1
|
Oberman K, van Leeuwen BL, Nabben M, Villafranca JE, Schoemaker RG. J147 affects cognition and anxiety after surgery in Zucker rats. Physiol Behav 2024; 273:114413. [PMID: 37989448 DOI: 10.1016/j.physbeh.2023.114413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/15/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
Vulnerable patients are at risk for neuroinflammation-mediated post-operative complications, including depression (POD) and cognitive dysfunction (POCD). Zucker rats, expressing multiple risk factors for post-operative complications in humans, may provide a clinically relevant model to study pathophysiology and explore potential interventions. J147, a newly developed anti-dementia drug, was shown to prevent POCD in young healthy rats, and improved early post-surgical recovery in Zucker rats. Aim of the present study was to investigate POCD and the therapeutic potential of J147 in male Zucker rats. Risk factors in the Zucker rat strain were evaluated by comparison with lean littermates. Zucker rats were subjected to major abdominal surgery. Acute J147 treatment was provided by a single iv injection (10 mg/kg) at the start of surgery, while chronic J147 treatment was provided in the food (aimed at 30 mg/kg/day), starting one week before surgery and up to end of protocol. Effects on behavior were assessed, and plasma, urine and brain tissue were collected and processed for immunohistochemistry and molecular analyses. Indeed, Zucker rats displayed increased risk factors for POCD, including obesity, high plasma triglycerides, low grade systemic inflammation, impaired spatial learning and decreased neurogenesis. Surgery in Zucker rats reduced exploration and increased anxiety in the Open Field test, impaired short-term spatial memory, induced a shift in circadian rhythm and increased plasma neutrophil gelatinase-associated lipocalin (NGAL), microglia activity in the CA1 and blood brain barrier leakage. Chronic, but not acute J147 treatment reduced anxiety in the Open Field test and protected against the spatial memory decline. Moreover, chronic J147 increased glucose sensitivity. Acute J147 treatment improved long-term spatial memory and reversed the circadian rhythm shift. No anti-inflammatory effects were seen for J147. Although Zucker rats displayed risk factors, surgery did not induce extensive POCD. However, increased anxiety may indicate POD. Treatment with J147 showed positive effects on behavioral and metabolic parameters, but did not affect (neuro)inflammation. The mixed effect of acute and chronic treatment may suggest a combination for optimal treatment.
Collapse
Affiliation(s)
- K Oberman
- Department of Molecular Neurobiology, GELIFES, University of Groningen, the Netherlands.
| | - B L van Leeuwen
- Department of Surgery, University Medical Center Groningen, the Netherlands
| | - M Nabben
- Departments of Genetics & Cell Biology and Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - J E Villafranca
- Abrexa Pharmaceuticals Inc., San Diego, United States of America
| | - R G Schoemaker
- Department of Molecular Neurobiology, GELIFES, University of Groningen, the Netherlands; University Medical Center Groningen, the Netherlands
| |
Collapse
|
2
|
Qiu F, Wang Y, Du Y, Zeng C, Liu Y, Pan H, Ke C. Current evidence for J147 as a potential therapeutic agent in nervous system disease: a narrative review. BMC Neurol 2023; 23:317. [PMID: 37674139 PMCID: PMC10481599 DOI: 10.1186/s12883-023-03358-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
Curcumin has anti-inflammatory, antioxidant, and anticancer effects and is used to treat diseases such as dermatological diseases, infection, stress, depression, and anxiety. J147, an analogue of curcumin, is designed and synthesized with better stability and bioavailability. Accumulating evidence demonstrates the potential role of J147 in the prevention and treatment of Alzheimer's disease, diabetic neuropathy, ischemic stroke, depression, anxiety, and fatty liver disease. In this narrative review, we summarized the background and biochemical properties of J147 and discussed the role and mechanism of J147 in different diseases. Overall, the mechanical attributes of J147 connote it as a potential target for the prevention and treatment of neurological diseases.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Yanmei Wang
- Department of critical care medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yunbo Du
- Department of critical care medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, Guangdong, China
| | - Yuqiang Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518025, Guangdong, China.
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| | - Changneng Ke
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China.
| |
Collapse
|
3
|
Kehinde IA, Egbeyemi A, Kaur M, Onyenaka C, Adebusuyi T, Olaleye OA. Inhibitory mechanism of clioquinol and its derivatives at the exopeptidase site of human angiotensin-converting enzyme-2 and receptor binding domain of SARS-CoV-2 viral spike. J Biomol Struct Dyn 2023; 41:2992-3001. [PMID: 35220925 PMCID: PMC11371071 DOI: 10.1080/07391102.2022.2043938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
The outbreak of SARS-CoV-2 infections around the world has prompted scientists to explore different approaches to develop therapeutics against COVID-19. This study focused on investigating the mechanism of inhibition of clioquinol (CLQ) and its derivatives (7-bromo-5-chloro-8-hydroxyquinoline (CLBQ), 5, 7-Dichloro-8-hydroxyquinoline (CLCQ)) against the viral glycoprotein, and human angiotensin-converting enzyme-2 (hACE-2) involved in SARS-CoV-2 entry. The drugs were docked at the exopeptidase site of hACE-2 and receptor binding domain (RBD) sites of SARS-CoV-2 Sgp to calculate the binding affinity of the drugs. To understand and establish the inhibitory characteristics of the drugs, molecular dynamic (MD) simulation of the best fit docking complex performed. Evaluation of the binding energies of the drugs to hACE-2 after 100 ns MD simulations revealed CLQ to have the highest binding energy value of -40.4 kcal/mol close to MLN-7640 (-45.4 kcal/mol), and higher than the exhibited values for its derivatives: CLBQ (-34.5 kcal/mol) and CLCQ (-24.8 kcal/mol). This suggests that CLQ and CLBQ bind more strongly at the exopeptidase site than CLCQ. Nevertheless, the evaluation of binding affinity of the drugs to SARS-CoV-2 Sgp showed the drugs are weakly bound at the RBD site, with CLBQ, CLCQ, CLQ exhibiting relatively low energy values of -16.8 kcal/mol, -16.34 kcal/mol, -12.5 kcal/mol, respectively compared to the reference drug, Bisoxatin (BSX), with a value of -25.8 kcal/mol. The structural analysis further suggests decrease in systems stability and explain the mechanism of inhibition of clioquinol against SARS-CoV-2 as reported in previous in vitro study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Idowu A Kehinde
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, TX, USA
| | - Anu Egbeyemi
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, TX, USA
| | - Manvir Kaur
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, TX, USA
| | - Collins Onyenaka
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, TX, USA
| | - Tolulope Adebusuyi
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, TX, USA
| | - Omonike A Olaleye
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, TX, USA
| |
Collapse
|
4
|
Identification of New Drug Target in Staphylococcus lugdunensis by Subtractive Genomics Analysis and Their Inhibitors through Molecular Docking and Molecular Dynamic Simulation Studies. Bioengineering (Basel) 2022; 9:bioengineering9090451. [PMID: 36134997 PMCID: PMC9496018 DOI: 10.3390/bioengineering9090451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus lugdunensis is a coagulase-negative, Gram-positive, and human pathogenic bacteria. S. lugdunensis is the causative agent of diseases, such as native and prosthetic valve endocarditis, meningitis, septic arthritis, skin abscesses, brain abscess, breast abscesses, spondylodiscitis, post-surgical wound infections, bacteremia, and peritonitis. S. lugdunensis displays resistance to beta-lactam antibiotics due to the production of beta-lactamases. This study aimed to identify potential novel essential, human non-homologous, and non-gut flora drug targets in the S. lugdunensis strain N920143, and to evaluate the potential inhibitors of drug targets. The method was concerned with a homology search between the host and the pathogen proteome. Various tools, including the DEG (database of essential genes) for the essentiality of proteins, the KEGG for pathways analysis, CELLO V.2.5 for cellular localization prediction, and the drug bank database for predicting the druggability potential of proteins, were used. Furthermore, a similarity search with gut flora proteins was performed. A DNA-binding response-regulator protein was identified as a novel drug target against the N920143 strain of S. lugdunensis. The three-dimensional structure of the drug target was modelled and validated with the help of online tools. Furthermore, ten thousand drug-like compounds were retrieved from the ZINC15 database. The molecular docking approach for the DNA-binding response-regulator protein identified ZINC000020192004 and ZINC000020530348 as the most favorable compounds to interact with the active site residues of the drug target. These two compounds were subjected to an MD simulation study. Our analysis revealed that the identified compounds revealed more stable behavior when bound to the drug target DNA-binding response-regulator protein than the apostate.
Collapse
|
5
|
Uhomoibhi JOO, Shode FO, Idowu KA, Sabiu S. Molecular modelling identification of phytocompounds from selected African botanicals as promising therapeutics against druggable human host cell targets of SARS-CoV-2. J Mol Graph Model 2022; 114:108185. [PMID: 35430474 PMCID: PMC9002601 DOI: 10.1016/j.jmgm.2022.108185] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022]
Abstract
The coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is highly pathogenic and transmissible. It is mediated by the binding of viral spike proteins to human cells via entry and replication processes involving human angiotensin converting enzyme-2 (hACE2), transmembrane serine protease (TMPRSS2) and cathepsin L (Cath L). The identification of novel therapeutics that can modulate viral entry or replication has been of research interest and would be germane in managing COVID-19 subjects. This study investigated the structure-activity relationship inhibitory potential of 99 phytocompounds from selected African botanicals with proven therapeutic benefits against respiratory diseases focusing on SARS-CoV-2's human cell proteins (hACE2, TMPRSS2, and Cathepsin L) as druggable targets using computational methods. Evaluation of the binding energies of the phytocompounds showed that two compounds, Abrusoside A (-63.393 kcal/mol) and Kaempferol-3-O-rutinoside (-58.939 kcal/mol) had stronger affinity for the exopeptidase site of hACE2 compared to the reference drug, MLN-4760 (-54.545 kcal/mol). The study further revealed that Verbascoside (-63.338 kcal/mol), Abrectorin (-37.880 kcal/mol), and Friedelin (-36.989 kcal/mol) are potential inhibitors of TMPRSS2 compared to Nafamostat (-36.186 kcal/mol), while Hemiphloin (-41.425 kcal/mol), Quercetin-3-O-rutinoside (-37.257 kcal/mol), and Myricetin-3-O-galactoside (-36.342 kcal/mol) are potential inhibitors of Cathepsin L relative to Bafilomycin A1 (-38.180 kcal/mol). The structural analysis suggests that these compounds do not compromise the structural integrity of the proteins, but rather stabilized and interacted well with the active site amino acid residues critical to inhibition of the respective proteins. Overall, the findings from this study are suggestive of the structural mechanism of inhibitory action of the identified leads against the proteins critical for SARS-CoV-2 to enter the human host cell. While the study has lent credence to the significant role the compounds could play in developing potent SARS-CoV-2 candidate drugs against COVID-19, further structural refinement, and modifications of the compounds for subsequent in vitro as well as preclinical and clinical evaluations are underway.
Collapse
Affiliation(s)
- John Omo-Osagie Uhomoibhi
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Francis Oluwole Shode
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Kehinde Ademola Idowu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
6
|
Ogidigo JO, Iwuchukwu EA, Ibeji CU, Okpalefe O, Soliman MES. Natural phyto, compounds as possible noncovalent inhibitors against SARS-CoV2 protease: computational approach. J Biomol Struct Dyn 2022; 40:2284-2301. [PMID: 33103616 PMCID: PMC7596894 DOI: 10.1080/07391102.2020.1837681] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/11/2020] [Indexed: 11/24/2022]
Abstract
At present, there is no cure or vaccine for the devastating new highly infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has affected people globally. Herein, we identified potent phytocompounds from two antiviral plants Momordica charantia L. and Azadirachta indica used locally for the treatment of viral and parasitic infections. Structure-based virtual screening and molecular dynamics (MD) simulation have been employed to study their inhibitory potential against the main protease (Mpro) SARS-CoV-2. A total of 86 compounds from M. charantia L. and A. indica were identified. The top six phytocompounds; momordicine, deacetylnimninene, margolonone, momordiciode F2, nimbandiol, 17-hydroxyazadiradione were examined and when compared with three FDA reference drugs (remdesivir, hydroxychloroquine and ribavirin). The top six ranked compounds and FDA drugs were then subjected to MD simulation and pharmacokinetic studies. These phytocompounds showed strong and stable interactions with the active site amino acid residues of SARS-CoV-2 Mpro similar to the reference compound. Results obtained from this study showed that momordicine and momordiciode F2 exhibited good inhibition potential (best MMGBA-binding energies; -41.1 and -43.4 kcal/mol) against the Mpro of SARS-CoV-2 when compared with FDA reference anti-viral drugs (Ribavirin, remdesivir and hydroxychloroquine). Per-residue analysis, root mean square deviation and solvent-accessible surface area revealed that compounds interacted with key amino acid residues at the active site of the enzyme and showed good system stability. The results obtained in this study show that these phytocompounds could emerge as promising therapeutic inhibitors for the Mpro of SARS-CoV-2. However, urgent trials should be conducted to validate this outcome.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Joyce Oloaigbe Ogidigo
- Bio-resources Development Centre, National Biotechnology Development Agency, Abuja, Nigeria
- Genetics, Genomics and Bioinformatics Department, National Biotechnology Development Agency, Abuja, Nigeria
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Emmanuel A. Iwuchukwu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Collins U. Ibeji
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Okiemute Okpalefe
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Mahmoud E. S. Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
7
|
Oluyemi WM, Samuel BB, Adewumi AT, Adekunle YA, Soliman MES, Krenn L. An Allosteric Inhibitory Potential of Triterpenes from Combretum racemosum on the Structural and Functional Dynamics of Plasmodium falciparum Lactate Dehydrogenase Binding Landscape. Chem Biodivers 2022; 19:e202100646. [PMID: 34982514 DOI: 10.1002/cbdv.202100646] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/29/2021] [Indexed: 12/28/2022]
Abstract
Multidrug resistance is a significant drawback in malaria treatment, and mutations in the active sites of the many critical antimalarial drug targets have remained challenging. Therefore, this has necessitated the global search for new drugs with new mechanisms of action. Plasmodium falciparum lactate dehydrogenase (pfLHD), a glycolytic enzyme, has emerged as a potential target for developing new drugs due to the parasite reliance on glycolysis for energy. Strong substrate-binding is required in pfLDH enzymatic catalysis; however, there is a lack of information on small molecules' inhibitory mechanism bound to the substrate-binding pocket. Therefore, this study investigated a potential allosteric inhibition of pfLDH by targeting the substrate-binding site. The structural and functional behaviour of madecassic acid (MA), the most promising among the six triterpenes bound to pfLDH, were unravelled using molecular dynamic simulations at 300 ns to gain insights into its mechanism of binding and inhibition and chloroquine as a standard drug. The docking studies identified that the substrate site has the preferred position for the compounds even in the absence of a co-factor. The bound ligands showed comparably higher binding affinity at the substrate site than at the co-factor site. Mechanistically, a characteristic loop implicated in the enzyme catalytic activity was identified at the substrate site. This loop accommodates key interacting residues (LYS174, MET175, LEU177 and LYS179) pivotal in the MA binding and inhibitory action. The MA-bound pfLHD average RMSD (1.60 Å) relative to chloroquine-bound pfLHD RMSD (2.00 Å) showed higher stability for the substrate pocket, explaining the higher binding affinity (-33.40 kcal/mol) observed in the energy calculations, indicating that MA exhibited profound inhibitory activity. The significant pfLDH loop conformational changes and the allostery substrate-binding landscape suggested inhibiting the enzyme function, which provides an avenue for designing antimalarial compounds in the future studies of pfLDH protein as a target.
Collapse
Affiliation(s)
- Wande M Oluyemi
- Laboratory for Natural Products and Biodiscovery Research, Pharmaceutical Chemistry Department, Faculty of Pharmacy, University of Ibadan, Nigeria
| | - Babatunde B Samuel
- Laboratory for Natural Products and Biodiscovery Research, Pharmaceutical Chemistry Department, Faculty of Pharmacy, University of Ibadan, Nigeria
| | - Adeniyi T Adewumi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Yemi A Adekunle
- Laboratory for Natural Products and Biodiscovery Research, Pharmaceutical Chemistry Department, Faculty of Pharmacy, University of Ibadan, Nigeria.,Department of Pharmaceutical Chemistry, Dora Akunyili College of Pharmacy, Igbinedion University, Okada, Benin City, Nigeria
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Liselotte Krenn
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| |
Collapse
|
8
|
Ajadi MB, Soremekun OS, Adewumi AT, Kumalo HM, Soliman MES. Leveraging on Active Site Similarities; Identification of Potential Inhibitors of Zinc-Finger and UFSP domain Protein (ZUFSP). Curr Pharm Biotechnol 2021; 22:995-1004. [PMID: 32744966 DOI: 10.2174/1389201021666200730151218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/30/2020] [Accepted: 06/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND ZUFSP (Zinc-finger and UFSP domain protein) is a novel representative member of the recently characterized seventh class of deubiquitinating enzymes (DUBs). Due to the roles DUBs play in genetic instability, they have become a major drug target in cancer and neurodegenerative diseases. ZUFSP, being a DUB enzyme has also been implicated in genetic stability. However, no lead compound has been developed to target ZUFSP. OBJECTIVE/METHODS Therefore, in this study, we used a combined drug repurposing, virtual screening and per-Residue Energy Decomposition (PRED) to identify ZUFSP inhibitors with therapeutic potential. 3-bromo-6-{[4-hydroxy-1-3(3-phenylbutanoyl)piperidin-4-yl]methyl}-4H,5H,6H,7H-thieno[2,3- C]pyridine-7-one (BHPTP) which is an inhibitor of USP7 was repurposed to target ZUFSP. The rationale behind this is based on the similarity of the active between USP7 and ZUFSP. RESULTS PRED of the binding between BHPTP and ZUFSP revealed Cys223, Arg408, Met410, Asn460, and Tyr465 as the crucial residues responsible for this interaction. The pharmacophoric moieties of BHPTP responsible for this binding along with other physiochemical properties were used as a filter to retrieve potential ligands. 799 compounds were retrieved, ZINC083241427, ZINC063648749, and ZINC063648753 were selected due to the binding energy they exhibited. Cheminformatics analysis revealed that the compounds possess high membrane permeability, however, BHPTP had a low membrane permeability. Furthermore, the compounds are drug like, having obeyed Lipinski's rule of five. CONCLUSION Taken together, findings from this study put ZINC083241427, ZINC063648749, and ZINC063648753 as potential ZUFSP inhibitor, however, more experimental validation is required to unravel the mechanism of actions of these compounds.
Collapse
Affiliation(s)
- Mary B Ajadi
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Howard Campus, Durban 4000, South Africa
| | - Opeyemi S Soremekun
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Adeniyi T Adewumi
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Hezekiel M Kumalo
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Howard Campus, Durban 4000, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| |
Collapse
|
9
|
Could chroman-4-one derivative be a better inhibitor of PTR1? - Reason for the identified disparity in its inhibitory potency in Trypanosoma brucei and Leishmania major. Comput Biol Chem 2020; 90:107412. [PMID: 33199197 DOI: 10.1016/j.compbiolchem.2020.107412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 01/05/2023]
Abstract
Most notable Kinetoplastids are of the genus Trypanosoma and Leishmania, affecting several millions of humans in Africa and Latin America. Current therapeutic options are limited by several drawbacks, hence the need to develop more efficacious inhibitors. An investigation to decipher the mechanism behind greater inhibitory potency of a chroman-4-one derivative (compound 1) in Trypanosoma brucei pteridine reductase 1 (TbPTR1) and Leishmania major pteridine reductase 1 (LmPTR1) was performed. Estimation of ΔGbind revealed that compound 1 had a greater binding affinity in TbPTR1 with a ΔGbind value of -49.0507 Kcal/mol than -29.2292 Kcal/mol in LmPTR1. The ΔGbind in TbPTR1 were predominantly contributed by "strong" electrostatic energy compared to the "weak" van der Waals in LmPTR1. In addition to this, the NADPH cofactor contributed significantly to the total energy of TbPTR1. A characteristic weak aromatic π interaction common in PTR1 was more prominent in TbPTR1 than LmPTR1. The consistent occurrence of high-affinity conventional hydrogen bond interactions as well as a steady interaction of crucial active site residues like Arg14/Arg17, Ser95/Ser111, Phe97/Phe113 in TbPTR1/LmPTR1 with chroman-4-one moiety equally revealed the important role the moiety played in the activity of compound 1. Overall, the structural and conformational analysis of the active site residues in TbPTR1 revealed them to be more rigid than LmPTR1. This could be the mechanism of interaction TbPTR1 employs in exerting a greater potency than LmPTR1. These findings will further give insight that will be assistive in modifying compound 1 for better potency and the design of novel inhibitors of PTR1.
Collapse
|
10
|
Natural products and other inhibitors of F 1F O ATP synthase. Eur J Med Chem 2020; 207:112779. [PMID: 32942072 DOI: 10.1016/j.ejmech.2020.112779] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022]
Abstract
F1FO ATP synthase is responsible for the production of >95% of all ATP synthesis within the cell. Dysregulation of its expression, activity or localization is linked to various human diseases including cancer, diabetes, and Alzheimer's and Parkinson's disease. In addition, ATP synthase is a novel and viable drug target for the development of antimicrobials as evidenced by bedaquiline, which was approved in 2012 for the treatment of tuberculosis. Historically, natural products have been a rich source of ATP synthase inhibitors that help unravel the role of F1FO ATP synthase in cellular bioenergetics. During the last decade, new modulators of ATP synthase have been discovered through the isolation of novel natural products as well as through a ligand-based drug design process. In addition, new data has been obtained with regards to the structure and function of ATP synthase under physiological and pathological conditions. Crystal structure studies have provided a significant insight into the rotary function of the enzyme and may provide additional opportunities to design a new generation of inhibitors. This review provides an update on recently discovered ATP synthase modulators as well as an update on existing scaffolds.
Collapse
|
11
|
Ebanks B, Ingram TL, Chakrabarti L. ATP synthase and Alzheimer's disease: putting a spin on the mitochondrial hypothesis. Aging (Albany NY) 2020; 12:16647-16662. [PMID: 32853175 PMCID: PMC7485717 DOI: 10.18632/aging.103867] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022]
Abstract
It is estimated that over 44 million people across the globe have dementia, and half of these cases are believed to be Alzheimer’s disease (AD). As the proportion of the global population which is over the age 60 increases so will the number of individuals living with AD. This will result in ever-increasing demands on healthcare systems and the economy. AD can be either sporadic or familial, but both present with similar pathobiology and symptoms. Three prominent theories about the cause of AD are the amyloid, tau and mitochondrial hypotheses. The mitochondrial hypothesis focuses on mitochondrial dysfunction in AD, however little attention has been given to the potential dysfunction of the mitochondrial ATP synthase in AD. ATP synthase is a proton pump which harnesses the chemical potential energy of the proton gradient across the inner mitochondrial membrane (IMM), generated by the electron transport chain (ETC), in order to produce the cellular energy currency ATP. This review presents the evidence accumulated so far that demonstrates dysfunction of ATP synthase in AD, before highlighting two potential pharmacological interventions which may modulate ATP synthase.
Collapse
Affiliation(s)
- Brad Ebanks
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Thomas L Ingram
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK.,MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Chesterfield, UK
| |
Collapse
|