1
|
Burlibasa L, Nicu AT, Chifiriuc MC, Medar C, Petrescu A, Jinga V, Stoica I. H3 histone methylation landscape in male urogenital cancers: from molecular mechanisms to epigenetic biomarkers and therapeutic targets. Front Cell Dev Biol 2023; 11:1181764. [PMID: 37228649 PMCID: PMC10203431 DOI: 10.3389/fcell.2023.1181764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
During the last decades, male urogenital cancers (including prostate, renal, bladder and testicular cancers) have become one of the most frequently encountered malignancies affecting all ages. While their great variety has promoted the development of various diagnosis, treatment and monitoring strategies, some aspects such as the common involvement of epigenetic mechanisms are still not elucidated. Epigenetic processes have come into the spotlight in the past years as important players in the initiation and progression of tumors, leading to a plethora of studies highlighting their potential as biomarkers for diagnosis, staging, prognosis, and even as therapeutic targets. Thus, fostering research on the various epigenetic mechanisms and their roles in cancer remains a priority for the scientific community. This review focuses on one of the main epigenetic mechanisms, namely, the methylation of the histone H3 at various sites and its involvement in male urogenital cancers. This histone modification presents a great interest due to its modulatory effect on gene expression, leading either to activation (e.g., H3K4me3, H3K36me3) or repression (e.g., H3K27me3, H3K9me3). In the last few years, growing evidence has demonstrated the aberrant expression of enzymes that methylate/demethylate histone H3 in cancer and inflammatory diseases, that might contribute to the initiation and progression of such disorders. We highlight how these particular epigenetic modifications are emerging as potential diagnostic and prognostic biomarkers or targets for the treatment of urogenital cancers.
Collapse
Affiliation(s)
| | | | - Mariana Carmen Chifiriuc
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- Romanian Academy, Bucharest, Romania
| | - Cosmin Medar
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Amelia Petrescu
- Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Viorel Jinga
- Academy of Romanian Scientists, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Ileana Stoica
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
2
|
Yuan H, Li Y, Zou Y, Cai C, Shi X, Su Y. Salinomycin suppresses T24 cells by regulating KDM1A and the unfolded protein response pathway. Cytotechnology 2022; 74:579-590. [PMID: 36238269 PMCID: PMC9525558 DOI: 10.1007/s10616-022-00546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022] Open
Abstract
In recent years, salinomycin has been shown to exert an anticancer effect in a variety of tumors; however, its function and mechanism in bladder cancer (BC) remain unclear. This study examined the effect of salinomycin on bladder cancer and analyzed its regulatory mechanism. T24 cells were treated with different concentrations of salinomycin to detect subsequent changes in cell proliferation, apoptosis, oxidative stress, H3K4 methylation, and related gene expression by the CCK8 assay, Edu staining, Tunel staining, ELISA, RT-qPCR, and western blotting, respectively. A KDM1A overexpression plasmid, catalytically inactive KDM1A overexpression plasmid, or short hairpin RNA (shRNA) plasmid was transfected into T24 cells to evaluate their effects. A xenograft tumor model was used to further confirm the anti-tumor effect of salinomycin. Our results showed that salinomycin significantly inhibited cell proliferation, promoted apoptosis, increased MDA levels, decreased SOD levels, induced H3K4 histone methylation, and suppressed KDM1A expression. Furthermore, the sh-KDM1A plasmid had effects similar to those of salinomycin and also activated the unfolded protein response pathway. The KDM1A overexpression plasmid had effects opposite to those of the sh-KDM1A plasmid, and the catalytically inactive KDM1A overexpression plasmid had no effect. Meanwhile, KDM1A overexpression reversed the effects of salinomycin on T24 cells. Finally, in vivo experiments confirmed the above results. In the salinomycin treatment group, tumor growth and KDM1A expression were suppressed and cell apoptosis and UPR were induced, while treatment with the KDM1A overexpression plasmid produced the opposite effects. Collectively, our study revealed that salinomycin suppressed T24 cell proliferation and promoted oxidative stress and apoptosis by regulating KDM1A and the UPR pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-022-00546-y.
Collapse
Affiliation(s)
- Haofeng Yuan
- Department of Urology, SSL Central Hospital of Dongguan City, No.1, Huangzhou Xianglong Road, Shilong Town, Dongguan, 523000 Guangdong China
| | - Yiqian Li
- Department of Gastroenterology, SSL Central Hospital of Dongguan City, Dongguan, Guangdong China
| | - Yun Zou
- Department of Urology, SSL Central Hospital of Dongguan City, No.1, Huangzhou Xianglong Road, Shilong Town, Dongguan, 523000 Guangdong China
| | - Chongyue Cai
- Department of Urology, SSL Central Hospital of Dongguan City, No.1, Huangzhou Xianglong Road, Shilong Town, Dongguan, 523000 Guangdong China
| | - Xiangmin Shi
- Department of Urology, SSL Central Hospital of Dongguan City, No.1, Huangzhou Xianglong Road, Shilong Town, Dongguan, 523000 Guangdong China
| | - Yanfeng Su
- Department of Urology, SSL Central Hospital of Dongguan City, No.1, Huangzhou Xianglong Road, Shilong Town, Dongguan, 523000 Guangdong China
| |
Collapse
|
3
|
Meghani K, Folgosa Cooley L, Piunti A, Meeks JJ. Role of Chromatin Modifying Complexes and Therapeutic Opportunities in Bladder Cancer. Bladder Cancer 2022; 8:101-112. [PMID: 35898580 PMCID: PMC9278011 DOI: 10.3233/blc-211609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 02/14/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Chromatin modifying enzymes, mainly through post translational modifications, regulate chromatin architecture and by extension the underlying transcriptional kinetics in normal and malignant cells. Muscle invasive bladder cancer (MIBC) has a high frequency of alterations in chromatin modifiers, with 76% of tumors exhibiting mutation in at least one chromatin modifying enzyme [1]. Additionally, clonal expansion of cells with inactivating mutations in chromatin modifiers has been identified in the normal urothelium, pointing to a currently unknown role of these proteins in normal bladder homeostasis. OBJECTIVE To review current knowledge of chromatin modifications and enzymes regulating these processes in Bladder cancer (BCa). METHODS By reviewing current literature, we summarize our present knowledge of external stimuli that trigger loss of equilibrium in the chromatin accessibility landscape and emerging therapeutic interventions for targeting these processes. RESULTS Genetic lesions in BCa lead to altered function of chromatin modifying enzymes, resulting in coordinated dysregulation of epigenetic processes with disease progression. CONCLUSION Mutations in chromatin modifying enzymes are wide-spread in BCa and several promising therapeutic targets for modulating activity of these genes are currently in clinical trials. Further research into understanding how the epigenetic landscape evolves as the disease progresses, could help identify patients who might benefit the most from these targeted therapies.
Collapse
Affiliation(s)
- Khyati Meghani
- Department of Urology, Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, IL, USA
| | - Lauren Folgosa Cooley
- Department of Urology, Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, IL, USA
| | - Andrea Piunti
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, IL, USA
| | - Joshua J. Meeks
- Department of Urology, Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago IL, USA
| |
Collapse
|
4
|
Li G, Zhang X, Guo X, Li Y, Li C. Propofol Inhibits the Proliferation, Migration, and Stem-like Properties of Bladder Cancer Mainly by Suppressing the Hedgehog Pathway. Cell Transplant 2021; 30:963689720985113. [PMID: 33522306 PMCID: PMC7863560 DOI: 10.1177/0963689720985113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bladder cancer is one of the most common malignancies. The existence of bladder cancer stem cells (BCSCs) has been suggested to underlie bladder tumor initiation and recurrence. Propofol is a commonly used intravenous anesthetic. Here, we find that propofol can dramatically block the activation of Hedgehog pathway in BCSCs. The propofol strongly repressed the growth of cancer cells. Attenuated proliferation and enhanced apoptosis of tumor cells were observed upon propofol stimulation. Furthermore, propofol reduced the self-renewal ability of BCSCs as well as the tumor formation. In conclusion, propofol is potentially used as a novel therapeutic agent for bladder cancer by targeting self-renewal through inhibiting Hedgehog pathway.
Collapse
Affiliation(s)
- Gang Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xu Zhang
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yi Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Chong Li
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Beijing Jianlan Institute of Medicine, Beijing, China.,Beijing Zhongke Jianlan Biotechnology Co., Ltd, Beijing, China
| |
Collapse
|
5
|
Xie Q, Tang T, Pang J, Xu J, Yang X, Wang L, Huang Y, Huang Z, Liu G, Tong D, Zhang Y, Wang L, Zhang D, Lan W, Liu Q, Jiang J. LSD1 Promotes Bladder Cancer Progression by Upregulating LEF1 and Enhancing EMT. Front Oncol 2020; 10:1234. [PMID: 32850370 PMCID: PMC7399223 DOI: 10.3389/fonc.2020.01234] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/16/2020] [Indexed: 01/05/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is one of the important underlying molecular mechanisms for most types of cancers including bladder cancer. The precise underlying molecular mechanism in EMT-mediated bladder cancer progression is far from completed. LSD1, a histone lysine-specific demethylase, is known to promote cancer cell proliferation, metastasis, and chemoresistance. We found in this study that LSD1 is highly upregulated in bladder cancer specimens, especially those underwent chemotherapy, and the elevated levels of LSD1 are highly associated with bladder cancer grades, metastasis status, and prognosis. Inhibiting or knockdown LSD1 repressed not only EMT process but also cancer progression. Mechanistically, LSD1 complexes with β-catenin to transcriptionally upregulate LEF1 and subsequently enhances EMT-mediated cancer progression. More importantly, LSD1 specific inhibitor GSK2879552 is capable of repressing tumor progression in patient-derived tumor xenograft. These findings altogether suggest that LSD1 can serve as not only a prognostic biomarker but also a promising therapeutic target in bladder cancer treatment.
Collapse
Affiliation(s)
- Qiubo Xie
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Tang Tang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jian Pang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Xu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xingxia Yang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Linang Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yiqiang Huang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhuowei Huang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Gaolei Liu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Dali Tong
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yao Zhang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Luofu Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Weihua Lan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Qiuli Liu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
6
|
Identification of osimertinib (AZD9291) as a lysine specific demethylase 1 inhibitor. Bioorg Chem 2019; 84:164-169. [DOI: 10.1016/j.bioorg.2018.11.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023]
|
7
|
Ismail T, Lee HK, Kim C, Kwon T, Park TJ, Lee HS. KDM1A microenvironment, its oncogenic potential, and therapeutic significance. Epigenetics Chromatin 2018; 11:33. [PMID: 29921310 PMCID: PMC6006565 DOI: 10.1186/s13072-018-0203-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
The lysine-specific histone demethylase 1A (KDM1A) was the first demethylase to challenge the concept of the irreversible nature of methylation marks. KDM1A, containing a flavin adenine dinucleotide (FAD)-dependent amine oxidase domain, demethylates histone 3 lysine 4 and histone 3 lysine 9 (H3K4me1/2 and H3K9me1/2). It has emerged as an epigenetic developmental regulator and was shown to be involved in carcinogenesis. The functional diversity of KDM1A originates from its complex structure and interactions with transcription factors, promoters, enhancers, oncoproteins, and tumor-associated genes (tumor suppressors and activators). In this review, we discuss the microenvironment of KDM1A in cancer progression that enables this protein to activate or repress target gene expression, thus making it an important epigenetic modifier that regulates the growth and differentiation potential of cells. A detailed analysis of the mechanisms underlying the interactions between KDM1A and the associated complexes will help to improve our understanding of epigenetic regulation, which may enable the discovery of more effective anticancer drugs.
Collapse
Affiliation(s)
- Tayaba Ismail
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Hyun-Kyung Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Chowon Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Taejoon Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Tae Joo Park
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
8
|
Yang CY, Lin CK, Tsao CH, Hsieh CC, Lin GJ, Ma KH, Shieh YS, Sytwu HK, Chen YW. Melatonin exerts anti-oral cancer effect via suppressing LSD1 in patient-derived tumor xenograft models. Oncotarget 2018; 8:33756-33769. [PMID: 28422711 PMCID: PMC5464909 DOI: 10.18632/oncotarget.16808] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 03/08/2017] [Indexed: 12/14/2022] Open
Abstract
Aberrant activation of histone lysine-specific demethylase (LSD1) increases tumorigenicity; hence, LSD1 is considered a therapeutic target for various human cancers. Although melatonin, an endogenously produced molecule, may defend against various cancers, the precise mechanism involved in its anti-oral cancer effect remains unclear. Patient-derived tumor xenograft (PDTX) models are preclinical models that can more accurately reflect human tumor biology compared with cell line xenograft models. Here, we evaluated the anticancer activity of melatonin by using LSD1-overexpressing oral cancer PDTX models. By assessing oral squamous cell carcinoma (OSCC) tissue arrays through immunohistochemistry, we examined whether aberrant LSD1 overexpression in OSCC is associated with poor prognosis. We also evaluated the action mechanism of melatonin against OSCC with lymphatic metastases by using the PDTX models. Our results indicated that melatonin, at pharmacological concentrations, significantly suppresses cell proliferation in a dose- and time-dependent manner. The observed suppression of proliferation was accompanied by the melatonin-mediated inhibition of LSD1 in oral cancer PDTXs and oral cancer cell lines. In conclusion, we determined that the beneficial effects of melatonin in reducing oral cancer cell proliferation are associated with reduced LSD1 expression in vivo and in vitro.
Collapse
Affiliation(s)
- Cheng-Yu Yang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,School of Dentistry, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Kung Lin
- Division of Anatomic Pathology, Taipei Tzu Chi Hospital, Taipei, Taiwan
| | - Chang-Huei Tsao
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan.,Department of Medical Research, Tri-Service General Hospital, Taipei, Taiwan
| | - Cheng-Chih Hsieh
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan
| | - Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Shing Shieh
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan
| | - Huey-Kang Sytwu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Yuan-Wu Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei, Taiwan.,School of Dentistry, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
9
|
Long non-coding RNA BC087858 induces non-T790M mutation acquired resistance to EGFR-TKIs by activating PI3K/AKT and MEK/ERK pathways and EMT in non-small-cell lung cancer. Oncotarget 2018; 7:49948-49960. [PMID: 27409677 PMCID: PMC5226560 DOI: 10.18632/oncotarget.10521] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/13/2016] [Indexed: 02/06/2023] Open
Abstract
Our previous study demonstrated that long non-coding RNA (lncRNA) BC087858 could stimulate acquired resistance to EGFR-TKIs in non-small cell lung (NSCLC) but the specific regulatory mechanism remained unknown. We aimed to explore the role and mechanism of lncRNA BC087858 on EGFR-TKIs acquired resistance. LncRNA BC087858 mRNA expression was detected by reverse transcription polymerase chain reaction in different NSCLC cell lines and tissues. The relationship between BC087858 expression and clinicopathological factors was performed by Cox multivariate regression analysis. Small-interfering RNA, flow cytometry and trans-well assay were conducted to explore the biological functions of BC087858. Western blotting was used to analyze the target proteins expression. Over-expression was observed in NSCLC cells and patients with acquired resistance to EGFR-TKIs and significantly associated with a shorter progression-free survival (PFS) (12.0 vs. 17.0 months, P = 0.0217) in tumors with respond to EGFR-TKIs. The significant relationship was not observed in patients with T790M mutation (median PFS 17.6 vs. 12.5 months, P = 0.522) but in patients with non-T790M (median PFS 8.0 vs. 18.25 months,P = 0.0427). Down-regulation of BC087858 could significantly promote PC9/R and PC9/G2 cells invasion (P < 0.05; respectively). BC087858 knockdown restored gefitinib sensitivity in acquired resistant cells with non-T790M and inhibited the activation of the PI3K/AKT and MEK/ERK pathways and epithelial-mesenchymal transition (EMT) via up- regulating ZEB1 and Snail. In conclusion, LncRNA BC087858 could promote cells invasion and induce non-T790M mutation acquired resistance to EGFR-TKIs by activating PI3K/AKT and MEK/ERK pathways and EMT via up- regulating ZEB1 and Snail in NSCLC.
Collapse
|
10
|
LPE-1, an orally active pyrimidine derivative, inhibits growth and mobility of human esophageal cancers by targeting LSD1. Pharmacol Res 2017; 122:66-77. [PMID: 28571892 DOI: 10.1016/j.phrs.2017.05.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 01/11/2023]
Abstract
Histone lysine specific demethylase 1 (LSD1) plays an important role in epigenetic modifications, and aberrant expression of LSD1 predicts tumor progression and poor prognosis in human esophageal cancers. In this study, a series of LSD1 inhibitors were synthesized and proved to be highly potent against human esophageal squamous cell carcinoma (ESCC). Our data showed that these LSD1 inhibitors selectively suppressed the viability of esophageal cancer cell line (EC-109) bearing overexpressed LSD1. Among these, compound LPE-1 (LSD1 IC50=0.336±0.003μM) significantly suppressed proliferation, induced apoptosis, arrested cell cycle of EC109 cells at G2/M phase, and caused changes of the associated protein markers correspondingly. We also found that compound LPE-1 potently inhibited the migration and invasion of EC-109 cells. Docking studies showed that the cyano group formed hydrogen bonds with Val811 and Thr810. Additionally, the thiophene moiety formed arene-H interaction with Trp761 residue. In vivo studies showed that compound LPE-1 inhibited tumor growth of xenograft models bearing EC-109 without obvious toxicity. Collectively, our findings indicate that LSD1 may be a potential therapeutic target in ESCC, and compound LPE-1 could serve as a lead compound for further development for anti-ESCC drug discovery.
Collapse
|
11
|
Cheng N, Cai W, Ren S, Li X, Wang Q, Pan H, Zhao M, Li J, Zhang Y, Zhao C, Chen X, Fei K, Zhou C, Hirsch FR. Long non-coding RNA UCA1 induces non-T790M acquired resistance to EGFR-TKIs by activating the AKT/mTOR pathway in EGFR-mutant non-small cell lung cancer. Oncotarget 2016; 6:23582-93. [PMID: 26160838 PMCID: PMC4695138 DOI: 10.18632/oncotarget.4361] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/01/2015] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to explore the role of long non-coding RNA UCA1 (urothelial cancer-associated 1) in acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in EGFR-mutant non-small cell lung cancer (NSCLC). In our study, UCA1 expression was significantly increased in lung cancer cells and patients with acquired resistance to EGFR-TKIs. Over-expression of UCA1 was significantly associated with a shorter progression-free survival (PFS) [13.0 vs. 8.5 months, P < 0.01] in tumors with respond to EGFR-TKIs. The significant relationship was not observed in patients with T790M mutation (10.5 vs. 12.0 months, P = 0.778), but in patients with non-T790M (19.0 vs. 9.0 months, P = 0.023). UCA1 knockdown restored gefitinib sensitivity in acquired resistant cells with non-T790M and inhibited the activation of the AKT/mTOR pathway and epithelial-mesenchymal transition (EMT). The mTOR inhibitor was effective in UCA1-expressing cell PC9/R. Inhibiting mTOR could change the expression of UCA1, although there was no significant difference. In conclusion, the influence of over-expression of UCA1 on PFS for patients with acquired resistance to EGFR-TKIs was from the subgroup with non-T790M mutation. UCA1 may induce non-T790M acquired resistance to EGFR-TKIs by activating the AKT/mTOR pathway and EMT.
Collapse
Affiliation(s)
- Ningning Cheng
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, P. R. China
| | - Weijing Cai
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, P. R. China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, P. R. China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, P. R. China
| | - Qi Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, P. R. China
| | - Hui Pan
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, P. R. China
| | - Mingchuan Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, P. R. China
| | - Jiayu Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, P. R. China
| | - Yishi Zhang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, P. R. China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, P. R. China
| | - Xiaoxia Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, P. R. China
| | - Ke Fei
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, P. R. China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, P. R. China
| | - Fred R Hirsch
- Department of Medical and Pathology, University of Colorado Cancer Center, Aurora, Colorado, USA
| |
Collapse
|
12
|
Narayanan SP, Singh S, Gupta A, Yadav S, Singh SR, Shukla S. Integrated genomic analyses identify KDM1A's role in cell proliferation via modulating E2F signaling activity and associate with poor clinical outcome in oral cancer. Cancer Lett 2015. [PMID: 26225839 DOI: 10.1016/j.canlet.2015.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The histone demethylase KDM1A specifically demethylates lysine residues and its deregulation has been implicated in the initiation and progression of various cancers. However, KDM1A's molecular role and its pathological consequences, and prognostic significance in oral cancer remain less understood. In the present study, we sought to investigate the expression of KDM1A and its downstream role in oral cancer pathogenesis. By comparing mRNA expression profiles, we identified an elevated KDM1A expression in oral tumors when compared to normal oral tissues. In silico pathway prediction identified the association between KDM1A and E2F1 signaling in oral cancer. Pathway scanning, functional annotation analysis and In vitro assays showed the KDM1A's involvement in oral cancer cell proliferation and the cell cycle. Moreover, real time PCR and luciferase assays confirmed KDM1A's role in regulation of E2F1 signaling activity in oral cancer. Elevated KDM1A expression is associated with poor clinical outcome in oral cancer. Our data indicate that deregulated KDM1A expression is positively associated with proliferative phenotype of oral cancer and confers poor clinical outcome. These cumulative data suggest that KDM1A might be a potential diagnostic and therapeutic target for oral cancer.
Collapse
Affiliation(s)
- Sathiya Pandi Narayanan
- Epigenetics and RNA Processing Laboratory (ERPL), Indian Institute of Science Education and Research Bhopal (IISERB), Madhya Pradesh, India
| | - Smriti Singh
- Epigenetics and RNA Processing Laboratory (ERPL), Indian Institute of Science Education and Research Bhopal (IISERB), Madhya Pradesh, India
| | - Amit Gupta
- Epigenetics and RNA Processing Laboratory (ERPL), Indian Institute of Science Education and Research Bhopal (IISERB), Madhya Pradesh, India
| | - Sandhya Yadav
- Epigenetics and RNA Processing Laboratory (ERPL), Indian Institute of Science Education and Research Bhopal (IISERB), Madhya Pradesh, India
| | - Shree Ram Singh
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | - Sanjeev Shukla
- Epigenetics and RNA Processing Laboratory (ERPL), Indian Institute of Science Education and Research Bhopal (IISERB), Madhya Pradesh, India.
| |
Collapse
|