1
|
Thiruchandran G, Dean O, Alim D, Crawford A, Salim O. Three-dimensional printing in orthopaedic surgery: A review of current and future applications. J Orthop 2025; 59:22-26. [PMID: 39355450 PMCID: PMC11439890 DOI: 10.1016/j.jor.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/15/2024] [Indexed: 10/03/2024] Open
Abstract
Three-dimensional (3D) printing is a form of technology in which 3D physical models are created. It has been used in a variety of surgical specialities ranging from cranio-maxillo-facial to orthopaedic surgery and is currently an area of much interest within the medical profession. Within the field of orthopaedic surgery, 3D printing has several clinical applications including surgical education, surgical planning, manufacture of patient-specific prostheses/patient specific instruments and bone tissue engineering. This article reviews the current practices of 3D printing in orthopaedic surgery in both clinical and pre-clinical settings along with discussing its potential future applications.
Collapse
Affiliation(s)
| | - Oliver Dean
- Basingstoke and North Hampshire Hospital, Aldermaston Road, Basingstoke, England, RG24 9NA, UK
| | - Duaa Alim
- Basingstoke and North Hampshire Hospital, Aldermaston Road, Basingstoke, England, RG24 9NA, UK
| | - Adrian Crawford
- Basingstoke and North Hampshire Hospital, Aldermaston Road, Basingstoke, England, RG24 9NA, UK
| | - Omar Salim
- Basingstoke and North Hampshire Hospital, Aldermaston Road, Basingstoke, England, RG24 9NA, UK
| |
Collapse
|
2
|
Barakeh W, Zein O, Hemdanieh M, Sleem B, Nassereddine M. Enhancing Hip Arthroplasty Outcomes: The Multifaceted Advantages, Limitations, and Future Directions of 3D Printing Technology. Cureus 2024; 16:e60201. [PMID: 38868274 PMCID: PMC11167579 DOI: 10.7759/cureus.60201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
In the evolving field of orthopedic surgery, the integration of three-dimensional printing (3D printing) has emerged as a transformative technology, particularly in addressing the rising incidence of degenerative joint diseases. The integration of 3D printing technology in hip arthroplasty offers substantial advantages throughout the surgical process. In preoperative planning, 3D models enable meticulous assessments, aiding in accurate implant selection and precise surgical strategies. Intraoperatively, the technology contributes to precise prosthesis design, reducing operation duration, X-ray exposures, and blood loss. Beyond surgery, 3D printing revolutionizes medical equipment production, imaging, and implant design, showcasing benefits such as enhanced osseointegration and reduced stress shielding with titanium cups. Challenges include a higher risk of postoperative infection due to the porous surfaces of 3D-printed implants, technical complexities in the printing process, and the need for skilled manpower. Despite these challenges, the evolving nature of 3D printing technologies underscores the importance of relying on existing orthopedic surgical practices while emphasizing the need for standardized guidelines to fully harness its potential in improving patient care.
Collapse
Affiliation(s)
- Wael Barakeh
- Orthopedic Surgery, American University of Beirut, Beirut, LBN
| | - Omar Zein
- Orthopedic Surgery, American University of Beirut, Beirut, LBN
| | - Maya Hemdanieh
- Orthopedic Surgery, American University of Beirut, Beirut, LBN
| | - Bshara Sleem
- Orthopedic Surgery, American University of Beirut, Beirut, LBN
| | | |
Collapse
|
3
|
Yuste I, Luciano FC, Anaya BJ, Sanz-Ruiz P, Ribed-Sánchez A, González-Burgos E, Serrano DR. Engineering 3D-Printed Advanced Healthcare Materials for Periprosthetic Joint Infections. Antibiotics (Basel) 2023; 12:1229. [PMID: 37627649 PMCID: PMC10451995 DOI: 10.3390/antibiotics12081229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
The use of additive manufacturing or 3D printing in biomedicine has experienced fast growth in the last few years, becoming a promising tool in pharmaceutical development and manufacturing, especially in parenteral formulations and implantable drug delivery systems (IDDSs). Periprosthetic joint infections (PJIs) are a common complication in arthroplasties, with a prevalence of over 4%. There is still no treatment that fully covers the need for preventing and treating biofilm formation. However, 3D printing plays a major role in the development of novel therapies for PJIs. This review will provide a deep understanding of the different approaches based on 3D-printing techniques for the current management and prophylaxis of PJIs. The two main strategies are focused on IDDSs that are loaded or coated with antimicrobials, commonly in combination with bone regeneration agents and 3D-printed orthopedic implants with modified surfaces and antimicrobial properties. The wide variety of printing methods and materials have allowed for the manufacture of IDDSs that are perfectly adjusted to patients' physiognomy, with different drug release profiles, geometries, and inner and outer architectures, and are fully individualized, targeting specific pathogens. Although these novel treatments are demonstrating promising results, in vivo studies and clinical trials are required for their translation from the bench to the market.
Collapse
Affiliation(s)
- Iván Yuste
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
| | - Francis C. Luciano
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
| | - Brayan J. Anaya
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
| | - Pablo Sanz-Ruiz
- Orthopaedic and Trauma Department, Hospital General Universitario Gregorio Marañón, 28029 Madrid, Spain;
- Department of Surgery, Faculty of Medicine, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Almudena Ribed-Sánchez
- Hospital Pharmacy Unit, Hospital General Universitario Gregorio Marañón, 28029 Madrid, Spain;
| | - Elena González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Dolores R. Serrano
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
- Instituto Universitario de Farmacia Industrial, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| |
Collapse
|
4
|
Li Z, Xu C, Chen J. Articulating spacers: what are available and how to utilize them? ARTHROPLASTY 2023; 5:22. [PMID: 37032343 PMCID: PMC10084623 DOI: 10.1186/s42836-023-00167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/16/2023] [Indexed: 04/11/2023] Open
Abstract
Periprosthetic joint infection (PJI) is the most devastating complication following total joint arthroplasty (TJA) and is posing a global healthcare challenge as the demand for TJA mounts. Two-stage exchange arthroplasty with the placement of antibiotic-loaded spacers has been shown to be efficacious against chronic PJI. This study aimed to review the key concepts, types, and outcome evaluations of articulating spacers in the two-stage exchange for PJI. Previous studies indicated that articulating spacers have been widely used due to better functional improvement and a comparable infection control rate relative to static spacers. Several types of articulating spacers are reportedly available, including hand-made spacers, spacers fashioned from molds, commercially preformed spacers, spacers with additional metal or polyethylene elements, new or autoclaved prosthesis, custom-made articulating spacers, and 3D printing-assisted spacers. However, limited evidence suggested no significant difference in clinical outcomes among the different subtypes of articulating spacers. Surgeons should be familiar with different treatment strategies when using various spacers to know which is the most appropriate.
Collapse
Affiliation(s)
- Zhuo Li
- School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chi Xu
- Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Jiying Chen
- Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
5
|
Evaluating the Performance of 3D-Printed PLA Reinforced with Date Pit Particles for Its Suitability as an Acetabular Liner in Artificial Hip Joints. Polymers (Basel) 2022; 14:polym14163321. [PMID: 36015578 PMCID: PMC9416500 DOI: 10.3390/polym14163321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Off-the-shelf hip joints are considered essential parts in rehabilitation medicine that can help the disabled. However, the failure of the materials used in such joints can cause individual discomfort. In support of the various motor conditions of the influenced individuals, the aim of the current research is to develop a new composite that can be used as an acetabular liner inside the hip joint. Polylactic acid (PLA) can provide the advantage of design flexibility owing to its well-known applicability as a 3D printed material. However, using PLA as an acetabular liner is subject to limitations concerning mechanical properties. We developed a complete production process of a natural filler, i.e., date pits. Then, the PLA and date pit particles were extruded for homogenous mixing, producing a composite filament that can be used in 3D printing. Date pit particles with loading fractions of 0, 2, 4, 6, 8, and 10 wt.% are dispersed in the PLA. The thermal, physical, and mechanical properties of the PLA–date pit composites were estimated experimentally. The incorporation of date pit particles into PLA enhanced the compressive strength and stiffness but resulted in a reduction in the elongation and toughness. A finite element model (FEM) for hip joints was constructed, and the contact stresses on the surface of the acetabular liner were evaluated. The FEM results showed an enhancement in the composite load carrying capacity, in agreement with the experimental results.
Collapse
|
6
|
Pinho LAG, Gratieri T, Gelfuso GM, Marreto RN, Cunha-Filho M. Three-dimensional printed personalized drug devices with anatomical fit: a review. J Pharm Pharmacol 2021; 74:1391-1405. [PMID: 34665263 DOI: 10.1093/jpp/rgab146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/24/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Three-dimensional printing (3DP) has opened the era of drug personalization, promising to revolutionize the pharmaceutical field with improvements in efficacy, safety and compliance of the treatments. As a result of these investigations, a vast therapeutic field has opened for 3DP-loaded drug devices with an anatomical fit. Along these lines, innovative dosage forms, unimaginable until recently, can be obtained. This review explores 3DP-engineered drug devices described in recent research articles, as well as in patented inventions, and even devices already produced by 3DP with drug-loading potential. KEY FINDINGS 3D drug-loaded stents, implants and prostheses are reviewed, along with devices produced to fit hard-to-attach body parts such as nasal masks, vaginal rings or mouthguards. The most promising 3DP techniques for such devices and the complementary technologies surrounding these inventions are also discussed, particularly the scanners useful for mapping body parts. Health regulatory concerns regarding the new use of such technology are also analysed. SUMMARY The scenario discussed in this review shows that for wearable 3DP drug devices to become a tangible reality to users, it will be necessary to overcome the existing regulatory barriers, create new interfaces with electronic systems and improve the mapping mechanisms of body surfaces.
Collapse
Affiliation(s)
- Ludmila A G Pinho
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Ricardo Neves Marreto
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| |
Collapse
|
7
|
Liang S, Xie J, Wang F, Jing J, Li J. Application of three-dimensional printing technology in peripheral hip diseases. Bioengineered 2021; 12:5883-5891. [PMID: 34477478 PMCID: PMC8806600 DOI: 10.1080/21655979.2021.1967063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The incidence of peripheral hip diseases is increasing every year, and its treatment is always tricky due to the complexity of hip joint anatomy and a variety of surgical methods. This paper summarizes the application research and progress of three-dimensional (3D) printing technology in different peripheral hip diseases in recent years published by PubMed from January 2017 to July 2021 with the search terms including “3D or three-dimensional, print*, and hip*. In general, the application of 3D printing technology is mainly to print bone models of patients, make surgical plans, and simulate pre-operation, customized surgical navigation templates for precise positioning or targeted resection of tissue or bone, and customized patient-specific instruments (PSI) fully conforms to the patient’s anatomical morphology. It mainly reduces operative time, intraoperative blood loss, and improves joint function. Consequently, 3D printing technology can be customized according to the patient’s disease condition, which provides a new option for treating complex hip diseases and has excellent application and development potential.
Collapse
Affiliation(s)
- Shuai Liang
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jia Xie
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fangyuan Wang
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Juehua Jing
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jun Li
- Department of Orthopedics, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
8
|
Cui M, Pan H, Li L, Fang D, Sun H, Qiao S, Li X, Pan W. Exploration and Preparation of Patient-specific Ciprofloxacin Implants Drug Delivery System Via 3D Printing Technologies. J Pharm Sci 2021; 110:3678-3689. [PMID: 34371072 DOI: 10.1016/j.xphs.2021.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022]
Abstract
A suitable drug-loaded implant delivery system that can effectively release antibacterial drug in the postoperative lesion area and help repair bone infection is very significant in the clinical treatment of bone defect. The work was aimed to investigate the feasibility of applying three-dimensional (3D) printing technology to prepare drug-loaded implants for bone repair. Semi-solid extrusion (SSE) and Fuse deposition modeling® (FDM) technologies were implemented and ciprofloxacin (CIP) was chosen as the model drug. All of the implants exhibited a smooth surface, good mechanical properties and satisfactory structural integrity as well as accurate dimensional size. In vitro drug release showed that the implants made by 3D printing technologies slowed down the initial drug burst effect and expressed a long-term sustained release behavior, compared with the implants prepared with traditional method. In addition, the patient-specific macrostructure implants, consisting of interconnected and different shapes pores, were created using unique lay down patterns. As a result, the weakest burst release effect and the sustained drug release were achieved in the patient-specific implants with linear pattern. These results clearly stated that 3D printing technology offers a viable approach to prepare control-releasing implants with patient-specific macro-porosity and presents novel strategies for treating bone infections.
Collapse
Affiliation(s)
- Mengsuo Cui
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Hao Pan
- School of Pharmacy, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Lu Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Dongyang Fang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Haowei Sun
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Sen Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xin Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
9
|
Zimmerling A, Chen X. Bioprinting for combating infectious diseases. BIOPRINTING (AMSTERDAM, NETHERLANDS) 2020; 20:e00104. [PMID: 33015403 PMCID: PMC7521216 DOI: 10.1016/j.bprint.2020.e00104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022]
Abstract
Infectious diseases have the ability to impact health on a global scale, as is being demonstrated by the current coronavirus disease 2019 (COVID-19) pandemic. The strenuous circumstances related to this global health crisis have been highlighting the challenges faced by the biomedical field in combating infectious diseases. Notably, printing technologies have advanced rapidly over the last decades, allowing for the incorporation of living cells in the printing process (or bioprinting) to create constructs that are able to serve as in vitro tissue or virus-disease models in combating infectious diseases. This paper describes applications of bioprinting in addressing the challenges faced in combating infectious diseases, with a specific focus on in vitro modelling and on development of therapeutic agents and vaccines. Integration of these technologies may allow for a more efficient and effective response to current and future pandemics.
Collapse
Affiliation(s)
- Amanda Zimmerling
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
10
|
Durga Prasad Reddy R, Sharma V. Additive manufacturing in drug delivery applications: A review. Int J Pharm 2020; 589:119820. [DOI: 10.1016/j.ijpharm.2020.119820] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
|
11
|
Kumar P, Vatsya P, Rajnish RK, Hooda A, Dhillon MS. Application of 3D Printing in Hip and Knee Arthroplasty: A Narrative Review. Indian J Orthop 2020; 55:14-26. [PMID: 34122751 PMCID: PMC8149509 DOI: 10.1007/s43465-020-00263-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/14/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Ideal surgical positioning and placement of implants during arthroplasty are crucial for long-term survival and optimal functional outcomes. Inadequate bone stock or defects, and anatomical variations can influence the outcomes. Three-dimensional printing (3DP) is an evolving technology that could provide patient-specific instrumentation and implants for arthroplasty, taking into account anatomical variations and defects. However, its application in this field is still not adequately studied and described. The present review was conceptualised to assess the practicality, the pros and cons and the current status of usage of 3DP in the field of hip and knee arthroplasties and joint reconstruction surgeries. METHODS A PubMed database search was conducted and a total number of 135 hits were obtained, out of which only 30 articles were relevant. These 30 studies were assessed to obtain the qualitative evidence of the applicability and the current status of 3D printing in arthroplasty. RESULTS Currently, 3DP is used for preoperative planning with 3D models, to assess bone defects and anatomy, to determine the appropriate cuts and to develop patient-specific instrumentation and implants (cages, liners, tibial base plates, femoral stem). Its models can be used for teaching and training young surgeons, as well as patient education regarding the surgical complexities. The outcomes of using customised instrumentations and implants have been promising and 3D printing can evolve into routine practice in the years to come. CONCLUSION 3D printing in arthroplasty is an evolving field with promising results; however, current evidence is insufficient to determine significant advantages that can be termed cost effective and readily available.
Collapse
Affiliation(s)
- Prasoon Kumar
- Department of Orthopaedics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pulak Vatsya
- Department of Orthopaedics, All India Institute of Medical Science, New Delhi, India
| | - Rajesh Kumar Rajnish
- Department of Orthopaedics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aman Hooda
- Department of Orthopaedics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mandeep S. Dhillon
- Department of Orthopaedics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
12
|
Melocchi A, Uboldi M, Cerea M, Foppoli A, Maroni A, Moutaharrik S, Palugan L, Zema L, Gazzaniga A. A Graphical Review on the Escalation of Fused Deposition Modeling (FDM) 3D Printing in the Pharmaceutical Field. J Pharm Sci 2020; 109:2943-2957. [DOI: 10.1016/j.xphs.2020.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 01/02/2023]
|
13
|
Ranganathan SI, Kohama C, Mercurio T, Salvatore A, Benmassaoud MM, Kim TWB. Effect of temperature and ultraviolet light on the bacterial kill effectiveness of antibiotic-infused 3D printed implants. Biomed Microdevices 2020; 22:59. [PMID: 32845409 DOI: 10.1007/s10544-020-00512-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Drug eluting 3D printed polymeric implants have great potential in orthopaedic applications since they are relatively inexpensive and can be designed to be patient specific thereby providing quality care. Fused Deposition Modeling (FDM) and Stereolithography (SLA) are among the most popular techniques available to print such polymeric implants. These techniques facilitate introducing antibiotics into the material at microscales during the manufacturing stage and subsequently, the printed implants can be engineered to release drugs in a controlled manner. However, FDM uses high temperature to melt the filament as it passes through the nozzle and SLA relies on exposure to nanoscale wavelength ultraviolet (UV) light which can adversely affect the anti-bacterial effectiveness of the antibiotics. The focus of this article is two-fold: i) Examine the effect of high temperature on the bacterial kill-effectiveness of eluted antibiotics through Polycaprolactone (PCL) based femoral implants and ii) Examine the effect of exposure to ultraviolet (UV) light on the bacterial kill-effectiveness of eluted antibiotics through femoral implants made up of a composite resin with various weight fractions of Polyethylene Glycol (PEG) and Polyethylene Glycol Diacrylate (PEGDA). Results indicate that even after exposing doxycycline, vancomycin and cefazolin at different temperatures between 20oC and 230oC, the antibiotics did not lose their effectiveness (kill radius of at least 0.85 cm). For doxycycline infused implants exposed to UV light, it was seen that a resin with 20 % PEGDA and 80 % PEG had the highest efficacy (1.8 cm of kill radius) and the lowest efficacy was found in an implant with 100 % PEGDA (1.2 cm of kill radius).
Collapse
Affiliation(s)
- Shivakumar I Ranganathan
- Department of Mechanical Engineering, Virginia Tech, 7054 Haycock Road, Falls Church, VA, 22043, USA.
| | - Christopher Kohama
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA
| | - Theo Mercurio
- Department of Mechanical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA
| | - Alec Salvatore
- Department of Chemical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA
| | - Mohammed Mehdi Benmassaoud
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA
| | - Tae Won B Kim
- Department of Orthopaedic Surgery, Cooper University Health Care, 3 Cooper Plaza, Camden, NJ, 08103, USA
| |
Collapse
|
14
|
Xia RZ, Zhai ZJ, Chang YY, Li HW. Clinical Applications of 3-Dimensional Printing Technology in Hip Joint. Orthop Surg 2019; 11:533-544. [PMID: 31321905 PMCID: PMC6712410 DOI: 10.1111/os.12468] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/21/2018] [Accepted: 10/03/2018] [Indexed: 12/27/2022] Open
Abstract
Three‐dimensional (3D) printing is a digital rapid prototyping technology based on a discrete and heap‐forming principle. We identified 53 articles from PubMed by searching “Hip” and “Printing, Three‐Dimensional”; 52 of the articles were published from 2015 onwards and were, therefore, initially considered and discussed. Clinical application of the 3D printing technique in the hip joint mainly includes three aspects: a 3D‐printed bony 1:1 scale model, a custom prosthesis, and patient‐specific instruments (PSI). Compared with 2‐dimensional image, the shape of bone can be obtained more directly from a 1:1 scale model, which may be beneficial for preoperative evaluation and surgical planning. Custom prostheses can be devised on the basis of radiological images, to not only eliminate the fissure between the prosthesis and the patient's bone but also potentially resulting in the 3D‐printed prosthesis functioning better. As an alternative support to intraoperative computer navigation, PSI can anchor to a specially appointed position on the patient's bone to make accurate bone cuts during surgery following a precise design preoperatively. The 3D printing technique could improve the surgeon's efficiency in the operating room, shorten operative times, and reduce exposure to radiation. Well known for its customization, 3D printing technology presents new potential for treating complex hip joint disease.
Collapse
Affiliation(s)
- Run-Zhi Xia
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zan-Jing Zhai
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yong-Yun Chang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui-Wu Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Benmassaoud MM, Kohama C, Kim TWB, Kadlowec JA, Foltiny B, Mercurio T, Ranganathan SI. Efficacy of eluted antibiotics through 3D printed femoral implants. Biomed Microdevices 2019; 21:51. [PMID: 31203428 DOI: 10.1007/s10544-019-0395-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Costs associated with musculoskeletal diseases in the United States account for 5.7% of the Gross Domestic Product (GDP) (Weinstein et al. 2018). As such, there is a need to pursue new ideas in orthopaedic implants that can decrease cost and improve patient care. In the recent years, 3D printing of polymers using Fused Deposition Modeling (FDM) and metals using Direct Metal Laser Sintering (DMLS) has opened several exciting possibilities to create customized orthopaedic implants. Such implants can be engineered to release antibiotics in a controlled manner by infusing the drug into the material during manufacturing stage. However, the prevalence of high temperature could impact the anti-bacterial effectiveness of the eluted antibiotics in such implants. An alternative approach to circumvent this issue would be to modify the implant geometry to incorporate built-in design features such as micro-channels and reservoirs in which antibiotics can be introduced prior to the surgical procedure. Irrespective of the approach used, the ability of 3D printed orthopaedic implants to elute antibiotics, and the rate of elution are not well understood. The purpose of this article is to study the elution of doxycycline through 3D printed femoral implants using three different materials: Poly-Lactic Acid (PLA), Poly-Caprolactone (PCL) and Titanium grade Ti-6Al-4V. The PLA and Ti-6Al-4V implants were designed with built-in reservoirs and micro-channels in which doxycycline was introduced post the manufacturing stage. However, the PCL implants were printed from a PCL spool that was infused with doxycycline using an extruder. The PLA and Ti-6Al-4V experiments were run for a period of 31 days and the PCL experiment for one day. The antibacterial ability of eluted doxycycline from all implants were examined using Kirby-Bauer test on the bacteria E.coli k-12. The results show that most of doxycycline eluted through the three materials in the first 24 hours. After the initial spike, a steady release was achieved for the PLA and Ti-6Al-4V implants for 30 days. During this timeframe, Ti-6Al-4V implants released more doxycycline than the PLA implant. The eluted antibiotics through all the implants demonstrated the ability to kill bacteria in the subsequent Kirby-Bauer test. These outcomes show that irrespective of how the antibiotics were introduced, 3D printed polymeric and metallic implants have great potential in orthopaedic applications.
Collapse
Affiliation(s)
- Mohammed Mehdi Benmassaoud
- Department of Mechanical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA
| | - Christopher Kohama
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA
| | - Tae Won B Kim
- Department of Orthopaedic Surgery, Cooper University Health Care, 3 Cooper Plaza, Camden, NJ, 08103, USA
| | - Jennifer A Kadlowec
- Department of Mechanical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA.,Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA
| | - Brandon Foltiny
- Department of Mechanical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA
| | - Theo Mercurio
- Department of Mechanical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA
| | - Shivakumar I Ranganathan
- Department of Mechanical Engineering, Virginia Tech, 7054 Haycock Rd., Falls Church, VA, 22043, USA.
| |
Collapse
|
16
|
Ballard DH, Tappa K, Boyer CJ, Jammalamadaka U, Hemmanur K, Weisman JA, Alexander JS, Mills DK, Woodard PK. Antibiotics in 3D-printed implants, instruments and materials: benefits, challenges and future directions. JOURNAL OF 3D PRINTING IN MEDICINE 2019; 3:83-93. [PMID: 31258936 PMCID: PMC6587109 DOI: 10.2217/3dp-2019-0007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/23/2019] [Indexed: 04/17/2023]
Abstract
3D printing is an additive manufacturing technology, which permits innovative approaches for incorporating antibiotics into 3D printed constructs. Antibiotic-incorporating applications in medicine have included medical implants, prostheses, along with procedural and surgical instruments. 3D-printed antibiotic-impregnated devices offer the advantages of increased surface area for drug distribution, sequential layers of antibiotics produced through layer-by-layer fabrication, and the ability to rapidly fabricate constructs based on patient-specific anatomies. To date, fused deposition modeling has been the main 3D printing method used to incorporate antibiotics, although inkjet and stereolithography techniques have also been described. This review offers a state-of-the-art summary of studies that incorporate antibiotics into 3D-printed constructs and summarizes the rationale, challenges, and future directions for the potential use of this technology in patient care.
Collapse
Affiliation(s)
- David H Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- Author for correspondence: Tel.: +1 314 226 5464; Fax: +1 314 747 4671;
| | - Karthik Tappa
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Christen J Boyer
- Department of Molecular & Cellular Physiology, Louisiana State University Health Shreveport, LA 71103, USA
| | - Udayabhanu Jammalamadaka
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Kavya Hemmanur
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jeffery A Weisman
- University of Illinois at Chicago Occupational Medicine, Chicago, IL 60612, USA
| | - Jonathan S Alexander
- Department of Molecular & Cellular Physiology, Louisiana State University Health Shreveport, LA 71103, USA
| | - David K Mills
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272, USA
| | - Pamela K Woodard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
17
|
Narra SP, Mittwede PN, DeVincent Wolf S, Urish KL. Additive Manufacturing in Total Joint Arthroplasty. Orthop Clin North Am 2019; 50:13-20. [PMID: 30477702 PMCID: PMC6555404 DOI: 10.1016/j.ocl.2018.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Additive manufacturing (AM) has demonstrated the potential to revolutionize manufacturing for various applications across the medical, aerospace, automobile, and energy sectors. It is a layer-by-layer manufacturing process in which the computer-aided design model is sliced into layers and each layer is deposited successively to realize the final product. This article provides a general overview of AM and discusses current state-of-the-art AM methodologies as they apply to total joint arthroplasty. Specifically, details on their applications and current challenges are summarized to provide orthopedic surgeons with a basic understanding of current and potential applications of AM in total joint arthroplasty.
Collapse
Affiliation(s)
- Sneha Prabha Narra
- NextManufacturing Center, College of Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA,Corresponding author.
| | - Peter N. Mittwede
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Suite 1010, Pittsburgh, PA 15213, USA
| | - Sandra DeVincent Wolf
- NextManufacturing Center, College of Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Kenneth L. Urish
- Department of Orthopaedic Surgery, Arthritis and Arthroplasty Design Group, Magee-Womens Hospital, University of Pittsburgh School of Medicine, 300 Halket Street, Pittsburgh, PA 15213, USA,The Bone and Joint Center, Magee-Womens Hospital, University of Pittsburgh School of Medicine, 300 Halket Street, Pittsburgh, PA 15213, USA
| |
Collapse
|