1
|
Hou J, Zheng L, Li X, Sun Y. CircZNF609 sponges miR-135b to up-regulate SEMA3A expression to alleviate ox-LDL-induced atherosclerosis. Mol Cell Biochem 2025; 480:1105-1120. [PMID: 38819599 DOI: 10.1007/s11010-024-05031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/04/2024] [Indexed: 06/01/2024]
Abstract
The initiation and progression of atherosclerotic plaque caused by abnormal lipid metabolism is one of the main causes of atherosclerosis (AS). Lipid droplet accumulation has become a novel research pointcut for AS treatment in recent years. In AS patients, miR-135b level was up-regulated relative to the normal cases, which showed negative correlations with the levels of Semaphorin 3A (SEMA3A) and circZNF609, separately. The U937-derived macrophages were cultured with ox-LDL to establish AS models in vitro. After that, the lipid accumulation, inflammation, mitochondrial dysfunction and cell death were evaluated by ORO, ELISA, RT-qPCR, western blot, JC-1 and FCM assays respectively. Transfection of the circZNF609 expression vector notably declined lipid accumulation, attenuated inflammation, reduced mitochondrial dysfunction and inhibited cell death in ox-LDL-stimulated cells. The direct binding of miR-135b to circZNF609 in vitro was confirmed using RIP assay, and SEMA3A expression was up-regulated by circZNF609 overexpression. After manipulating the endogenous expressions of circZNF609, miR-135b and SEMA3A, the above damages in ox-LDL-stimulated cells were rescued by inhibition of miR-135b expression and overexpression of circZNF609 or SEMA3A. Besides, the AS mice model was built to demonstrate the excessive lipid accumulation, increasing inflammation and cell death in AS pathogenesis according to the results of HE staining, ELISA and IHC assays, while these damages were reversed after overexpression of circZNF609 or SEMA3A. In AS models, overexpressed circZNF609 prevents the AS progression through depleting miR-135b expression and subsequent up-regulation of SEMA3A expression to overwhelm lipid accumulation, mitochondrial dysfunction and cell death.
Collapse
Affiliation(s)
- Jian Hou
- Department of Cardiology, The Second Affiliated Hospital of Shandong First Medical University, No. 366, Taishan Street, Tai'an, 271021, Shandong, People's Republic of China
| | - Lingling Zheng
- Shengli Oilfield Central Hospital, No. 31, Jinan Road, Dongying District, Dongying, 257000, Shandong, People's Republic of China
| | - Xiangyun Li
- Outpatient Department, Feicheng People's Hospital, Tai'an, 271600, Shandong, People's Republic of China
| | - Yao Sun
- Department of General Practice, Zibo Central Hospital, No.54, Gongqingtuan Road, Zhangdian District, Zibo, 255036, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Deng ZL, Zhou DZ, Cao SJ, Li Q, Zhang JF, Xie H. Development and Validation of an Inflammatory Response-Related Gene Signature for Predicting the Prognosis of Pancreatic Adenocarcinoma. Inflammation 2022; 45:1732-1751. [PMID: 35322324 DOI: 10.1007/s10753-022-01657-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/05/2022]
Abstract
Pancreatic adenocarcinoma (PAAD) is a highly dangerous malignant tumor of the digestive tract, and difficult to diagnose, treat, and predict the prognosis. As we all know, tumor and inflammation can affect each other, and thus the inflammatory response in the microenvironment can be used to affect the prognosis. So far, the prognostic value of inflammatory response-related genes in PAAD is still unclear. Therefore, this study aimed to explore the inflammatory response-related genes for predicting the prognosis of PAAD. In this study, the mRNA expression profiles of PAAD patients and the corresponding clinical characteristics data of PAAD patients were downloaded from the public database. The least absolute shrinkage and selection operator (LASSO) Cox analysis model was used to identify and construct the prognostic gene signature in The Cancer Genome Atlas (TCGA) cohort. The PAAD patients used for verification are from the International Cancer Genome Consortium (ICGC) cohort. The Kaplan-Meier method was used to compare the overall survival (OS) between the high- and low-risk groups. Univariate and multivariate Cox analyses were performed to identify the independent predictors of OS. Gene set enrichment analysis (GSEA) was performed to obtain gene ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and the correlation between gene expression and immune infiltrates was investigated via single sample gene set enrichment analysis (ssGSEA). The GEPIA database was performed to examine prognostic genes in PAAD. LASSO Cox regression analysis was used to construct a model of inflammatory response-related gene signature. Compared with the low-risk group, patients in the high-risk group had significantly lower OS. The receiver operating characteristic curve (ROC) analysis confirmed the signature's predictive capacity. Multivariate Cox analysis showed that risk score is an independent predictor of OS. Functional analysis shows that the immune status between the two risk groups is significantly different, and the cancer-related pathways were abundant in the high-risk group. Moreover, the risk score is significantly related to tumor grade, stage, and immune infiltration types. It was also obtained that the expression level of prognostic genes was significantly correlated with the sensitivity of cancer cells to anti-tumor drugs. In addition, there are significant differences in the expression of PAAD tissues and adjacent non-tumor tissues. The novel signature constructed from five inflammatory response-related genes can be used to predict prognosis and affect the immune status of PAAD. In addition, suppressing these genes may be a treatment option.
Collapse
Affiliation(s)
- Zu-Liang Deng
- Department of Radiation Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China
| | - Ding-Zhong Zhou
- Department of Interventional Vascular Surgery, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China
| | - Su-Juan Cao
- Department of Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China
| | - Qing Li
- Department of Interventional Vascular Surgery, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China
| | - Jian-Fang Zhang
- Department of Physical Examination, Beihu Centers for Disease Control and Prevention, Chenzhou, 423000, People's Republic of China
| | - Hui Xie
- Department of Radiation Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China.
| |
Collapse
|
3
|
Zhou J, Liu L, Wu P, Zhao L, Wu Y. Fusobacterium nucleatum Accelerates Atherosclerosis via Macrophage-Driven Aberrant Proinflammatory Response and Lipid Metabolism. Front Microbiol 2022; 13:798685. [PMID: 35359716 PMCID: PMC8963492 DOI: 10.3389/fmicb.2022.798685] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/03/2022] [Indexed: 12/18/2022] Open
Abstract
Periodontitis, an oral chronic inflammatory disease, is reported to show an association with atherosclerotic vascular disease. Fusobacterium nucleatum is an oral commensal bacterium that is abundantly implicated in various forms of periodontal diseases; however, its role in the pathogenesis of atherosclerosis is unclear. This study aimed to elucidate the underlying pathogenic mechanisms of atherosclerosis induced by F. nucleatum to provide new insight on the prevention and treatment of atherosclerosis. We used an animal model, that is, ApoE–/– mice were infected with F. nucleatum by oral gavage, and in vitro co-culture models to assess the pathogenicity of F. nucleatum. The results indicate that F. nucleatum ATCC 25586 invaded aortic tissues and substantially increased the progression of atherosclerotic lesions. In addition, F. nucleatum changed plaque composition into a less-stable phenotype, characterized with increased subcutaneous macrophage infiltration, M1 polarization, lipid deposition, cell apoptosis, and reduced extracellular matrix and collagen content. The serum levels of pro-atherosclerotic factors, such as interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α, monocyte chemoattractant protein-1 (MCP-1), c-reactive protein, and oxidized low-density lipoprotein (ox-LDL) and microRNAs (miR-146a, miR-155, and miR-23b) were considerably increased after F. nucleatum stimulation, whereas HDL-c level was reduced. F. nucleatum induced in vitro macrophage apoptosis in a time- and dose-dependent manner. F. nucleatum facilitated ox-LDL–induced cholesterol phagocytosis and accumulation by regulating the expression of lipid metabolism-related genes (AR-A1, ACAT1, ABCA1, and ABCG1). F. nucleatum further worsened the atherosclerotic plaque microenvironment by considerably increasing the levels of IL-6; IL-1β; TNF-α; MCP-1; and MMP-2, 8, and 9 and by suppressing fibronectin (FN) 1 levels during foam cell formation. This study shows that F. nucleatum ATCC 25586 is implicated in atherosclerosis by causing aberrant activation and lipid metabolism in macrophage.
Collapse
Affiliation(s)
- Jieyu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiyao Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Varghese DS, Ali BR. Pathological Crosstalk Between Oxidized LDL and ER Stress in Human Diseases: A Comprehensive Review. Front Cell Dev Biol 2021; 9:674103. [PMID: 34124059 PMCID: PMC8187772 DOI: 10.3389/fcell.2021.674103] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 02/05/2023] Open
Abstract
The oxidative modification of the major cholesterol carrying lipoprotein, oxLDL, is a biomarker as well as a pathological factor in cardiovascular diseases (CVD), type 2 diabetes mellitus (T2DM), obesity and other metabolic diseases. Perturbed cellular homeostasis due to physiological, pathological and pharmacological factors hinder the proper functioning of the endoplasmic reticulum (ER), which is the major hub for protein folding and processing, lipid biosynthesis and calcium storage, thereby leading to ER stress. The cellular response to ER stress is marked by a defensive mechanism called unfolded protein response (UPR), wherein the cell adapts strategies that favor survival. Under conditions of excessive ER stress, when the survival mechanisms fail to restore balance, UPR switches to apoptosis and eliminates the defective cells. ER stress is a major hallmark in metabolic syndromes such as diabetes, non-alcoholic fatty liver disease (NAFLD), neurological and cardiovascular diseases. Though the pathological link between oxLDL and ER stress in cardiovascular diseases is well-documented, its involvement in other diseases is still largely unexplored. This review provides a deep insight into the common mechanisms in the pathogenicity of diseases involving oxLDL and ER stress as key players. In addition, the potential therapeutic intervention of the targets implicated in the pathogenic processes are also explored.
Collapse
Affiliation(s)
- Divya Saro Varghese
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Yao Y, Zhou J, Lu C, Sun W, Kong W, Zhao J. MicroRNA-155-5p/EPAS1/interleukin 6 pathway participated in the protection function of sphingosylphosphorylcholine to ischemic cardiomyocytes. Life Sci 2021; 264:118692. [PMID: 33130081 DOI: 10.1016/j.lfs.2020.118692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 11/25/2022]
Abstract
AIM Previous research in our laboratory found that a biologically active sphingomyelin metabolite, sphingosylphosphorylcholine (SPC), can inhibit myocardial cell apoptosis caused by ischemia with an unknown mechanism. Here, we aimed to study the possible participation of EPAS1 in the protection process of SPC. METHODS The rat cardiomyocytes deprived of serum were used to mimic ischemic-caused apoptosis, then treated with or without SPC. The expression and nuclear shift of EPAS1 were detected by western blot and immunofluorescence, and its function was studied using its siRNA. KEY FINDING Our research shows that SPC inhibited serum starvation caused cardiomyocyte apoptosis, accompanied by the up-regulation and nucleus translocation of EPAS1. EPAS1 levels did not change when its transcript was blocked by Actinomycin D, which prompted us to search for a post-transcription mechanism for its increased expression, and finally found that miR-155-5p, regulated by STAT3, was a new post-transcription regulator to EPAS1. Further investigation found that EPAS1 participated in the protective effect of SPC is mainly achieved by activating the downstream target gene, interleukin-6 (IL-6). SIGNIFICANCE Our results expand our understanding of the biological functions of SPC, and bring a new pathway as a potential therapeutic target to the treatment of cardiovascular diseases caused by myocardial apoptosis.
Collapse
Affiliation(s)
- Yujuan Yao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao 266237, PR China
| | - Jinrun Zhou
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao 266237, PR China
| | - Chenchen Lu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao 266237, PR China
| | - Wenjing Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao 266237, PR China
| | - Weihua Kong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao 266237, PR China
| | - Jing Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
6
|
Guo Q, Zhang H, Zhang B, Zhang E, Wu Y. Tumor Necrosis Factor-alpha (TNF-α) Enhances miR-155-Mediated Endothelial Senescence by Targeting Sirtuin1 (SIRT1). Med Sci Monit 2019; 25:8820-8835. [PMID: 31752013 PMCID: PMC6882299 DOI: 10.12659/msm.919721] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Sirtuin1 (SIRT1) participates in a wide variety of cellular processes, but the molecular mechanism remains largely unknown. miR-155 is an element of the inflammatory signaling pathway in atherosclerosis. Therefore, we tested the hypothesis that TNF-α stimulates miR-155 to target SIRT1 and thereby regulates endothelial senescence, and we also explored the function of miR-155 as a regulator of cardiovascular diseases. Material/Methods TNF-α was used to stimulate human umbilical vein endothelial cells (HUVECs), after which protein and gene expression were assessed via Western blotting and RT-qPCR. miR-155 targeting of SIRT1 was confirmed via luciferase reporter assays, while MTT and senescence-associated β-galactosidase (SA-β-gal) assays were used for quantifying cellular proliferation and senescence. Results We found that miR-155 was upregulated in response to TNF-α treatment, in addition to inducing marked changes in SIRT1/FoxO-1/p21 pathway protein level. When we overexpressed miR-155 mimics, SIRT1 was markedly reduced, whereas miR-155 inhibition had the opposite effect in TNF-α-treated cells. We additionally confirmed that miR-155 was able to directly bind to SIRT1 3′-UTR, and that inhibition of miR-155 reduced the ability of TNF-α to induce senescence in HUVECs, thereby leading to their enhanced proliferation. Simvastatin was associated with suppression of miR-155 expression in HUVECs following TNF-α treatment, and with a corresponding reduction in TNF-α-induced senescence, whereas miR-155 overexpression had the opposite effect. Conclusions Our findings suggest that TNF-α upregulates miR-155, which then targets SIRT1, suppressing its expression and driving HUVEC apoptosis. Simvastatin disrupted this senescence mechanism via the miR-155/SIRT1/FoxO-1/p21 pathway signaling. Hence, miR-155 is a possible therapeutic approach to endothelial senescence in the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Qianyun Guo
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China (mainland)
| | - Haitong Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Bin Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Erli Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Yongjian Wu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| |
Collapse
|
7
|
Abstract
This study was aimed to explore the crucial genes and microRNAs (miRNAs) associated with the carotid atherosclerosis (CA).Two public datasets GSE28829 and GSE43292 were obtained from Gene Expression Omnibus databases to analyze the differentially expressed genes (DEGs) between primary and advanced atherosclerotic plaque tissues. The Gene Ontology (GO) terms, pathways, and protein-protein interactions (PPIs) of these DEGs were analyzed. miRNAs and transcription factor (TF) were predicted.A total of 112 upregulated and 179 downregulated intersection DEGs were identified between 2 datasets. In the PPI network, HSP90AB1 (degree = 19), RAP1A (degree = 14), and integrin subunit beta 1 (ITGB1) had higher degrees. A total of 23 miRNAs were predicted, such as miR-126, miR-155, miR-19A, and miR-19B. Four TFs were associated with upregulated DEGs, while 10 TFs were identified to be associated with downregulated genes.Our study suggests the important roles of HSP90AB1, RAP1A, and integrins proteins of ITGB1, ITGA11, ITGA9, and ITGB2 in the progression of CA plaque. Additionally, miR-126, miR-155, miR-19B, and miR-19A may be considered as biomarkers of CA.
Collapse
Affiliation(s)
- Zhanglin Mao
- Department of Vascular Surgery, Yiwu Central Hospital, Yiwu, Zhejing, China, Yiwu
| | - Fen Wu
- Department of Vascular Surgery, Yiwu Central Hospital, Yiwu, Zhejing, China, Yiwu
| | - Yunfeng Shan
- Department of Hepatobiliary Surgery, Yiwu Central Hospital, Yiwu, Zhejiang, China
| |
Collapse
|
8
|
Liberale L, Dallegri F, Carbone F, Montecucco F. Pathophysiological relevance of macrophage subsets in atherogenesis. Thromb Haemost 2017; 117:7-18. [PMID: 27683760 DOI: 10.1160/th16-08-0593] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022]
Abstract
SummaryMacrophages are highly heterogeneous and plastic cells. They were shown to play a critical role in all stages of atherogenesis, from the initiation to the necrotic core formation and plaque rupture. Lesional macrophages primarily derive from blood monocyte, but local macrophage proliferation as well as differentiation from smooth muscle cells have also been described. Within atherosclerotic plaques, macrophages rapidly respond to changes in the microenvironment, shifting between pro- (M1) or anti-inflammatory (M2) functional phenotypes. Furthermore, different stimuli have been associated with differentiation of newly discovered M2 subtypes: IL-4/IL-13 (M2a), immunecomplex (M2b), IL-10/glucocorticoids (M2c), and adenosine receptor agonist (M2d). More recently, additional intraplaque macrophage phenotypes were also recognized in response to CXCL4 (M4), oxidized phospholipids (Mox), haemoglobin/haptoglobin complexes (HAmac/M(Hb)), and heme (Mhem). Such macrophage polarization was described as a progression among multiple phenotypes, which reflect the activity of different transcriptional factors and the cross-talk between intracellular signalling. Finally, the distribution of macrophage subsets within different plaque areas was markedly associated with cardiovascular (CV) vulnerability. The aim of this review is to update the current knowledge on the role of macrophage subsets in atherogenesis. In addition, the molecular mechanisms underlying macrophage phenotypic shift will be summarised and discussed. Finally, the role of intraplaque macrophages as predictors of CV events and the therapeutic potential of these cells will be discussed.
Collapse
|
9
|
Lee H, Zhang D, Wu J, Otterbein LE, Jin Y. Lung Epithelial Cell-Derived Microvesicles Regulate Macrophage Migration via MicroRNA-17/221-Induced Integrin β 1 Recycling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:1453-1464. [PMID: 28674181 PMCID: PMC5561736 DOI: 10.4049/jimmunol.1700165] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/11/2017] [Indexed: 12/26/2022]
Abstract
Robust lung inflammation is one of the prominent features in the pathogenesis of acute lung injury (ALI). Macrophage migration and recruitment are often seen at the early stage of lung inflammatory responses to noxious stimuli. Using an acid inhalation-induced lung injury model, we explored the mechanisms by which acid exposure initiates macrophage recruitment and migration during development of ALI. The lung epithelium comprises a large surface area and functions as a first-line defense against noxious insults. We found that acid exposure induced a remarkable microvesicle (MV) release from lung epithelium as detected in bronchoalveolar lavage fluid. Significantly elevated RNA, rather than protein, was found in these epithelium-derived MVs after acid and included several highly elevated microRNAs, including microRNA (miR)-17 and miR-221. Acid-induced epithelial MV release promoted macrophage migration in vitro and recruitment into the lung in vivo and required, in part, MV shuttling of miR-17 and/or miR-221. Mechanistically, acid-induced epithelial MV miR-17/221 promoted β1 integrin recycling and presentation back onto the surface of macrophages, in part via a Rab11-mediated pathway. Integrin β1 is known to play an essential role in regulating macrophage migration. Taken together, acid-induced ALI results in epithelial MV shuttling of miR-17/221 that in turn modulates macrophage β1 integrin recycling, promoting macrophage recruitment and ultimately contributing to lung inflammation.
Collapse
Affiliation(s)
- Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118; and
| | - Duo Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118; and
| | - Jingxuan Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118; and
| | - Leo E Otterbein
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118; and
| |
Collapse
|
10
|
Ryzhkova AI, Karagodin VP, Sukhorukov VN, Sazonova MA, Orekhov AN. Desialated low density lipoproteins in
human blood. ACTA ACUST UNITED AC 2017. [DOI: 10.18821/0023-2149-2017-95-3-216-221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present article is a review of literature on circulating low-density lipoproteins (LDLP) which can induce accumulation of lipids (mainly, cholesterol), in a SMA(+) cell culture of normal human aortic intima. An attempt was undertaken to resolve the paradox of the absence of both native LDLP influence on intracellular lipid accumulation and modifications of in vitro obtained LDLP in the blood-vascular system. It was showed that atherogenic LDLPs are characterized by a number of changes in carbon, protein and lipid components which can be regarded as multiple modifications of LDLP taking place in human blood plasma. Multiply modified circulating LDLP possess of capacity to interact with various cell membrane receptors differing from B and E receptor, and with proteoglycans. Marked absorption of desiliated LDLPs by the cells simultaneous with a decrease in the degradation of apolipoproteins and cholesterol esters as well as induction of peresterification of free cholesterol leads to intracellular accumulation of esterified cholesterol. Formation of large LDLP-containing complexes especially circulating low-density lipoproteins can stimulate accumulation of lipids by smooth muscle cells of intima. Desiliated LDLPs stimulated cell proliferation and connective tissue matrix synthesis despite cholesterol ester accumulation. In conclusion, the authors of this article found and characterized natural multiply modified LDLPs that can be responsible for the symptoms of atherosclerosis at the cellular level.
Collapse
Affiliation(s)
- A. I. Ryzhkova
- Research Institute of General Pathology and Pathophysiology
| | | | | | - M. A. Sazonova
- Research Institute of General Pathology and Pathophysiology; Russian Cardiological Research and Production Complex
| | - A. N. Orekhov
- Research Institute of General Pathology and Pathophysiology
| |
Collapse
|
11
|
Nègre-Salvayre A, Augé N, Camaré C, Bacchetti T, Ferretti G, Salvayre R. Dual signaling evoked by oxidized LDLs in vascular cells. Free Radic Biol Med 2017; 106:118-133. [PMID: 28189852 DOI: 10.1016/j.freeradbiomed.2017.02.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 12/12/2022]
Abstract
The oxidative theory of atherosclerosis relies on the modification of low density lipoproteins (LDLs) in the vascular wall by reactive oxygen species. Modified LDLs, such as oxidized LDLs, are thought to participate in the formation of early atherosclerotic lesions (accumulation of foam cells and fatty streaks), whereas their role in advanced lesions and atherothrombotic events is more debated, because antioxidant supplementation failed to prevent coronary disease events and mortality in intervention randomized trials. As oxidized LDLs and oxidized lipids are present in atherosclerotic lesions and are able to trigger cell signaling on cultured vascular cells and macrophages, it has been proposed that they could play a role in atherogenesis and atherosclerotic vascular remodeling. Oxidized LDLs exhibit dual biological effects, which are dependent on extent of lipid peroxidation, nature of oxidized lipids (oxidized phospholipids, oxysterols, malondialdehyde, α,β-unsaturated hydroxyalkenals), concentration of oxidized LDLs and uptake by scavenger receptors (e.g. CD36, LOX-1, SRA) that signal through different transduction pathways. Moderate concentrations of mildly oxidized LDLs are proinflammatory and trigger cell migration and proliferation, whereas higher concentrations induce cell growth arrest and apoptosis. The balance between survival and apoptotic responses evoked by oxidized LDLs depends on cellular systems that regulate the cell fate, such as ceramide/sphingosine-1-phosphate rheostat, endoplasmic reticulum stress, autophagy and expression of pro/antiapoptotic proteins. In vivo, the intimal concentration of oxidized LDLs depends on the influx (hypercholesterolemia, endothelial permeability), residence time and lipid composition of LDLs, oxidative stress intensity, induction of defense mechanisms (antioxidant systems, heat shock proteins). As a consequence, the local cellular responses to oxidized LDLs may stimulate inflammatory or anti-inflammatory pathways, angiogenic or antiangiogenic responses, survival or apoptosis, thereby contributing to plaque growth, instability, complication (intraplaque hemorrhage, proteolysis, calcification, apoptosis) and rupture. Finally, these dual properties suggest that oxLDLs could be implicated at each step of atherosclerosis development, from early fatty streaks to advanced lesions, depending on the nature and concentration of their oxidized lipid content.
Collapse
Affiliation(s)
| | | | - Caroline Camaré
- Inserm UMR-1048, France; University of Toulouse, Faculty of Medicine, Biochemistry Dept, Toulouse, France; CHU Toulouse, Rangueil, Toulouse, France
| | | | | | - Robert Salvayre
- Inserm UMR-1048, France; University of Toulouse, Faculty of Medicine, Biochemistry Dept, Toulouse, France; CHU Toulouse, Rangueil, Toulouse, France.
| |
Collapse
|
12
|
Lv L, An X, Li H, Ma L. Effect of miR-155 knockdown on the reversal of doxorubicin resistance in human lung cancer A549/dox cells. Oncol Lett 2015; 11:1161-1166. [PMID: 26893712 DOI: 10.3892/ol.2015.3995] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 08/17/2015] [Indexed: 12/26/2022] Open
Abstract
Doxorubicin has been widely used in the treatment of cancer. However, acquired doxorubicin resistance severely hinders the application of the drug. In the present study, doxorubicin resistance was investigated in lung carcinoma. microRNA-155 (miR-155) was found to be upregulated in the doxorubicin-resistant A549/dox cell line. Suppression of miR-155 in this cell line considerably reversed doxorubicin resistance, and doxorubicin-induced apoptosis and cell cycle arrest were recovered. Furthermore, reverse transcription-polymerase chain reaction and western blot analysis revealed that miR-155 suppression downregulated the expression of multidrug resistance protein 1, multidrug resistance-associated protein 1, breast cancer resistance protein, glutathione S-transferase-π, Survivin and B-cell lymphoma 2, and upregulated the expression of caspase-3 and caspase-8. In addition, it was found that miR-155 suppression inhibited the activation of AKT and extracellular signal-regulated kinase. The transcriptional activity of nuclear factor-κB and activator protein-1 was also downregulated. In summary, the present results indicate that miR-155 may participate in doxorubicin resistance in lung carcinoma. The current study provides a novel target for lung carcinoma treatment.
Collapse
Affiliation(s)
- Lixia Lv
- Department of Clinical Laboratory, Tianjin Huanhu Hospital, Tianjin 300060, P.R. China
| | - Xiumei An
- Biotechnological Immunology Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Hongyan Li
- Department of Clinical Laboratory, Tianjin Huanhu Hospital, Tianjin 300060, P.R. China
| | - Lanxiu Ma
- Department of Clinical Laboratory, Tianjin Huanhu Hospital, Tianjin 300060, P.R. China
| |
Collapse
|
13
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Extracellular vesicles and atherosclerotic disease. Cell Mol Life Sci 2015; 72:2697-708. [PMID: 25894694 PMCID: PMC11113133 DOI: 10.1007/s00018-015-1906-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 12/14/2022]
Abstract
Circulating extracellular vesicles (EVs) comprise a heterogeneous population of vesicular structures. According to the current paradigm, there are three types of EVs, including exosomes, microvesicles and apoptotic bodies, that are differentiated in their size, formation, and release mechanisms. EVs were shown to act as a 'post service' that serves a long-distance delivery of complex cellular messages. The cargo of EVs consists of a variety of biomolecules including proteins, DNA, mRNA, and non-coding RNA. In normal or pathological conditions, EVs deliver various molecules to the recipient cells. Those molecules greatly vary depending on the microenvironmental stimuli. In proinflammatory conditions such as atherosclerosis and other cardiovascular diseases, EVs derived from vascular endothelial cells, vascular smooth muscle cells, macrophages, and other circulating immune cells mainly possess proinflammatory properties. However, the capacity of circulating EVs to stably maintain and deliver a variety of biomolecules makes these microparticles to be a promising therapeutic tool for treatment of cardiovascular pathology. To date, circulating EVs were evaluated to be as a source of valuable diagnostic and prognostic biomarkers such as microRNA. Circulating EVs keep a great therapeutic potential to serve as vehicles for targeted therapy of cardiovascular diseases.
Collapse
Affiliation(s)
- Dimitry A. Chistiakov
- The Mount Sinai Community Clinical Oncology Program, Mount Sinai Comprehensive Cancer Center, Mount Sinai Medical Center, Miami Beach, FL 33140 USA
- Division of Laboratory Medicine, Department of Molecular Genetic Diagnostics and Cell Biology, Institute of Pediatrics, Research Center for Children’s Health, Moscow, 119991 Russia
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, 125315 Russia
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991 Russia
| | - Yuri V. Bobryshev
- Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
- School of Medicine, University of Western Sydney, Campbelltown, NSW 2560 Australia
| |
Collapse
|
14
|
Zhang YH, Xia LH, Jin JM, Zong M, Chen M, Zhang B. Expression level of miR-155 in peripheral blood. ASIAN PAC J TROP MED 2015; 8:214-9. [PMID: 25902164 DOI: 10.1016/s1995-7645(14)60318-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/20/2015] [Accepted: 02/15/2015] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE To investigate the relationship between the expression level of miR-155 and the severity of coronary lesion, and explore the action mechanism. METHODS Peripheral blood mononuclear cells (PBMC) were isolated form blood simple from patients with acute myocardial infarction (AMI), unstable angina (UAP), stable angina (SAP) and chest pain syndrome (CPS). RT-PCR was performed to analysis the expression level of miR-155 in peripheral blood mononuclear cells, plasma and RAW264.7 macrophagocyte. MTT was used to analyze the cell viability of OxLDL treated RAW264.7 macrophagocyte. RESULTS The expression level of miR-155 in blood sample from coronary heart disease patients was much lower than in the blood sample of non-coronary heart disease (P<0.05). The level of miR-155 in PBMCs was much higher in the blood sample from CPS group than the other three group, and the level of miR-155 in plasma was higher in the CPS group than in the UAP and the AMI group, the difference was statistically significant (P<0.05). The expression level of miR-155 in PBMCs is positively associated with the level in the plasma (r=0.861, P=0.000). OxLDL can induce the expression of miR-155 in RAW264.7 macrophagocyte, decrease the cell viability of RAW264.7 macrophagocyte, and with the concentration and the treatment time of OxLDL increased, the effort become more obvious. The inhibition effort of OxLDL to RAW264.7 macrophagocyte with high miR-155 expression is much lower than the control group, and it is statistically significant after treated for 12, 24 and 48 h. CONCLUSIONS miR-155 plays a protective role in the progression of atherosclerosis, and it may be achieved by reducing the apoptosis effort of OxLDL to RAW264.7 macrophagocyte.
Collapse
Affiliation(s)
- Yu-Hui Zhang
- Department of Ultrasound, East Hospital Affiliated to Medicine School, Tongji University, Shanghai 200120, China
| | - Liang-Hua Xia
- Department of Ultrasound, East Hospital Affiliated to Medicine School, Tongji University, Shanghai 200120, China
| | - Jia-Mei Jin
- Department of Ultrasound, Shanghai Huadong Hospital Affiliated to Medicine School, Fudan University, Shanghai 200040, China
| | - Ming Zong
- Department of Ultrasound, East Hospital Affiliated to Medicine School, Tongji University, Shanghai 200120, China
| | - Ming Chen
- Department of Ultrasound, East Hospital Affiliated to Medicine School, Tongji University, Shanghai 200120, China
| | - Bo Zhang
- Department of Ultrasound, East Hospital Affiliated to Medicine School, Tongji University, Shanghai 200120, China.
| |
Collapse
|
15
|
Zhang J, Zhao F, Yu X, Lu X, Zheng G. MicroRNA-155 modulates the proliferation of vascular smooth muscle cells by targeting endothelial nitric oxide synthase. Int J Mol Med 2015; 35:1708-14. [PMID: 25872580 DOI: 10.3892/ijmm.2015.2181] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 03/26/2015] [Indexed: 11/05/2022] Open
Abstract
A variety of microRNAs (miRNAs) have been reported to be significantly be involved in the regulation of vascular smooth muscle cell (VSMC) proliferation, which is an essential process for the formation of atherosclerotic plaque. The objective of the present study was to explore the role of microRNA-155 (miR-155) in the regulation of VSMC growth and migration. A total of 12 atherosclerotic plaque samples and 9 control samples were collected, and the expression levels of miR-155/endothelial nitric oxide synthase (eNOS) were determined in those samples by RT-qPCR and western blot analysis. The results revealed that the relative expression levels of miR-155 in the atherosclerotic plaque samples were significantly upregulated compared with those in the normal control samples. We further found eNOS to be an effective target of miR-155 in the VSMCs by luciferase assay, which was confirmed by the observation that VSMCs transfected with miR-155 mimics exhibited a significantly lower protein expression level of eNOS. We also demonstrated that the exogenous overexpression of miR-155 significantly enhanced cell proliferation by inhibiting apoptosis in human aortic SMCs (HASMCs), and it also promoted the migratory ability of the cells. In conclusion, our data demonstrate that miR-155 is significantly upregulated in atherosclerotic plaque, functioning to accelerate the proliferation and migration of VSMCs by targeting eNOS.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Respiratory Disease, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110005, P.R. China
| | - Fei Zhao
- Department of Respiratory Disease, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110005, P.R. China
| | - Xiaoling Yu
- Department of Respiratory Disease, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110005, P.R. China
| | - Xiang Lu
- Department of Respiratory Disease, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110005, P.R. China
| | - Guofeng Zheng
- Department of Respiratory Disease, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110005, P.R. China
| |
Collapse
|
16
|
Lin M, Zhao L, Zhao W, Weng J. Dissecting the mechanism of carotid atherosclerosis from the perspective of regulation. Int J Mol Med 2014; 34:1458-66. [PMID: 25318463 PMCID: PMC4214333 DOI: 10.3892/ijmm.2014.1960] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 08/28/2014] [Indexed: 01/26/2023] Open
Abstract
Carotid atherosclerosis is a chronic inflammatory disease of the arterial wall. The present study aimed to identify changes in the gene expression and regulatory factors for atherosclerotic plaques of carotid atherosclerosis from an early to an advanced stage. The original data were downloaded from the NCBI GEO database under accession no. GSE28829. Differentially expressed genes (DEGs) were detected by the Robust Multiarray Average (RMA). The enriched Gene Ontology (GO) terms and pathways for DEGs using DAVID were subsequently identified. The transcriptional and microRNA (miRNA) regulatory network were constructed for the DEGs. Cis-regulatory signals were also investigated. More genes were activated in the advanced stage compared with the early stage. IGHG1 and SPP1 were upregulated, while MYBL1 and PLD were downregulated. The upregulated genes in the advanced stage were involved in atherosclerosis‑related GO terms such as immune, vascular and cell movement homeostasis. The DEGs were significantly enriched in cell adhesion molecules (CAMs) and the focal adhesion pathway. MMP9 and CFL2 played key roles in the transcriptional regulatory network. Moreover, miR-328 was identified as one of the hubs in the miRNA regulatory network. The results may therefore be used to determine the mechanism involved in carotid atherosclerosis.
Collapse
Affiliation(s)
- Min Lin
- Department of Neurology, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, P.R. China
| | - Lin Zhao
- Department of Neurosurgery, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, P.R. China
| | - Wenlong Zhao
- Department of Neurology, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, P.R. China
| | - Jing Weng
- Department of Neurology, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, P.R. China
| |
Collapse
|