addressed based on the ET-ROS-OS approach. There are several main classes of ET functionalities, namely, quinones (or phenolic precursors), metal compounds, aromatic nitro compounds (or reduction products), and imine or iminium species. Most of the nanospecies fall within the metal category. Cell signaling is also discussed. This review discusses recent developments based on ET-ROS-OS-AO framework.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, USA
| | | |
Collapse
|
19
|
MicroRNAs in inner ear biology and pathogenesis. Hear Res 2012; 287:6-14. [PMID: 22484222 DOI: 10.1016/j.heares.2012.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 11/23/2022]
Abstract
MicroRNAs (miRNA) are a group of small noncoding RNAs that regulate gene expression. The discovery of these small RNAs has added a new layer of complexity to molecular biology. Every day, new advances are being made in understanding the biochemistry and genetics of miRNAs and their roles in cellular function and homeostasis. Studies indicate diverse roles for miRNAs in inner ear biology and pathogenesis. This article reviews recent developments in miRNA research in the field of inner ear biology. A brief history of miRNA discovery is discussed, and their genomics and functional roles are described. Advances in the understanding of miRNA involvement in inner ear development in the zebrafish and the mouse are presented. Finally, this review highlights the potential roles of miRNAs in genetic hearing loss, hair cell regeneration, and inner ear pathogenesis resulting from various pathological insults.
Collapse
|
20
|
Abstract
Many of the drugs used for chemotherapy treatments are known to be ototoxic, and can result in permanent hearing threshold shifts. The degree of ototoxic damage can be influenced by many factors including dosage, duration of exposure, genetics, and coadministration with other ototoxic agents. Cisplatin is known for its ototoxic effects on hearing thresholds, particularly in the high frequencies. Recent studies have indicated a synergistic relationship between Cisplatin administration and moderate to high noise level exposure starting between 70-85 dB SPL. This study measured the noise levels in the Portland Veteran's Affairs Medical Center's outpatient chemotherapy clinic. Average (LAeq) and peak (LCpeak) noise measures were recorded every minute from 7 am until 6 pm on the two busiest clinic days. Patients, visitors, and staff members filled out anonymous surveys regarding their reactions to noise levels. Cumulative noise levels were not at levels known to interact with Cisplatin for a significant period of time. Noise measurement analysis indicated that levels were at or above 70 dB SPL for less than ten minutes during the 11-hour recording window. The patient and visitor surveys indicated that both groups were unbothered by noise in the clinic. However, most staff members were bothered by or concerned about noise levels, and many felt that it caused stress and difficulty communicating on the phone.
Collapse
Affiliation(s)
- Dana K Gladd
- National Center for Rehabilitative Auditory Research, Portland VA Medical Center, Portland OR, USA.
| | | |
Collapse
|
21
|
Kovacic P, Somanathan R. Propoxur: a novel mechanism for insecticidal action and toxicity. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 218:141-150. [PMID: 22488607 DOI: 10.1007/978-1-4614-3137-4_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Propoxur is a carbamate insecticide that has recently attracted considerable attention as a possible treatment option for addressing the bedbug epidemic. The generally accepted mechanism of toxicity for propoxur involves the inhibition of ChE, as is the case for many agents in the category. Considerable research supports the concept that most physiologically active substances induce their effects through multi-faceted action. In this review, we provide evidence that ET--ROS--OS participate mechanistically in both the action and in human toxicity of pesticides, including propoxur. Propoxur is a catechol derivative that contains carbamate and isopropyl groups on the oxygens in its moiety. Metabolic studies with propoxur reveal hydrolysis of the carbamate and dealkylation of the isopropyl group to yield the parent catechol. In addition, nuclear hydroxylation produces a hydroquinone derivative. Both the catechol and this hydroquinone derivative are potentially able to undergo redox cycling with the corresponding quinone to produce ROS. It is primarily for these reasons that we believe propoxur may be similar to other classes of physiologically active compounds in producing effects through ET-ROS-OS. Generally, reactive ROS are generated by metabolic processes that yield ET entities, and this occurs with propoxur as well. Although ROS are commonly associated with toxicity, there is little recognition in the literature that they can also play a role in therapeutic action.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA.
| | | |
Collapse
|
22
|
Yilmaz N, Yilmaz M, Altuntas I. Diazinon-induced brain toxicity and protection by vitamins E plus C. Toxicol Ind Health 2011; 28:51-7. [PMID: 21543467 DOI: 10.1177/0748233711404035] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Diazinon (DI) is a widely used pesticide in agriculture, resulting in environmental deleterious effects on neural systems. The current study was performed to investigate the effects of treatment with vitamins E plus C on brain toxicity, which is possibly induced by DI. Twenty-one male rats were divided into three groups (n = 7/group) as follows: (1) control group (C); (2) DI-treated group (DI); (3) DI + vitamins E plus C-treated group (DI + Vit). In order to examine lipid peroxidation and antioxidant status in rats, the level of malondialdehyde (MDA), activities of two free radical scavanging enzymes superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) have been studied in brain of rat. The results showed that treatment with DI induced significant (p < 0.05) increases in the level of serum MDA in rat brain. The vitamins E plus C combination reduced lipid peroxidation in rat brain. The activity of SOD level was significantly higher in DI + Vit group, compared to the control group. GSH-Px, SOD and CAT values were not significantly different in the DI group than in control. Oxidative stress contributes to DI-induced brain toxicity. Our results suggested that vitamins E plus C combination may have a protective effect on DI-induced brain toxicity.
Collapse
Affiliation(s)
- Nigar Yilmaz
- Department of Biochemistry, Mustafa Kemal University Medical School, Hatay, Turkey.
| | | | | |
Collapse
|
23
|
Kovacic P, Somanathan R. Integrated approach to nitric oxide in animals and plants (mechanism and bioactivity): cell signaling and radicals. J Recept Signal Transduct Res 2011; 31:111-20. [DOI: 10.3109/10799893.2010.544317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Kovacic P, Somanathan R. Zolpidem, a clinical hypnotic that affects electronic transfer, alters synaptic activity through potential GABA receptors in the nervous system without significant free radical generation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2:52-7. [PMID: 20046645 PMCID: PMC2763231 DOI: 10.4161/oxim.2.1.7859] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 01/06/2009] [Accepted: 01/16/2009] [Indexed: 01/22/2023]
Abstract
Zolpidem (trade name Ambien) has attracted much interest as a sleep-inducing agent and also in research. Attention has been centered mainly on receptor binding and electrochemistry in the central nervous system which are briefly addressed herein. A novel integrated approach to mode of action is presented. The pathways to be discussed involve basicity, reduction potential, electrostatics, cell signaling, GABA receptor binding, electron transfer (ET), pharmacodynamics, structure activity relationships (SAR) and side effects. The highly conjugated pyridinium salt formed by protonation of the amidine moiety is proposed to be the active form acting as an ET agent. Extrapolation of reduction potentials for related compounds supports the premise that zolpidem may act as an ET species in vivo. From recent literature reports, electrostatics is believed to play a significant role in drug action. The pyridinium cation displays molecular electrostatic potential which may well play a role energetically or as a bridging mechanism. An SAR analysis points to analogy with other physiologically active xenobiotics, namely benzodiazepines and paraquat in the conjugated iminium category. Inactivity of metabolites indicates that the parent is the active form of zolpidem. Absence of reactive oxygen species and oxidative stress is in line with minor side effects. In contrast, generally, the prior literature contains essentially no discussion of these fundamental biochemical relationships. Pharmacodynamics may play an important role. Concerning behavior at the blood-brain barrier, useful insight can be gained from investigations of the related cationic anesthetics that are structurally related to acetyl choline. Evidently, the neutral form of the drug penetrates the neuronal membrane, with the salt form operating at the receptor. The pathways of zolpidem have several clinical implications since the agent affects sedation, electroencephalographic activity, oxidative metabolites and receptors in the central nervous system. The drug acts at the GABA(A) receptor benzodiazepine site, displaying high and intermediate affinities to various receptor regions. Structural features for tight binding were determined. The sedative and anticonvulsant activities are due to its action on the alpha-1-GABA(A) receptors. One of the common adverse responses to zolpidem is hallucinations. Proposed mechanisms comprise changes in the GABA(A) receptor, pharmacodynamic interactions involving serotonin and neuronal-weak photon emission processes entailing redox phenomena. Reports cite cases of abuse with cravings based on anxiolytic and stimulating actions. It is important to recognize that insight concerning processes at the fundamental, molecular level can translate into beneficial results involving both positive and adverse side effects. In order for this to occur, interdisciplinary interaction is necessary. Suggestions are made for future research aimed at testing the various hypotheses.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, California 92182-1030, USA.
| | | |
Collapse
|
25
|
Kovacic P, Somanathan R. Mechanism of Anesthetic Toxicity: Metabolism, Reactive Oxygen Species, Oxidative Stress, and Electron Transfer. ACTA ACUST UNITED AC 2011. [DOI: 10.5402/2011/402906] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
There is much literature on the toxic effects of anesthetics. This paper deals with both the volatiles and locals. Adverse effects appear to be multifaceted, with the focus on radicals, oxidative stress (OS), and electron transfer (ET). ET functionalities involved are quinone, iminoquinone, conjugated iminium, and nitrone. The non-ET routes involving radicals and OS apparently pertain to haloalkanes and ethers. Beneficial effects of antioxidants, evidently countering OS, are reported. Knowledge at the molecular level should aid in devising strategies to combat the adverse effects.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Ratnasamy Somanathan
- Centro de Graduados e Investigación del Instituto Tecnológico de Tijuana, Apdo postal 1166, 22500 Tijuana BC, Mexico
| |
Collapse
|
26
|
Kovacic P, Somanathan R. Novel, unifying mechanism for mescaline in the central nervous system: electrochemistry, catechol redox metabolite, receptor, cell signaling and structure activity relationships. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2:181-90. [PMID: 20716904 PMCID: PMC2763256 DOI: 10.4161/oxim.2.4.9380] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A unifying mechanism for abused drugs has been proposed previously from the standpoint of electron transfer. Mescaline can be accommodated within the theoretical framework based on redox cycling by the catechol metabolite with its quinone counterpart. Electron transfer may play a role in electrical effects involving the nervous system in the brain. This approach is in accord with structure activity relationships involving mescaline, abused drugs, catecholamines and etoposide. Inefficient demethylation is in keeping with the various drug properties, such as requirement for high dosage and slow acting. There is a discussion of receptor binding, electrical effects, cell signaling and other modes of action. Mescaline is a nonselective, seretonin receptor agonist. 5-HTP receptors are involved in the stimulus properties. Research addresses the aspect of stereochemical requirements. Receptor binding may involve the proposed quinone metabolite and/or the amino sidechain via protonation. Electroencephalographic studies were performed on the effects of mescaline on men. Spikes are elicited by stimulation of a cortical area. The potentials likely originate in nonsynaptic dendritic membranes. Receptor-mediated signaling pathways were examined which affect mescaline behavior. The hallucinogen belongs to the class of 2AR agonists which regulate pathways in cortical neurons. The research identifies neural and signaling mechanisms responsible for the biological effects. Recently, another hallucinogen, psilocybin, has been included within the unifying mechanistic framework. This mushroom constituent is hydrolyzed to the phenol psilocin, also active, which is subsequently oxidized to an ET o-quinone or iminoquinone.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, CA 92182, USA.
| | | |
Collapse
|
27
|
Kovacic P, Somanathan R. Novel, unifying mechanism for aromatic primary-amines (therapeutics, carcinogens and toxins): electron transfer, reactive oxygen species, oxidative stress and metabolites. MEDCHEMCOMM 2011. [DOI: 10.1039/c0md00233j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Kovacic P. Hydroxyurea (therapeutics and mechanism): Metabolism, carbamoyl nitroso, nitroxyl, radicals, cell signaling and clinical applications. Med Hypotheses 2011; 76:24-31. [DOI: 10.1016/j.mehy.2010.08.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 08/03/2010] [Accepted: 08/08/2010] [Indexed: 10/19/2022]
|
29
|
Kovacic P, Somanathan R. Multifaceted approach to resveratrol bioactivity: Focus on antioxidant action, cell signaling and safety. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3:86-100. [PMID: 20716933 DOI: 10.4161/oxim.3.2.11147] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Resveratrol (RVT) is a naturally occurring trihydroxy stilbene that displays a wide spectrum of physiological activity. Its ability to behave therapeutically as a component of red wine has attracted wide attention. The phenol acts as a protective agent involving various body constituents. Most attention has been given to beneficial effects in insults involving cancer, aging, cardiovascular system, inflammation and the central nervous system. One of the principal modes of action appears to be as antioxidant. Other mechanistic pathways entail cell signaling, apoptosis and gene expression. There is an intriguing dichotomy in relation to pro-oxidant property. Also discussed are metabolism, receptor binding, rationale for safety and suggestions for future work. This is the first comprehensive review of RVT based on a broad, unifying mechanism.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, CA, USA.
| | | |
Collapse
|
30
|
Kovacic P, Somanathan R. Clinical physiology and mechanism of dizocilpine (MK-801): electron transfer, radicals, redox metabolites and bioactivity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3:13-22. [PMID: 20716924 PMCID: PMC2835885 DOI: 10.4161/oxim.3.1.10028] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Dizocilpine (MK-801), an extensively investigated drug possessing secondary amine and benzenoid functions, displays a wide array of biological properties, including anticonvulsant and anesthetic. There is scant discussion of biomechanism. A relevant, important finding is formation of oxidative metabolites in the hydroxylamine and phenolic categories. Analogy to cocaine metabolites suggests participation of redox entities, such as, hydroxylamine, nitroxide and nitrosonium, which can lead to electron transfer and radical formation. There is also similarity to metabolism by 3,3′-iminodipropionitrile and phencyclidine. Alternatively, the phenolic metabolites are well-known precursors of ET quinones. The review documents various physiological effects, mainly involving the central nervous system. Also of interest are the pro- and anti-oxidant properties. Considerable attention has been paid to MK-801 as an antagonist of the N-methyl-D-aspartate receptor in the glutamate category. This aspect is often associated with effects on the central nervous system. The review also provides recent literature dealing with MK-801/NMDA receptor in various areas of bioactivity. Studies were made of MK-801 involvement in working memory processing. Deficits in behavior were noted after administration of the drug. Treatment of mice with dizocilpine induced learning impairment. The influence of MK-801 on fear has been investigated. The substance is known to exert an analgesic effect in pain control. A number of reports deal with anesthetic properties.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, CA, USA.
| | | |
Collapse
|
31
|
Kovacic P, Somanathan R. Electromagnetic fields: mechanism, cell signaling, other bioprocesses, toxicity, radicals, antioxidants and beneficial effects. J Recept Signal Transduct Res 2010; 30:214-26. [DOI: 10.3109/10799893.2010.488650] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Kovacic P. Simplifying the complexity of cell signaling in medicine and the life sciences: Radicals and electrochemistry. Med Hypotheses 2010; 74:769-71. [DOI: 10.1016/j.mehy.2009.10.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/12/2009] [Accepted: 10/14/2009] [Indexed: 12/24/2022]
|
33
|
Kovacic P. How safe is bisphenol A? Fundamentals of toxicity: metabolism, electron transfer and oxidative stress. Med Hypotheses 2010; 75:1-4. [PMID: 20371154 DOI: 10.1016/j.mehy.2010.03.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 03/04/2010] [Indexed: 11/18/2022]
Abstract
The FDA recently announced concern about the safety of bisphenol A (BPA) and the need for more research. In the current controversy, scant attention is being paid to toxicity at the fundamental, molecular level, which is the topic of this report. Important information is provided by extensive studies on metabolism. The principal pathway is detoxification, mainly by conjugation leading to a glucuronide. A minor route entails oxidation by hydroxylation to a catechol followed by further transformation to an o-quinone. The catechol-o-quinone couple is capable of redox cycling with generation of reactive oxygen species (ROS) and oxidative stress (OS). o-Quinones are highly electron affinic with very favorable reduction potentials that permit electron transfer (ET) under physiological conditions. Only small amounts are sufficient to generate large quantities of ROS catalytically. There is extensive evidence for production of ROS, which buttresses ET by o-quinone as a plausible source. In addition, there are numerous reports on toxicity to body constituents by BPA. Those adversely affected include the liver, DNA, genes, CNS, reproductive system and kidney. Since a plethora of prior studies links ROS-OS with toxicity, it is reasonable to propose a similar connection for BPA. Cell signaling also plays a role. There are various other factors involved with toxic responses, including age, with the fetus and infants being the most vulnerable. A report concludes that human exposure to BPA is not negligible. The present overview represents a novel, integrated approach to BPA toxicity. A similar article was recently published in this journal which deals with toxicity of prevalent phthalate plasticizers.
Collapse
|
34
|
How dangerous are phthalate plasticizers? Integrated approach to toxicity based on metabolism, electron transfer, reactive oxygen species and cell signaling. Med Hypotheses 2010; 74:626-8. [DOI: 10.1016/j.mehy.2009.11.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 11/24/2009] [Indexed: 02/07/2023]
|
35
|
Kovacic P, Edwards C. Integrated approach to the mechanisms of thyroid toxins: electron transfer, reactive oxygen species, oxidative stress, cell signaling, receptors, and antioxidants. J Recept Signal Transduct Res 2010; 30:133-42. [DOI: 10.3109/10799891003702678] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Kovacic P, Hall ME. Bioelectrochemistry, reactive oxygen species, receptors, and cell signaling: how interrelated? J Recept Signal Transduct Res 2010; 30:1-9. [DOI: 10.3109/10799890903517939] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Kovacic P, Somanathan R. Unifying mechanism for metals in toxicity, carcinogenicity and therapeutic action: integrated approach involving electron transfer, oxidative stress, antioxidants, cell signaling and receptors. J Recept Signal Transduct Res 2010; 30:51-60. [DOI: 10.3109/10799890903582578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Kovacic P, Somanathan R. Dermal toxicity and environmental contamination: electron transfer, reactive oxygen species, oxidative stress, cell signaling, and protection by antioxidants. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 203:119-138. [PMID: 19957119 DOI: 10.1007/978-1-4419-1352-4_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Large numbers of chemicals are known to produce diverse types of skin injury, and these substances fit into a wide variety of both organic and inorganic chemical classes. Skin contact with toxins is difficult to avoid, because they are widely distributed, e.g., in industrial substances, agricultural chemicals, household products, and plants. Although various hypotheses have been advanced, there is no universal agreement as to how dermal toxins act to produce their effects. In this review, we provide evidence and numerous literature citations to support the view that oxidative stress (OS) and electron transfer (ET) comprise a portion of a key mechanism, and perhaps unifying theme that underlie the action of dermatotoxins. We apply the concept that ET and OS are key elements in the induction of dermatotoxic effects to all of the main classes of toxins, and to other toxins, as well. We believe it is not coincidental that the vast majority of dermatotoxic substances incorporate recurrent ET chemical functionalities (i.e., quinone, metal complexes, ArNO2, or conjugated iminium), either per se or as metabolites; such entities potentially give rise to reactive oxygen species (ROS) by redox cycling. However, in some categories, wherein agents cause dermal damage, e.g., peroxides and radiation, it appears that ROS are generated by non-ET routes. As expected, if ET and oxidative process do constitute the mechanistic framework by which most dermal toxins act, then antioxidants (AOs), if present, should prevent or mitigate effects. This is exactly what has been discovered to occur. Because ET and OS either cause or contribute to dermal toxicity, and AOs may offer protection therefrom, policy makers and researchers may be better positioned to prevent human dermatotoxicity.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, CA 92182-1030, USA.
| | | |
Collapse
|
39
|
Kovacic P, Cooksy AL. Electron transfer as a potential cause of diacetyl toxicity in popcorn lung disease. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 204:133-148. [PMID: 19957235 DOI: 10.1007/978-1-4419-1440-8_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Diacetyl, a butter-flavoring component, has recently attracted scientific and media attention because it has been implicated as an agent that induces popcorn lung disease in exposed plant workers. This disease, officially referred to as bronchiolitis obliterans, entails exposure-induced compromise to the lung's epithelial barrier function. In this review, we present a novel molecular mechanism (electron transfer, ET) designed to explain how diacetyl and its imine derivatives might interact to produce lung damage. We relate the fact that diacetyl and related compounds possess reduction potentials amenable to electron transfer (ET) in vivo. The electrochemical nature of these toxicants can potentially disrupt normal ET processes, generate reactive oxygen species (ROS), and participate in cell signaling events. Condensation of diacetyl with protein may also play a role in the toxicity caused by this compound. ET is a common feature of toxic substances, usually involving their metabolites which can operate per se or through reactions that generate ROS and oxidative stress (OS). Examples of agents capable of ET are quinone and metal compounds, aromatic nitro compounds, and iminium salts. Among compounds that generate ET, the alpha-dicarbonyl ET class, of which diacetyl is a member, is much less studied. This review emphasizes diacetyl as an agent that acts through oxidative processes to cause its effects. However, we also treat related substances that appear to act by a similar mechanism. This mechanism forms a theoretical framework capable of describing the mechanism by which diacetyl may induce its effects and is in accord with various physiological activities displayed by other alpha-dicarbonyl substances. Examples of substances that may act by mechanisms similar to that displayed by diacetyl include cyclohexane-1,2-dione, marinopyrroles, reactive carbonyl species, the bacterial signaling agent DPD, and advanced glycation end products.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182-1030, USA.
| | | |
Collapse
|
40
|
Hoxha M, Dioni L, Bonzini M, Pesatori AC, Fustinoni S, Cavallo D, Carugno M, Albetti B, Marinelli B, Schwartz J, Bertazzi PA, Baccarelli A. Association between leukocyte telomere shortening and exposure to traffic pollution: a cross-sectional study on traffic officers and indoor office workers. Environ Health 2009; 8:41. [PMID: 19772576 PMCID: PMC2761867 DOI: 10.1186/1476-069x-8-41] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 09/21/2009] [Indexed: 05/07/2023]
Abstract
BACKGROUND Telomere shortening in blood leukocytes has been associated with increased morbidity and death from cardiovascular disease and cancer, but determinants of shortened telomeres, a molecular feature of biological aging, are still largely unidentified. Traffic pollution has been linked with both cardiovascular and cancer risks, particularly in older subjects. Whether exposure to traffic pollution is associated with telomere shortening has never been evaluated. METHODS We measured leukocyte telomere length (LTL) by real-time PCR in blood DNA from 77 traffic officers exposed to high levels of traffic pollutants and 57 office workers (referents). Airborne benzene and toluene, as tracers for traffic exposure, were measured using personal passive samplers and gas-chromatography/flame-ionization detector analysis. We used covariate-adjusted multivariable models to test the effects of the exposure on LTL and obtain adjusted LTL means and 95% Confidence Intervals (CIs). RESULTS Adjusted mean LTL was 1.10 (95%CI 1.04-1.16) in traffic officers and 1.27 in referents (95%CI 1.20-1.35) [p < 0.001]. LTL decreased in association with age in both traffic officers (p = 0.01) and referents (p = 0.001), but traffic officers had shorter LTL within each age category. Among traffic officers, adjusted mean relative LTL was shorter in individuals working in high (n = 45, LTL = 1.02, 95%CI 0.96-1.09) compared to low traffic intensity (n = 32, LTL = 1.22, 95%CI 1.13-1.31) [p < 0.001]. In the entire study population, LTL decreased with increasing levels of personal exposure to benzene (p = 0.004) and toluene (p = 0.008). CONCLUSION Our results indicate that leukocyte telomere length is shortened in subjects exposed to traffic pollution, suggesting evidence of early biological aging and disease risk.
Collapse
Affiliation(s)
- Mirjam Hoxha
- Center of Molecular and Genetic Epidemiology, Department of Preventive Medicine, IRCCS Maggiore Hospital, Mangiagalli and Regina Elena Foundation, Milan, Italy
- Department of Environmental and Occupational Health, Università degli Studi di Milano, Milan, Italy
| | - Laura Dioni
- Center of Molecular and Genetic Epidemiology, Department of Preventive Medicine, IRCCS Maggiore Hospital, Mangiagalli and Regina Elena Foundation, Milan, Italy
- Department of Environmental and Occupational Health, Università degli Studi di Milano, Milan, Italy
| | - Matteo Bonzini
- Department of Clinical and Biological Sciences, University of Insubria, Varese, Italy
| | - Angela Cecilia Pesatori
- Department of Environmental and Occupational Health, Università degli Studi di Milano, Milan, Italy
- Epidemiology Unit, Department of Preventive Medicine, IRCCS Maggiore Hospital, Mangiagalli and Regina Elena Foundation, Milan, Italy
| | - Silvia Fustinoni
- Toxicology Unit, Department of Environmental and Occupational Health, IRCCS Maggiore Hospital, Mangiagalli and Regina Elena Foundation, Milan, Italy
| | - Domenico Cavallo
- Department of Chemistry and Environmental Sciences, University of Insubria, Como, Italy
| | - Michele Carugno
- Center of Molecular and Genetic Epidemiology, Department of Preventive Medicine, IRCCS Maggiore Hospital, Mangiagalli and Regina Elena Foundation, Milan, Italy
- Department of Environmental and Occupational Health, Università degli Studi di Milano, Milan, Italy
| | - Benedetta Albetti
- Center of Molecular and Genetic Epidemiology, Department of Preventive Medicine, IRCCS Maggiore Hospital, Mangiagalli and Regina Elena Foundation, Milan, Italy
- Department of Environmental and Occupational Health, Università degli Studi di Milano, Milan, Italy
| | - Barbara Marinelli
- Center of Molecular and Genetic Epidemiology, Department of Preventive Medicine, IRCCS Maggiore Hospital, Mangiagalli and Regina Elena Foundation, Milan, Italy
- Department of Environmental and Occupational Health, Università degli Studi di Milano, Milan, Italy
| | - Joel Schwartz
- Exposure, Epidemiology and Risk Program, Department of Environmental Health, Harvard School of Public Health, 401 Park Drive, Landmark Center, Suite 415 West, Boston, MA 02215, USA
| | - Pier Alberto Bertazzi
- Department of Environmental and Occupational Health, Università degli Studi di Milano, Milan, Italy
- Epidemiology Unit, Department of Preventive Medicine, IRCCS Maggiore Hospital, Mangiagalli and Regina Elena Foundation, Milan, Italy
| | - Andrea Baccarelli
- Center of Molecular and Genetic Epidemiology, Department of Preventive Medicine, IRCCS Maggiore Hospital, Mangiagalli and Regina Elena Foundation, Milan, Italy
- Department of Environmental and Occupational Health, Università degli Studi di Milano, Milan, Italy
- Exposure, Epidemiology and Risk Program, Department of Environmental Health, Harvard School of Public Health, 401 Park Drive, Landmark Center, Suite 415 West, Boston, MA 02215, USA
| |
Collapse
|
41
|
Kovacic P, Somanathan R. Integrated approach to immunotoxicity: electron transfer, reactive oxygen species, antioxidants, cell signaling, and receptors. J Recept Signal Transduct Res 2009; 28:323-46. [PMID: 18702007 DOI: 10.1080/10799890802305217] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As with all body organs, the immune system is subjected to attack by a variety of toxins. Serious consequences can result because the immune organs serve as a defense against infective agents. The toxins, both organic and inorganic, fall into a large variety of classes, such as metals, therapeutic drugs, industrial chemicals, pollutants, pesticides, fuels, herbicides and abused drugs. Although the mode of action is multifaceted, our focus is on electron transfer (ET), reactive oxygen species (ROS), antioxidants (AOs), cell signaling, and receptors. It is significant that the toxins or their metabolites incorporate ET functionalities capable of redox cycling with resultant generation of ROS and accompanying oxidative stress.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, CA 92182-1030, USA.
| | | |
Collapse
|