1
|
Dong H, Zhu T, Zhang M, Wang D, Wang X, Huang G, Wang S, Zhang M. Polymer Scaffolds-Enhanced Bone Regeneration in Osteonecrosis Therapy. Front Bioeng Biotechnol 2021; 9:761302. [PMID: 34631688 PMCID: PMC8498195 DOI: 10.3389/fbioe.2021.761302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Osteonecrosis without effective early treatment eventually leads to the collapse of the articular surface and causes arthritis. For the early stages of osteonecrosis, core decompression combined with bone grafting, is a procedure worthy of attention and clinical trial. And the study of bone graft substitutes has become a hot topic in the area of osteonecrosis research. In recent years, polymers have received more attention than other materials due to their excellent performance. However, because of the harsh microenvironment in osteonecrosis, pure polymers may not meet the stringent requirements of osteonecrosis research. The combined application of polymers and various other substances makes up for the shortcomings of polymers, and to meet a broad range of requirements for application in osteonecrosis therapy. This review focuses on various applying polymers in osteonecrosis therapy, then discusses the development of biofunctionalized composite polymers based on the polymers combined with different bioactive substances. At the end, we discuss their prospects for translation to clinical practice.
Collapse
Affiliation(s)
- Hengliang Dong
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Tongtong Zhu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mingran Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dapeng Wang
- Department of Orthopedics, Siping Central Hospital, Siping, China
| | - Xukai Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guanning Huang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shuaishuai Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Minglei Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Yin BH, Chen HC, Zhang W, Li TZ, Gao QM, Liu JW. Effects of hypoxia environment on osteonecrosis of the femoral head in Sprague-Dawley rats. J Bone Miner Metab 2020; 38:780-793. [PMID: 32533328 DOI: 10.1007/s00774-020-01114-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Osteonecrosis of the femoral head (ONFH) is a disease in which the blood supply of the femoral head is interrupted or damaged, resulting in joint dysfunction. Hypoxic environments increase the expression of EPO, VEGF, and HIF causes vascular proliferation and increases the blood supply. It also causes the organism to be in a state of hypercoagulability and increases thrombosis. Therefore, the purpose of this study was to explore the occurrence of ONFH after the use of glucocorticoids (GCs) under conditions of hypoxia tolerance for a long time. MATERIALS AND METHODS Sprague-Dawley rats were fed in a hypobaric hypoxic chamber at an altitude of 4000 m, the whole blood viscosity, and plasma viscosity were determined to analyze the blood flow and hemagglutination. Western blotting, polymerase chain reaction, and immunohistochemistry were used to detect EPO, VEGF, CD31, and osteogenesis related proteins. Femoral head angiography was used to examine the local blood supply and micro-CT scanning was used to detect the structure of the bone trabecula. RESULTS Under hypoxic environments, the expression of EPO and VEGF increased, which increased the local blood supply of the femoral head, but due to more severe thrombosis, the local blood supply of the femoral head decreased. CONCLUSIONS Hypoxic environments can aggravate ONFH in SD rats; this aggravation may be related to the hypercoagulable state of the blood. We suggest that long-term hypoxia should be regarded as one of the risk factors of ONFH and we need to conduct a more extensive epidemiological investigation on the occurrence of ONFH in hypoxic populations.
Collapse
Affiliation(s)
- Bo-Hao Yin
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Hong-Chi Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Wei Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China.
| | - Tan-Zhu Li
- Department of Orthopedic Surgery, Xigaze People's Hospital, 5 Shanghai Road, Xigazê, Tibet Autonomous Region, People's Republic of China
| | - Qiu-Ming Gao
- Department of Orthopedic Surgery, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, Gansu, People's Republic of China
| | - Jing-Wen Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, People's Republic of China
| |
Collapse
|
3
|
Zhu T, Cui Y, Zhang M, Zhao D, Liu G, Ding J. Engineered three-dimensional scaffolds for enhanced bone regeneration in osteonecrosis. Bioact Mater 2020; 5:584-601. [PMID: 32405574 PMCID: PMC7210379 DOI: 10.1016/j.bioactmat.2020.04.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 12/15/2022] Open
Abstract
Osteonecrosis, which is typically induced by trauma, glucocorticoid abuse, or alcoholism, is one of the most severe diseases in clinical orthopedics. Osteonecrosis often leads to joint destruction, and arthroplasty is eventually required. Enhancement of bone regeneration is a critical management strategy employed in osteonecrosis therapy. Bone tissue engineering based on engineered three-dimensional (3D) scaffolds with appropriate architecture and osteoconductive activity, alone or functionalized with bioactive factors, have been developed to enhance bone regeneration in osteonecrosis. In this review, we elaborate on the ideal properties of 3D scaffolds for enhanced bone regeneration in osteonecrosis, including biocompatibility, degradability, porosity, and mechanical performance. In addition, we summarize the development of 3D scaffolds alone or functionalized with bioactive factors for accelerating bone regeneration in osteonecrosis and discuss their prospects for translation to clinical practice. Engineered three-dimensional scaffolds boost bone regeneration in osteonecrosis. The ideal properties of three-dimensional scaffolds for osteonecrosis treatment are discussed. Bioactive factors-functionalized three-dimensional scaffolds are promising bone regeneration devices for osteonecrosis management. The challenges and opportunities of engineered three-dimensional scaffolds for osteonecrosis therapy are predicted.
Collapse
Affiliation(s)
- Tongtong Zhu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, PR China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Yutao Cui
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, 130041, PR China
| | - Mingran Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, PR China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Duoyi Zhao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Guangyao Liu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, PR China
- Corresponding author.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| |
Collapse
|
4
|
Li D, Hu Q, Tan G, Xie X, Yang Z, Kang P. Erythropoietin Enhances Bone Repair Effects via the Hypoxia-Inducible Factor Signal Pathway in Glucocorticoid-Induced Osteonecrosis of the Femoral Head. Am J Med Sci 2018; 355:597-606. [PMID: 29891043 DOI: 10.1016/j.amjms.2018.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 03/03/2018] [Accepted: 03/06/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND This study aimed to determine whether erythropoietin could repair glucocorticoid-induced osteonecrosis of the femoral head after the systemic or local administration of recombinant human erythropoietin. MATERIALS AND METHODS Gelatin microspheres were used to load recombinant human erythropoietin for local delivery. Forty-eight Wistar rats were included in the glucocorticoid-induced osteonecrosis of the femoral head model and randomly divided into the placebo, systemic erythropoietin and local erythropoietin groups. Eight weeks later, all rats were killed and their tissues were subjected to radiographic, histological, histometric, quantitative polymerase chain reaction and western blot analyses. RESULTS Our results show that the use of recombinant human erythropoietin increased bone volume, trabecular number, trabecular thickness and trabecular separation compared with the placebo. Erythropoietin administration significantly improved the expression of runt-related transcription factor 2, alkaline phosphates, hypoxia-inducible factor-1α and vascular endothelial growth factor in the femoral head. We also found that the local injection of erythropoietin could better mediate hypoxia-inducible factor-1α-controlled osteogenic and angiogenic factor expression and better repair the glucocorticoid-induced osteonecrosis of the femoral head. CONCLUSIONS The use of recombinant human erythropoietin exerted effects on improving the bone structures in glucocorticoid-induced osteonecrosis of the femoral head and up-regulated the expression of runt-related transcription factor 2, alkaline phosphates, hypoxia-inducible factor-1α and vascular endothelial growth factor. It provided a novel idea that erythropoietin administration could repair glucocorticoid-induced osteonecrosis of the femoral head by improving bone formation and angiogenesis and may be associated with the hypoxia-inducible factor-1α pathway. The sequential delivery of erythropoietin from gelatin microspheres seems worth recommending.
Collapse
Affiliation(s)
- Donghai Li
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinsheng Hu
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Gang Tan
- Department of Orthopedics, Orthopedic Hospital of Mianyang, Mianyang, People's Republic of China
| | - Xiaowei Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhouyuan Yang
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Pengde Kang
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
5
|
Xu T, Jin H, Lao Y, Wang P, Zhang S, Ruan H, Mao Q, Zhou L, Xiao L, Tong P, Wu C. Administration of erythropoietin prevents bone loss in osteonecrosis of the femoral head in mice. Mol Med Rep 2017; 16:8755-8762. [PMID: 29039481 PMCID: PMC5779954 DOI: 10.3892/mmr.2017.7735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023] Open
Abstract
Long-term administration of glucocorticoid hormones is considered one of predominant pathological factors inducing osteonecrosis of the femoral head (ONFH) development and progression, in which reduction of blood supply leads to a progressive bone loss and impairment of bone structure in the majority of cases. In a non-hematopoietic system, erythropoietin (EPO) can stimulate angiogenesis and bone regeneration. However, the specific mechanism underlying the role of EPO in ONFH remains to be elucidated. Therefore, the purpose of this study was to determine the effect of EPO on the prevention of bone loss in ONFH. Male C57BL/6J mice 3 months old were divided into two groups: EPO group and control groups. ONFH was established by the administration prednisolone (PDS, 100 mg/kg) with co-treatment of lipopolysaccharide (LPS, 1 mg/kg). ONFH mice received recombinant mouse EPO (500 U/kg/day) or saline intramuscularly. The mice were sacrificed at 2, 4, 6 and 8 weeks following the initiation of treatment. Alterations in the general architecture and histomorphology of the right femoral head were determined by hematoxylin and eosin staining and micro computed tomography (micro-CT). The expression of runt-related transcription factor 2 (Runx2), osteocalcin, vascular endothelial growth factor (VEGF) and platelet endothelial cell adhesion molecule (CD31) in the femoral head was tested by immunohistochemistry. Terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling (TUNEL) assay was performed to detect apoptosis in femoral heads. Micro-CT data revealed that EPO significantly improved bone volume/total volume and bone mineral density following 6 and 8 weeks of treatment. Histological analysis further demonstrated that EPO treatment improved the arrangement of trabeculae, thinning of trabeculae and other fractures in femoral heads, especially following 6 and 8 weeks of treatment. Immunohistochemical analysis suggested that EPO treatment up-regulated the expressions of Runx2, osteocalcin, VEGF and CD31 at 4 and 8 weeks. The TUNEL apoptosis assay suggested that EPO intervention reduced apoptosis in avascular ONFH. Therefore, EPO prevents bone loss in ONFH in mice through enhancing Runx2-mediated osteogenesis, VEGF-mediated angiogenesis and inhibition of cell apoptosis.
Collapse
Affiliation(s)
- Taotao Xu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Hongting Jin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Yangjun Lao
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Pinger Wang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Shanxing Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Hongfeng Ruan
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Qiang Mao
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Li Zhou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Luwei Xiao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Peijian Tong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Chengliang Wu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
6
|
Jiang LY, Yu X, Pang QJ. Research in the precaution of recombinant human erythropoietin to steroid-induced osteonecrosis of the rat femoral head. J Int Med Res 2017; 45:1324-1331. [PMID: 28606016 PMCID: PMC5625529 DOI: 10.1177/0300060517707076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Objective To elucidate the effects of recombinant human erythropoietin (rHuEPO) on steroid-induced osteonecrosis of the femoral head in rats. Methods Twenty-four adult Wistar rats were randomly divided into three groups of eight rats each. The rats in the positive control group were injected with dexamethasone at 1 mg/kg twice a week for 5 weeks. The rats in the negative control group were injected with sodium chloride alone. The rats in the experimental group were injected with dexamethasone at 1 mg/kg twice a week for 5 weeks and rHuEPO (500 u/d/kg) daily for 5 weeks. The femoral head on one side was examined by hematoxylin and eosin staining, and that on the other side was examined by CD31 staining of the capillaries. Results Hematoxylin and eosin staining in the positive control group showed that the bony trabeculae had become obviously narrow and sparse with discontinuity of the integrity. The integrity of the trabeculae was better in the experimental group than positive control group. The CD31 expression was lower in the positive control group than in the other two groups. Conclusion rHuEPO can effectively prevent osteocyte apoptosis, delaying or decreasing osteonecrosis of the femoral head.
Collapse
Affiliation(s)
| | | | - Qing-jiang Pang
- Qing-jiang Pang, Department of Orthopedics, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province 315010, China.
| |
Collapse
|
7
|
Fu Q, Tang NN, Zhang Q, Liu Y, Peng JC, Fang N, Yu LM, Liu JW, Zhang T. Preclinical Study of Cell Therapy for Osteonecrosis of the Femoral Head with Allogenic Peripheral Blood-Derived Mesenchymal Stem Cells. Yonsei Med J 2016; 57:1006-15. [PMID: 27189298 PMCID: PMC4951443 DOI: 10.3349/ymj.2016.57.4.1006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/23/2015] [Accepted: 12/09/2015] [Indexed: 01/17/2023] Open
Abstract
PURPOSE To explore the value of transplanting peripheral blood-derived mesenchymal stem cells from allogenic rabbits (rPBMSCs) to treat osteonecrosis of the femoral head (ONFH). MATERIALS AND METHODS rPBMSCs were separated/cultured from peripheral blood after granulocyte colony-stimulating factor mobilization. Afterwards, mobilized rPBMSCs from a second passage labeled with PKH26 were transplanted into rabbit ONFH models, which were established by liquid nitrogen freezing, to observe the effect of rPBMSCs on ONFH repair. Then, the mRNA expressions of BMP-2 and PPAR-γ in the femoral head were assessed by RT-PCR. RESULTS After mobilization, the cultured rPBMSCs expressed mesenchymal markers of CD90, CD44, CD29, and CD105, but failed to express CD45, CD14, and CD34. The colony forming efficiency of mobilized rPBMSCs ranged from 2.8 to 10.8 per million peripheral mononuclear cells. After local transplantation, survival of the engrafted cells reached at least 8 weeks. Therein, BMP-2 was up-regulated, while PPAR-γ mRNA was down-regulated. Additionally, bone density and bone trabeculae tended to increase gradually. CONCLUSION We confirmed that local transplantation of rPBMSCs benefits ONFH treatment and that the beneficial effects are related to the up-regulation of BMP-2 expression and the down-regulation of PPAR-γ expression.
Collapse
Affiliation(s)
- Qiang Fu
- Key Laboratory of Cell Engineering of Guizhou Province, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Ning Ning Tang
- Key Laboratory of Cell Engineering of Guizhou Province, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical College, Zunyi, Guizhou, China
| | - Yi Liu
- Department of Bone and Joint Surgery, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Jia Chen Peng
- Department of Bone and Joint Surgery, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Ning Fang
- Key Laboratory of Cell Engineering of Guizhou Province, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Li Mei Yu
- Key Laboratory of Cell Engineering of Guizhou Province, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Jin Wei Liu
- Key Laboratory of Cell Engineering of Guizhou Province, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China.
| |
Collapse
|
8
|
Li D, Deng L, Xie X, Yang Z, Kang P. Evaluation of the osteogenesis and angiogenesis effects of erythropoietin and the efficacy of deproteinized bovine bone/recombinant human erythropoietin scaffold on bone defect repair. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:101. [PMID: 27091043 DOI: 10.1007/s10856-016-5714-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/02/2016] [Indexed: 06/05/2023]
Abstract
Erythropoietin (EPO) could promote the angiogenesis and may also play a role in bone regeneration. This study was conducted to evaluate the osteogenesis and angiogenesis effects of EPO and the efficacy of deproteinized bovine bone/recombinant human EPO scaffold on bone defect repair. Twenty-four healthy adult goats were chosen to build goat defects model and randomly divided into four groups. The goats were treated with DBB/rhEPO scaffolds (group A), porous DBB scaffolds (group B), autogenous cancellous bone graft (group C), and nothing (group D). Animals were evaluated with radiological and histological methods at 4, 8 and 12 weeks after surgery. The grey value of radiographs was used to evaluate the healing of the defects and the outcome revealed that the group A had a better outcome of defect healing compared with group B (P < 0.05). However, the grey values in group A were lower than group C at week 4 and week 8 (P < 0.05), but at week 12 their difference had no statistical significance (P > 0.05). The newly formed bone area was calculated from histological sections and the results demonstrated that the amount of new bone in group A increased significantly compared with that in group B (P < 0.05) but was inferior to that in group C (P > 0.05) at 4, 8, 12 weeks respectively. In addition, the expression of vascular endothelial growth factor (VEGF) by immunohistochemical testing and real-time polymerase chain reaction at 12 weeks in group A was significantly higher than that in group B (P < 0.05), and also better than that in group C at week 4 and week 8 (P < 0.05), but at week 12 their difference had no statistical significance (P > 0.05). Therefore, EPO has significant effects on bone formation and angiogenesis, and has capacity to promote the repair of bone defects. It is worthy of being recommended to further studies.
Collapse
Affiliation(s)
- Donghai Li
- Department of Orthopaedics, West China Hospital, Sichuan University, 37# Wainan Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Liqing Deng
- Department of Orthopaedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, 20# Ximianqiaoheng Street, Chengdu, 610041, People's Republic of China
| | - Xiaowei Xie
- Department of Orthopaedics, West China Hospital, Sichuan University, 37# Wainan Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Zhouyuan Yang
- Department of Orthopaedics, West China Hospital, Sichuan University, 37# Wainan Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Pengde Kang
- Department of Orthopaedics, West China Hospital, Sichuan University, 37# Wainan Guoxue Road, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
9
|
Kuroda Y, Matsuda S, Akiyama H. Joint-preserving regenerative therapy for patients with early-stage osteonecrosis of the femoral head. Inflamm Regen 2016; 36:4. [PMID: 29259677 PMCID: PMC5721724 DOI: 10.1186/s41232-016-0002-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/02/2016] [Indexed: 01/28/2023] Open
Abstract
Osteonecrosis of the femoral head is an intractable disease often occurring in patients aged 30–40 years that can cause femoral head collapse, pain, and gait disturbance. Background factors, including corticosteroid use, alcohol intake, and idiopathic causes, have been indicated. It is estimated that 70–80 % of osteonecrosis patients experience femoral head collapse, for which total hip arthroplasty is considered the most effective treatment, even in young patients. Thus, there is a crucial need for developing a minimally invasive regenerative therapy as a preventive surgery for femoral head collapse: this has been an important area of research in the past decades. Core decompression, the most popular minimally invasive surgery for osteonecrosis of the femoral head, has been used for a long time; however, it has been insufficient to prevent femoral head collapse. For further improvement in therapeutic efficacy, cell transplantation and the use of artificial bone and growth factors have been proposed in addition to core decompression. Since 2000, newer therapies such as autologous bone marrow cell transplantation and the embedding of metal implant rods have been developed in Europe and the USA; however, these approaches have yet to become a global standard. This practical review summarizes applied state-of-the-art regenerative therapy-based core decompression. We introduce the clinical application of recombinant human fibroblast growth factor (rhFGF)-2-impregnated gelatin hydrogel for patients with precollapse osteonecrosis of the femoral head. Radiography and computed tomography have confirmed bone regeneration inside the femoral heads around the region of rhFGF-2 gelatin hydrogel administration. With further development, the minimally invasive method, which can be expected to promote bone regeneration in necrotic areas, could become a useful early-stage treatment for osteonecrosis of the femoral head. Patients can resume their daily routine soon after surgery, and the procedure is inexpensive. As such, it is a promising regenerative therapy that can be actively employed in osteonecrosis of the femoral head before femoral head collapse.
Collapse
Affiliation(s)
- Yutaka Kuroda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Shogoin, Kawahara-cho 54, Sakyo-ku, Kyoto 606-8507 Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Shogoin, Kawahara-cho 54, Sakyo-ku, Kyoto 606-8507 Japan
| | | |
Collapse
|
10
|
Patel JJ, Modes JE, Flanagan CL, Krebsbach PH, Edwards SP, Hollister SJ. Dual Delivery of EPO and BMP2 from a Novel Modular Poly-ɛ-Caprolactone Construct to Increase the Bone Formation in Prefabricated Bone Flaps. Tissue Eng Part C Methods 2015; 21:889-97. [PMID: 25809081 DOI: 10.1089/ten.tec.2014.0643] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Poly-ɛ-caprolactone (PCL) is a biocompatible polymer that has mechanical properties suitable for bone tissue engineering; however, it must be integrated with biologics to stimulate bone formation. Bone morphogenetic protein-2 (BMP2) delivered from PCL produces bone when implanted subcutaneously, and erythropoietin (EPO) works synergistically with BMP2. In this study, EPO and BMP2 are adsorbed separately on two 3D-printed PCL scaffold modules that are assembled for codelivery on a single scaffold structure. This assembled modular PCL scaffold with dual BMP2 and EPO delivery was shown to increase bone growth in an ectopic location when compared with BMP2 delivery along a replicate scaffold structure. EPO (200 IU/mL) and BMP2 (65 μg/mL) were adsorbed onto the outer and inner portions of a modular scaffold, respectively. Protein binding and release studies were first quantified. Subsequently, EPO+BMP2 and BMP2 scaffolds were implanted subcutaneously in mice for 4 and 8 weeks, and the regenerated bone was analyzed with microcomputed tomography and histology; 8.6±1.4 μg BMP2 (22%) and 140±29 IU EPO (69.8%) bound to the scaffold and <1% BMP2 and 83% EPO was released in 7 days. Increased endothelial cell proliferation on EPO-adsorbed PCL discs indicated protein bioactivity. At 4 and 8 weeks, dual BMP2 and EPO delivery regenerated more bone (5.1±1.1 and 5.5±1.6 mm(3)) than BMP2 alone (3.8±1.1 and 4.3±1.7 mm(3)). BMP2 and EPO scaffolds had more ingrowth (1.4%±0.6%) in the outer module when compared with BMP2 (0.8%±0.3%) at 4 weeks. Dual delivery produced more dense cellular marrow, while BMP2 had more fatty marrow. Dual EPO and BMP2 delivery is a potential method to regenerate bone faster for prefabricated flaps.
Collapse
Affiliation(s)
- Janki Jayesh Patel
- 1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan
| | - Jane E Modes
- 1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan
| | - Colleen L Flanagan
- 1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan
| | - Paul H Krebsbach
- 2 School of Dentistry, University of Michigan , Ann Arbor, Michigan
| | - Sean P Edwards
- 3 Department of Oral and Maxillofacial Surgery, University of Michigan , Ann Arbor, Michigan
| | - Scott J Hollister
- 1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|