1
|
Zhu XH, Lee BY, Tuite P, Coles L, Sathe AG, Chen C, Cloyd J, Low WC, Steer CJ, Chen W. Quantitative Assessment of Occipital Metabolic and Energetic Changes in Parkinson's Patients, Using In Vivo 31P MRS-Based Metabolic Imaging at 7T. Metabolites 2021; 11:metabo11030145. [PMID: 33804401 PMCID: PMC8000945 DOI: 10.3390/metabo11030145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Abnormal energy metabolism associated with mitochondrial dysfunction is thought to be a major contributor to the progression of neurodegenerative diseases such as Parkinson's disease (PD). Recent advancements in the field of magnetic resonance (MR) based metabolic imaging provide state-of-the-art technologies for non-invasively probing cerebral energy metabolism under various brain conditions. In this proof-of-principle clinical study, we employed quantitative 31P MR spectroscopy (MRS) imaging techniques to determine a constellation of metabolic and bioenergetic parameters, including cerebral adenosine triphosphate (ATP) and other phosphorous metabolite concentrations, intracellular pH and nicotinamide adenine dinucleotide (NAD) redox ratio, and ATP production rates in the occipital lobe of cognitive-normal PD patients, and then we compared them with age-sex matched healthy controls. Small but statistically significant differences in intracellular pH, NAD and ATP contents and ATPase enzyme activity between the two groups were detected, suggesting that subtle defects in energy metabolism and mitochondrial function are quantifiable before regional neurological deficits or pathogenesis begin to occur in these patients. Pilot data aiming to evaluate the bioenergetic effect of mitochondrial-protective bile acid, ursodeoxycholic acid (UDCA) were also obtained. These results collectively demonstrated that in vivo 31P MRS-based neuroimaging can non-invasively and quantitatively assess key metabolic-energetic metrics in the human brain. This provides an exciting opportunity to better understand neurodegenerative diseases, their progression and response to treatment.
Collapse
Affiliation(s)
- Xiao-Hong Zhu
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence: (X.-H.Z.); (W.C.); Tel.: +1-(612) 626-2001 (X.-H.Z.); Fax: +1-(612) 626-2004 (X.-H.Z.)
| | - Byeong-Yeul Lee
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Paul Tuite
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Lisa Coles
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; (L.C.); (A.G.S.); (J.C.)
| | - Abhishek G. Sathe
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; (L.C.); (A.G.S.); (J.C.)
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Jim Cloyd
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; (L.C.); (A.G.S.); (J.C.)
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Clifford J. Steer
- Departments of Medicine and Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Wei Chen
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence: (X.-H.Z.); (W.C.); Tel.: +1-(612) 626-2001 (X.-H.Z.); Fax: +1-(612) 626-2004 (X.-H.Z.)
| |
Collapse
|
2
|
Guillevin C, Agius P, Naudin M, Herpe G, Ragot S, Maubeuge N, Philippe Neau J, Guillevin R. 1 H- 31 P magnetic resonance spectroscopy: effect of biotin in multiple sclerosis. Ann Clin Transl Neurol 2019; 6:1332-1337. [PMID: 31353859 PMCID: PMC6649368 DOI: 10.1002/acn3.50825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/30/2019] [Accepted: 05/21/2019] [Indexed: 01/05/2023] Open
Abstract
Biotin is thought to improve functional impairment in progressive multiple sclerosis (MS) by upregulating bioenergetic metabolism. We enrolled 19 patients suffering from progressive MS (5 primary and 14 secondary Progressive-MS). Using cerebral multinuclear magnetic resonance spectroscopy (MMRS) and clinical evaluation before and after 6 months of biotin cure, we showed significant modifications of: PME/PDE, ATP, and lactate resonances; an improvement of EDSS Neuroscore. Our results are consistent with metabolic pathways concerned with biotin action and could suggest the usefulness of MMRS for monitoring.
Collapse
Affiliation(s)
- Carole Guillevin
- DACTIM‐MIS Team – LMA CNRS 7348Poitiers University Medical CenterPoitiers CedexFrance
- Radiology DepartmentPoitiers University Medical CenterPoitiersFrance
| | - Pierre Agius
- DACTIM‐MIS Team – LMA CNRS 7348Poitiers University Medical CenterPoitiers CedexFrance
- Neurology DepartmentPoitiers University Medical CenterPoitiersFrance
| | - Mathieu Naudin
- DACTIM‐MIS Team – LMA CNRS 7348Poitiers University Medical CenterPoitiers CedexFrance
- Radiology DepartmentPoitiers University Medical CenterPoitiersFrance
| | - Guillaume Herpe
- DACTIM‐MIS Team – LMA CNRS 7348Poitiers University Medical CenterPoitiers CedexFrance
- Radiology DepartmentPoitiers University Medical CenterPoitiersFrance
| | - Stéphanie Ragot
- CIC INSERM 1402Poitiers University Medical CenterPoitiersFrance
| | - Nicolas Maubeuge
- Neurology DepartmentPoitiers University Medical CenterPoitiersFrance
| | | | - Rémy Guillevin
- DACTIM‐MIS Team – LMA CNRS 7348Poitiers University Medical CenterPoitiers CedexFrance
- Radiology DepartmentPoitiers University Medical CenterPoitiersFrance
| |
Collapse
|