1
|
Hu N, Ding L, Wang A, Zhou W, Zhang C, Zhang B, Yin R. Comprehensive modeling of corkscrew motion in micro-/nano-robots with general helical structures. Nat Commun 2024; 15:7399. [PMID: 39191756 DOI: 10.1038/s41467-024-51518-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Micro-/nano-robots (MNRs) have impressive potential in minimally invasive targeted therapeutics through blood vessels, which has disruptive impact to improving human health. However, the clinical use of MNRs has yet to happen due to intrinsic limitations, such as overcoming blood flow. These bottlenecks have not been empirically solved. To tackle them, a full understanding of MNR behaviors is necessary as the first step. The common movement principle of MNRs is corkscrew motion with a helical structure. The existing dynamic model is only applicable to standard helical MNRs. In this paper, we propose a dynamic model for general MNRs without structure limitations. Comprehensive simulations and experiments were conducted, which shows the validity and accuracy of our model. Such a model can serve as a reliable basis for the design, optimization, and control of MNRs and as a powerful tool for gaining fluid dynamic insights, thus accelerating the development of the field.
Collapse
Affiliation(s)
- Ningning Hu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Lujia Ding
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Aihui Wang
- School of Automation and Electrical Engineering, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Wenju Zhou
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Chris Zhang
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bing Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, China.
| | - Ruixue Yin
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
2
|
Dutta S, Noh S, Gual RS, Chen X, Pané S, Nelson BJ, Choi H. Recent Developments in Metallic Degradable Micromotors for Biomedical and Environmental Remediation Applications. NANO-MICRO LETTERS 2023; 16:41. [PMID: 38032424 PMCID: PMC10689718 DOI: 10.1007/s40820-023-01259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Synthetic micromotor has gained substantial attention in biomedicine and environmental remediation. Metal-based degradable micromotor composed of magnesium (Mg), zinc (Zn), and iron (Fe) have promise due to their nontoxic fuel-free propulsion, favorable biocompatibility, and safe excretion of degradation products Recent advances in degradable metallic micromotor have shown their fast movement in complex biological media, efficient cargo delivery and favorable biocompatibility. A noteworthy number of degradable metal-based micromotors employ bubble propulsion, utilizing water as fuel to generate hydrogen bubbles. This novel feature has projected degradable metallic micromotors for active in vivo drug delivery applications. In addition, understanding the degradation mechanism of these micromotors is also a key parameter for their design and performance. Its propulsion efficiency and life span govern the overall performance of a degradable metallic micromotor. Here we review the design and recent advancements of metallic degradable micromotors. Furthermore, we describe the controlled degradation, efficient in vivo drug delivery, and built-in acid neutralization capabilities of degradable micromotors with versatile biomedical applications. Moreover, we discuss micromotors' efficacy in detecting and destroying environmental pollutants. Finally, we address the limitations and future research directions of degradable metallic micromotors.
Collapse
Affiliation(s)
- Sourav Dutta
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
| | - Seungmin Noh
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
| | - Roger Sanchis Gual
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, 8092, Zurich, Switzerland
| | - Xiangzhong Chen
- Institute of Optoelectronics, State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200433, People's Republic of China
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, 8092, Zurich, Switzerland
| | - Bradley J Nelson
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, 8092, Zurich, Switzerland
| | - Hongsoo Choi
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
3
|
Kong X, Gao P, Wang J, Fang Y, Hwang KC. Advances of medical nanorobots for future cancer treatments. J Hematol Oncol 2023; 16:74. [PMID: 37452423 PMCID: PMC10347767 DOI: 10.1186/s13045-023-01463-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Early detection and diagnosis of many cancers is very challenging. Late stage detection of a cancer always leads to high mortality rates. It is imperative to develop novel and more sensitive and effective diagnosis and therapeutic methods for cancer treatments. The development of new cancer treatments has become a crucial aspect of medical advancements. Nanobots, as one of the most promising applications of nanomedicines, are at the forefront of multidisciplinary research. With the progress of nanotechnology, nanobots enable the assembly and deployment of functional molecular/nanosized machines and are increasingly being utilized in cancer diagnosis and therapeutic treatment. In recent years, various practical applications of nanobots for cancer treatments have transitioned from theory to practice, from in vitro experiments to in vivo applications. In this paper, we review and analyze the recent advancements of nanobots in cancer treatments, with a particular emphasis on their key fundamental features and their applications in drug delivery, tumor sensing and diagnosis, targeted therapy, minimally invasive surgery, and other comprehensive treatments. At the same time, we discuss the challenges and the potential research opportunities for nanobots in revolutionizing cancer treatments. In the future, medical nanobots are expected to become more sophisticated and capable of performing multiple medical functions and tasks, ultimately becoming true nanosubmarines in the bloodstream.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Peng Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Division of Breast Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Kuo Chu Hwang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan ROC.
| |
Collapse
|
4
|
Koseki S, Kawamura K, Inoue F, Ikeuchi M. Soft Microrobot for Embryo Transfer in Assisted Reproductive Technology. JOURNAL OF ROBOTICS AND MECHATRONICS 2022. [DOI: 10.20965/jrm.2022.p0291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This letter proposes a novel therapeutic approach in assisted reproductive technology (ART) to control the implantation position of after embryo transfer. The system composed of a soft microrobot, a catheter, and a guiding magnet. The microrobot accommodates and transports an embryo into the patient’s uterus and keeps the embryo within the suitable area for implantation. The proposed treatment was demonstrated with the prototype in an obstetric model. This minimally invasive system will increase the pregnancy rate and prevent ectopic pregnancy.
Collapse
|
5
|
|
6
|
From protocells to prototissues: a materials chemistry approach. Biochem Soc Trans 2020; 48:2579-2589. [DOI: 10.1042/bst20200310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022]
Abstract
Prototissues comprise free-standing 3D networks of interconnected protocell consortia that communicate and display synergistic functions. Significantly, they can be constructed from functional molecules and materials, providing unprecedented opportunities to design tissue-like architectures that can do more than simply mimic living tissues. They could function under extreme conditions and exhibit a wide range of mechanical properties and bio-inspired metabolic functions. In this perspective, I will start by describing recent advancements in the design and synthetic construction of prototissues. I will then discuss the next challenges and the future impact of this emerging research field, which is destined to find applications in the most diverse areas of science and technology, from biomedical science to environmental science, and soft robotics.
Collapse
|
7
|
Terzopoulou A, Wang X, Chen X, Palacios‐Corella M, Pujante C, Herrero‐Martín J, Qin X, Sort J, deMello AJ, Nelson BJ, Puigmartí‐Luis J, Pané S. Biodegradable Metal-Organic Framework-Based Microrobots (MOFBOTs). Adv Healthc Mater 2020; 9:e2001031. [PMID: 32902185 DOI: 10.1002/adhm.202001031] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Microrobots and metal-organic frameworks (MOFs) have been identified as promising carriers for drug delivery applications. While clinical applications of microrobots are limited by their low drug loading efficiencies and the poor degradability of the materials used for their fabrication, MOFs lack motility and targeted drug delivery capabilities. The combination of these two fields marks the beginning of a new era; MOF-based small-scale robots (MOFBOTs) for biomedical applications. Yet, biodegradability is a major hurdle in the field of micro- and nanoswimmers including small-scale robots. Here, a highly integrated MOFBOT that is able to realize magnetic locomotion, drug delivery, and selective degradation in cell cultures is reported for the first time. The MOF used in the investigations does not only allow a superior loading of chemotherapeutic drugs and their controlled release via a pH-responsive degradation but it also enables the controlled locomotion of enzymatically biodegradable gelatin-based helical microrobots under magnetic fields. The degradation of the integrated MOFBOT is observed after two weeks, when all its components fully degrade. Additionally, drug delivery studies performed in cancer cell cultures show reduced viability upon delivery of Doxorubicin within short time frames. This MOFBOT system opens new avenues for highly integrated fully biodegradable small-scale robots.
Collapse
Affiliation(s)
- Anastasia Terzopoulou
- Institute of Robotics and Intelligent Systems ETH Zurich Tannenstrasse 3 Zurich 8092 Switzerland
| | - Xiaopu Wang
- Institute of Robotics and Intelligent Systems ETH Zurich Tannenstrasse 3 Zurich 8092 Switzerland
| | - Xiang‐Zhong Chen
- Institute of Robotics and Intelligent Systems ETH Zurich Tannenstrasse 3 Zurich 8092 Switzerland
| | - Mario Palacios‐Corella
- Instituto de Ciencia Molecular Universidad de Valencia Catedratico Jose Beltran 2 Paterna 46980 Spain
| | - Carlos Pujante
- Institute for Chemical and Bioengineering ETH Zurich Vladimir‐Prelog‐Weg 1‐5/10 Zurich 8093 Switzerland
| | | | - Xiao‐Hua Qin
- Institute for Biomechanics ETH Zurich Leopold‐Ruzicka‐Weg 4 Zurich 8093 Switzerland
| | - Jordi Sort
- Departament de Física Universitat Autonoma de Barcelona Cerdanyola del Valles Barcelona 08193 Spain
| | - Andrew J. deMello
- Institute for Chemical and Bioengineering ETH Zurich Vladimir‐Prelog‐Weg 1‐5/10 Zurich 8093 Switzerland
| | - Bradley J. Nelson
- Institute of Robotics and Intelligent Systems ETH Zurich Tannenstrasse 3 Zurich 8092 Switzerland
| | - Josep Puigmartí‐Luis
- Departament de Ciència dels Materials i Química Física Institut de Química Teòrica i Computacional Barcelona 08028 Spain
- ICREA Pg. Lluís Companys 23 Barcelona 08010 Spain
| | - Salvador Pané
- Institute of Robotics and Intelligent Systems ETH Zurich Tannenstrasse 3 Zurich 8092 Switzerland
| |
Collapse
|
8
|
Flores-Fuentes W, Valenzuela-Delgado M, Cáceres-Hernández D, Sergiyenko O, Bravo-Zanoguera ME, Rodríguez-Quiñonez JC, Hernández-Balbuena D, Rivas-López M. Magnetohydrodynamic velocity profile measurement for microelectromechanical systems micro-robot design. INT J ADV ROBOT SYST 2019. [DOI: 10.1177/1729881419875611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The development of microelectromechanical systems based on magnetohydrodynamic for micro-robot applications requires precise control of the micro-flow behavior. The micro-flow channel design and its performance under the influence of the Lorentz force is a critical challenge, the mathematical model of each magnetohydrodynamic device design must be experimentally validated before to be employed in the fabrication of microelectromechanical systems. For this purpose, the present article proposes the enhancement of a particle image velocimetry measurement process in a customized machine vision system. The particle image velocimetry measurements are performed for the micro-flow velocity profile mathematical model validation of a magnetohydrodynamic stirrer prototype. Data mining and filtering have been applied to a raw measurement database from the customized machine vision system designed to evaluate the magnetohydrodynamic stirrer prototype. Outlier’s elimination and smoothing have been applied to raw data to approximate the particle image velocimetry measurements output to the velocity profile mathematical model to increase the accuracy of a customized machine vision system for two-dimensional velocity profile measurements. The accurate measurement of the two-dimensional velocity profile is fundamental owing to the requirement of future enhancement of the customized machine vision system to construct the three-dimensional velocity profile of the magnetohydrodynamic stirrer prototype. The presented methodology can be used for measurement and validation in the design of microelectromechanical systems micro-robot design and any other devices that require micro-flow manipulation for tasks such as stirring, pumping, mixing, networking, propelling, and even cooling.
Collapse
Affiliation(s)
- Wendy Flores-Fuentes
- Facultad de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | | | - Danilo Cáceres-Hernández
- Laboratorio de Sistemas Inteligentes, Universidad Tecnológica de Panamá, Panamá, República de Panamá
| | - Oleg Sergiyenko
- Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Miguel E Bravo-Zanoguera
- Facultad de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | | | | | - Moisés Rivas-López
- Laboratorio de Sistemas Inteligentes, Universidad Tecnológica de Panamá, Panamá, República de Panamá
| |
Collapse
|
9
|
Ashammakhi N, Ahadian S, Darabi MA, El Tahchi M, Lee J, Suthiwanich K, Sheikhi A, Dokmeci MR, Oklu R, Khademhosseini A. Minimally Invasive and Regenerative Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804041. [PMID: 30565732 PMCID: PMC6709364 DOI: 10.1002/adma.201804041] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/20/2018] [Indexed: 05/03/2023]
Abstract
Advances in biomaterial synthesis and fabrication, stem cell biology, bioimaging, microsurgery procedures, and microscale technologies have made minimally invasive therapeutics a viable tool in regenerative medicine. Therapeutics, herein defined as cells, biomaterials, biomolecules, and their combinations, can be delivered in a minimally invasive way to regenerate different tissues in the body, such as bone, cartilage, pancreas, cardiac, skeletal muscle, liver, skin, and neural tissues. Sophisticated methods of tracking, sensing, and stimulation of therapeutics in vivo using nano-biomaterials and soft bioelectronic devices provide great opportunities to further develop minimally invasive and regenerative therapeutics (MIRET). In general, minimally invasive delivery methods offer high yield with low risk of complications and reduced costs compared to conventional delivery methods. Here, minimally invasive approaches for delivering regenerative therapeutics into the body are reviewed. The use of MIRET to treat different tissues and organs is described. Although some clinical trials have been performed using MIRET, it is hoped that such therapeutics find wider applications to treat patients. Finally, some future perspective and challenges for this emerging field are highlighted.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Mohammad Ali Darabi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Mario El Tahchi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- LBMI, Department of Physics, Lebanese University - Faculty of Sciences 2, PO Box 90656, Jdeidet, Lebanon
| | - Junmin Lee
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Kasinan Suthiwanich
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Amir Sheikhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Mehmet R. Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Rahmi Oklu
- Division of Interventional Radiology, Department of Radiology, Mayo Clinic, Scottsdale, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, University of California - Los Angeles, Los Angeles, California, USA
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, California, USA
- Center of Nanotechnology, Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|