1
|
Theodosis-Nobelos P, Rekka EA. The Antioxidant Potential of Vitamins and Their Implication in Metabolic Abnormalities. Nutrients 2024; 16:2740. [PMID: 39203876 PMCID: PMC11356998 DOI: 10.3390/nu16162740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Vitamins are micronutrients necessary for the normal function of the body. Although each vitamin has different physicochemical properties and a specific role in maintaining life, they may also possess a common characteristic, i.e., antioxidant activity. Oxidative stress can harm all the main biological structures leading to protein, DNA and lipid oxidation, with concomitant impairment of the cell. It has been established that oxidative stress is implicated in several pathological conditions such as atherosclerosis, diabetes, obesity, inflammation and metabolic syndrome. In this review we investigate the influence of oxidative stress on the above conditions, examine the interrelation between oxidative stress and inflammation and point out the importance of vitamins in these processes, especially in oxidative load manipulation and metabolic abnormalities.
Collapse
Affiliation(s)
| | - Eleni A. Rekka
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
2
|
Wu HHL, McDonnell T, Chinnadurai R. Physiological Associations between Vitamin B Deficiency and Diabetic Kidney Disease. Biomedicines 2023; 11:biomedicines11041153. [PMID: 37189771 DOI: 10.3390/biomedicines11041153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
The number of people living with chronic kidney disease (CKD) is growing as our global population continues to expand. With aging, diabetes, and cardiovascular disease being major harbingers of kidney disease, the number of people diagnosed with diabetic kidney disease (DKD) has grown concurrently. Poor clinical outcomes in DKD could be influenced by an array of factors-inadequate glycemic control, obesity, metabolic acidosis, anemia, cellular senescence, infection and inflammation, cognitive impairment, reduced physical exercise threshold, and, importantly, malnutrition contributing to protein-energy wasting, sarcopenia, and frailty. Amongst the various causes of malnutrition in DKD, the metabolic mechanisms of vitamin B (B1 (Thiamine), B2 (Riboflavin), B3 (Niacin/Nicotinamide), B5 (Pantothenic Acid), B6 (Pyridoxine), B8 (Biotin), B9 (Folate), and B12 (Cobalamin)) deficiency and its clinical impact has garnered greater scientific interest over the past decade. There remains extensive debate on the biochemical intricacies of vitamin B metabolic pathways and how their deficiencies may affect the development of CKD, diabetes, and subsequently DKD, and vice-versa. Our article provides a review of updated evidence on the biochemical and physiological properties of the vitamin B sub-forms in normal states, and how vitamin B deficiency and defects in their metabolic pathways may influence CKD/DKD pathophysiology, and in reverse how CKD/DKD progression may affect vitamin B metabolism. We hope our article increases awareness of vitamin B deficiency in DKD and the complex physiological associations that exist between vitamin B deficiency, diabetes, and CKD. Further research efforts are needed going forward to address the knowledge gaps on this topic.
Collapse
Affiliation(s)
- Henry H L Wu
- Renal Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, NSW 2065, Australia
| | - Thomas McDonnell
- Department of Renal Medicine, Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK
| | - Rajkumar Chinnadurai
- Department of Renal Medicine, Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M1 7HR, UK
| |
Collapse
|
3
|
Wang X, Li W, Xiang M. Increased serum methylmalonic acid levels were associated with the presence of cardiovascular diseases. Front Cardiovasc Med 2022; 9:966543. [PMID: 36299874 PMCID: PMC9588910 DOI: 10.3389/fcvm.2022.966543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Functional vitamin B12 deficiency is common in cardiovascular diseases (CVDs), such as heart failure and myocardial infarction. Methylmalonic acid (MMA) is a specific and sensitive marker of vitamin B12 deficiency. However, there are scarce data in regard to the relationship between MMA and CVDs. Materials and methods In this cross-sectional study, we analyzed data of 5,313 adult participants of the National Health and Nutrition Examination Survey (NHANES) 2013-2014. Associations between MMA and other variables were assessed with linear regression models. Univariable and multivariable logistic regression models were employed to explore the association between MMA and CVDs. Results The weighted prevalence of CVDs was 8.8% in the general population of the USA. Higher MMA levels were found in participants with CVDs (p < 0.001). Linear regression models revealed positive associations between serum MMA level and age (p < 0.001), glycohemoglobin (p = 0.023), fasting glucose (p = 0.044), mean cell volume (p = 0.038), and hypertension (p = 0.003). In the multivariable logistic model adjusting for age, gender, ethnicity, smoking, hypertension, glycohemoglobin, body mass index (BMI), low-density lipoprotein-cholesterol (LDL-C), renal dysfunction and vitamin B12, serum MMA (adjusted odds ratio, 3.08; 95% confidence interval: 1.63-5.81, p = 0.002, per ln nmol/L increment) was associated with CVDs. Conclusion Our study demonstrated that elevated serum MMA levels were independently associated with the presence of CVDs and may be used to predict the occurrence of CVDs.
Collapse
|
4
|
Li W, Zhao J, Zhu LL, Peng YF. Serum vitamin B12 levels and glycemic fluctuation in patients with type 2 diabetes mellitus. Ther Adv Endocrinol Metab 2022; 13:20420188221102800. [PMID: 35677226 PMCID: PMC9168854 DOI: 10.1177/20420188221102800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/09/2022] [Indexed: 01/18/2023] Open
Abstract
Purpose The aim of the study was to explore the correlation between serum vitamin B12 levels and glycemic fluctuation in patients with type 2 diabetes mellitus (T2DM). Methods This study included 202 T2DM patients in whom blood glucose levels were recorded using a continuous glucose monitoring system retrospectively. Glycemic fluctuation was determined using the average daily risk range (ADRR), a diabetes-specific measure of the risk for hyper- and hypoglycemia. Results Serum vitamin B12 levels were higher in T2DM patients with wider glycemic fluctuations than in those with minor glycemic fluctuations (p < 0.001). We observed a positive correlation between serum vitamin B12 levels and ADRR in both T2DM patients who received and did not receive metformin therapy (r = 0.388, p < 0.001 and r = 0.280, p = 0.004, respectively). Multiple linear regression analysis showed that serum vitamin B12 levels were independently correlated with ADRR in T2DM patients who received and did not receive metformin therapy (beta = 0.367, p < 0.001 and beta = 0.410, p < 0.001, respectively). Conclusions Serum vitamin B12 levels are correlated with glycemic fluctuation in patients with T2DM and may serve as an underlying useful biomarker of glycemic fluctuation in T2DM patients, treated with or without metformin therapy.
Collapse
Affiliation(s)
- Wei Li
- Department of Endocrinology, Suzhou Hospital of
Anhui Medical University, Suzhou, China
| | - Jing Zhao
- Department of Endocrinology, Suzhou Hospital of
Anhui Medical University, Suzhou, China
| | - Ling-Ling Zhu
- Department of Endocrinology, Suzhou Hospital of
Anhui Medical University, Suzhou, China
| | - You-Fan Peng
- Department of Respiratory and Critical Care
Medicine, Affiliated Hospital of Youjiang Medical University for
Nationalities, No. 18 Zhongshan Er Road, Baise, Guangxi 533000, China
| |
Collapse
|
5
|
Wu M, Zhang M, Zhang Y, Li Z, Li X, Liu Z, Liu H, Li X. Relationship between lysosomal dyshomeostasis and progression of diabetic kidney disease. Cell Death Dis 2021; 12:958. [PMID: 34663802 PMCID: PMC8523726 DOI: 10.1038/s41419-021-04271-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022]
Abstract
Lysosomes are organelles involved in cell metabolism, waste degradation, and cellular material circulation. They play a key role in the maintenance of cellular physiological homeostasis. Compared with the lysosomal content of other organs, that of the kidney is abundant, and lysosomal abnormalities are associated with the occurrence and development of certain renal diseases. Lysosomal structure and function in intrinsic renal cells are impaired in diabetic kidney disease (DKD). Promoting lysosomal biosynthesis and/or restoring lysosomal function can repair damaged podocytes and proximal tubular epithelial cells, and delay the progression of DKD. Lysosomal homeostasis maintenance may be advantageous in alleviating DKD. Here, we systematically reviewed the latest advances in the relationship between lysosomal dyshomeostasis and progression of DKD based on recent literature to further elucidate the mechanism of renal injury in diabetes mellitus and to highlight the application potential of lysosomal homeostasis maintenance as a new prevention and treatment strategy for DKD. However, research on screening effective interventions for lysosomal dyshomeostasis is still in its infancy, and thus should be the focus of future research studies. The screening out of cell-specific lysosomal function regulation targets according to the different stages of DKD, so as to realize the controllable targeted regulation of cell lysosomal function during DKD, is the key to the successful clinical development of this therapeutic strategy.
Collapse
Affiliation(s)
- Man Wu
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Minjie Zhang
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Yaozhi Zhang
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Zixian Li
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Xingyu Li
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Zejian Liu
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Huafeng Liu
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China.
| | - Xiaoyu Li
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China.
| |
Collapse
|
6
|
van de Lagemaat EE, de Groot LCPGM, van den Heuvel EGHM. Vitamin B 12 in Relation to Oxidative Stress: A Systematic Review. Nutrients 2019; 11:E482. [PMID: 30823595 PMCID: PMC6412369 DOI: 10.3390/nu11020482] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/11/2022] Open
Abstract
The triage theory posits that modest micronutrient deficiencies may induce reallocation of nutrients to processes necessary for immediate survival at the expense of long-term health. Neglected processes could in time contribute to the onset of age-related diseases, in which oxidative stress is believed to be a major factor. Vitamin B12 (B12) appears to possess antioxidant properties. This review aims to summarise the potential antioxidant mechanisms of B12 and investigate B12 status in relation to oxidative stress markers. A systematic query-based search of PubMed was performed to identify eligible publications. The potential antioxidant properties of B12 include: (1) direct scavenging of reactive oxygen species (ROS), particularly superoxide; (2) indirect stimulation of ROS scavenging by preservation of glutathione; (3) modulation of cytokine and growth factor production to offer protection from immune response-induced oxidative stress; (4) reduction of homocysteine-induced oxidative stress; and (5) reduction of oxidative stress caused by advanced glycation end products. Some evidence appears to suggest that lower B12 status is related to increased pro-oxidant and decreased antioxidant status, both overall and for subclinically deficient individuals compared to those with normal B12 status. However, there is a lack of randomised controlled trials and prospective studies focusing specifically on the relation between B12 and oxidative stress in humans, resulting in a low strength of evidence. Further work is warranted.
Collapse
Affiliation(s)
- Erik E van de Lagemaat
- Division of Human Nutrition and Health, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
- FrieslandCampina, Stationsplein 4, 3818 LE Amersfoort, The Netherlands.
| | - Lisette C P G M de Groot
- Division of Human Nutrition and Health, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | | |
Collapse
|
7
|
Affiliation(s)
- Lawrence R. Solomon
- Section of Palliative Care, Department of Medicine, Yale University School of Medicine and Smilow Cancer Hospital, New Haven, CT, USA
| |
Collapse
|
8
|
Functional cobalamin (vitamin B12) deficiency: role of advanced age and disorders associated with increased oxidative stress. Eur J Clin Nutr 2015; 69:687-92. [PMID: 25563739 DOI: 10.1038/ejcn.2014.272] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/07/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND/OBJECTIVE Functional cobalamin (Cbl; vitamin B12) deficiency (that is, high levels of the Cbl-dependent metabolites, methylmalonic acid (MMA) and homocysteine (HCys), despite normal serum Cbl values) is common in the elderly and is associated with neurocognitive abnormalities, but its cause is unknown. As only reduced Cbls are metabolically active, the possibility that functional Cbl deficiency is associated with disorders having biomarkers indicative of increased oxidative stress (oxidant risks) was considered. SUBJECTS/METHODS A retrospective record review of community-dwelling adults evaluated over a 12-year period for Cbl deficiency in a primary care setting who had serum Cbl values ⩾400 pg/ml (n=170). RESULTS When no oxidant risks were present, older subjects (⩾70 years) had higher metabolite values than younger individuals (<70 years). MMA values were even higher in the elderly when one oxidant risk was present and in younger subjects when two or more oxidant risks were present. Even at Cbl levels ⩾800 pg/ml, MMA values were increased in 73% of elderly subjects with at least one oxidant risk. HCys values were also higher in both age groups when at least two oxidant risks were present. Cyanocobalamin therapy decreased MMA and HCys values in 86 and 76% of subjects, respectively, with nonresponders more likely to have two or more oxidant risks. CONCLUSION Functional Cbl deficiency is associated with disorders marked by increased oxidative stress particularly in the elderly; it occurs even when Cbl levels are high and is not consistently corrected with high-dose cyanocobalamin therapy. Thus, current approaches to recognizing and managing this disorder may be inadequate.
Collapse
|
9
|
Zhang L, Rong W, Lu C, Zhao L. Organo-modified layered double hydroxide-catalyzed Fenton-like ultra-weak chemiluminescence for specific sensing of vitamin B12 in egg yolks. Talanta 2014; 129:126-31. [DOI: 10.1016/j.talanta.2014.05.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/16/2014] [Accepted: 05/20/2014] [Indexed: 11/25/2022]
|
10
|
De S, Kuwahara S, Saito A. The endocytic receptor megalin and its associated proteins in proximal tubule epithelial cells. MEMBRANES 2014; 4:333-55. [PMID: 25019425 PMCID: PMC4194038 DOI: 10.3390/membranes4030333] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 06/23/2014] [Accepted: 07/01/2014] [Indexed: 02/08/2023]
Abstract
Receptor-mediated endocytosis in renal proximal tubule epithelial cells (PTECs) is important for the reabsorption and metabolization of proteins and other substances, including carrier-bound vitamins and trace elements, in glomerular filtrates. Impairment of this endocytic process results in the loss of such substances and development of proteinuria, which is an important clinical indicator of kidney diseases and is also a risk marker for cardiovascular disease. Megalin, a member of the low-density lipoprotein receptor gene family, is a multiligand receptor expressed in the apical membrane of PTECs and plays a central role in the endocytic process. Megalin interacts with various intracellular adaptor proteins for intracellular trafficking and cooperatively functions with other membrane molecules, including the cubilin-amnionless complex. Evidence suggests that megalin and the cubilin-amnionless complex are involved in the uptake of toxic substances into PTECs, which leads to the development of kidney disease. Studies of megalin and its associated molecules will be useful for future development of novel strategies for the diagnosis and treatment of kidney diseases.
Collapse
Affiliation(s)
- Shankhajit De
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan.
| | - Shoji Kuwahara
- Department of Applied Molecular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan.
| | - Akihiko Saito
- Department of Applied Molecular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan.
| |
Collapse
|
11
|
Current world literature. Curr Opin Lipidol 2013; 24:86-94. [PMID: 23298962 DOI: 10.1097/mol.0b013e32835cb4f6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|