1
|
Wu Y, Xu LC, Yeager E, Beita KG, Crutchfield N, Wilson SN, Maffe P, Schmiedt C, Siedlecki CA, Handa H. In vivo assessment of dual-function submicron textured nitric oxide releasing catheters in a 7-day rabbit model. Acta Biomater 2024; 180:372-382. [PMID: 38614415 PMCID: PMC11146291 DOI: 10.1016/j.actbio.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
Catheter-induced thrombosis is a major contributor to infectious and mechanical complications of biomaterials that lead to device failure. Herein, a dualfunction submicron textured nitric oxide (NO)-releasing catheter was developed. The hemocompatibility and antithrombotic activity of vascular catheters were evaluated in both 20 h in vitro blood loop and 7 d in vivo rabbit model. Surface characterization assessments via atomic force microscopy show the durability of the submicron pattern after incorporation of NO donor S-nitroso-N-acetylpenicillamine (SNAP). The SNAP-doped catheters exhibited prolonged and controlled NO release mimicking the levels released by endothelium. Fabricated catheters showed cytocompatibility when evaluated against BJ human fibroblast cell lines. After 20h in vitro evaluation of catheters in a blood loop, textured-NO catheters exhibited a 13-times reduction in surface thrombus formation compared to the control catheters, which had 83% of the total area covered by clots. After the 7 d in vivo rabbit model, analysis on the catheter surface was examined via scanning electron microscopy, where significant reduction of platelet adhesion, fibrin mesh, and thrombi can be observed on the NO-releasing textured surfaces. Moreover, compared to relative controls, a 63% reduction in the degree of thrombus formation within the jugular vein was observed. Decreased levels of fibrotic tissue decomposition on the jugular vein and reduced platelet adhesion and thrombus formation on the texture of the NO-releasing catheter surface are indications of mitigated foreign body response. This study demonstrated a biocompatible and robust dual-functioning textured NO PU catheter in limiting fouling-induced complications for longer-term blood-contacting device applications. STATEMENT OF SIGNIFICANCE: Catheter-induced thrombosis is a major contributor to infectious and mechanical complications of biomaterials that lead to device failure. This study demonstrated a robust, biocompatible, dual-functioning textured nitric oxide (NO) polyurethane catheter in limiting fouling-induced complications for longer-term blood-contacting device applications. The fabricated catheters exhibited prolonged and controlled NO release that mimics endothelium levels. After the 7 d in vivo model, a significant reduction in platelet adhesion, fibrin mesh, and thrombi was observed on the NO-releasing textured catheters, along with decreased levels of fibrotic tissue decomposition on the jugular vein. Results illustrate that NO-textured catheter surface mitigates foreign body response.
Collapse
Affiliation(s)
- Yi Wu
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Li-Chong Xu
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States
| | - Eric Yeager
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States
| | - Keren Gabriela Beita
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| | - Natalie Crutchfield
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Sarah N Wilson
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Patrick Maffe
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Chad Schmiedt
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| | - Christopher A Siedlecki
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States; Department of Biomedical Engineering, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States.
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, United States; Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
2
|
Gędek A, Koziorowski D, Szlufik S. Assessment of factors influencing glymphatic activity and implications for clinical medicine. Front Neurol 2023; 14:1232304. [PMID: 37767530 PMCID: PMC10520725 DOI: 10.3389/fneur.2023.1232304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The glymphatic system is a highly specialized fluid transport system in the central nervous system. It enables the exchange of the intercellular fluid of the brain, regulation of the movement of this fluid, clearance of unnecessary metabolic products, and, potentially, brain immunity. In this review, based on the latest scientific reports, we present the mechanism of action and function of the glymphatic system and look at the role of factors influencing its activity. Sleep habits, eating patterns, coexisting stress or hypertension, and physical activity can significantly affect glymphatic activity. Modifying them can help to change lives for the better. In the next section of the review, we discuss the connection between the glymphatic system and neurological disorders. Its association with many disease entities suggests that it plays a major role in the physiology of the whole brain, linking many pathophysiological pathways of individual diseases.
Collapse
Affiliation(s)
- Adam Gędek
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- Praski Hospital, Warsaw, Poland
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Stanisław Szlufik
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Sagirov AF, Sergeev TV, Shabrov AV, Yurov AY, Guseva NL, Agapova EA. Postural influence on intracranial fluid dynamics: an overview. J Physiol Anthropol 2023; 42:5. [PMID: 37055862 PMCID: PMC10100470 DOI: 10.1186/s40101-023-00323-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/01/2023] [Indexed: 04/15/2023] Open
Abstract
This review focuses on the effects of different body positions on intracranial fluid dynamics, including cerebral arterial and venous flow, cerebrospinal fluid (CSF) hydrodynamics, and intracranial pressure (ICP). It also discusses research methods used to quantify these effects. Specifically, the implications of three types of body positions (orthostatic, supine, and antiorthostatic) on cerebral blood flow, venous outflow, and CSF circulation are explored, with a particular emphasis on cerebrovascular autoregulation during microgravity and head-down tilt (HDT), as well as posture-dependent changes in cerebral venous and CSF flow, ICP, and intracranial compliance (ICC). The review aims to provide a comprehensive analysis of intracranial fluid dynamics during different body positions, with the potential to enhance our understanding of intracranial and craniospinal physiology.
Collapse
Affiliation(s)
- Arlan Faritovich Sagirov
- Department of Ecological Physiology, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", 12 Academic Pavlov St, Saint-Petersburg, 197022, Russia.
| | - Timofey Vladimirovich Sergeev
- Department of Ecological Physiology, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", 12 Academic Pavlov St, Saint-Petersburg, 197022, Russia
| | - Aleksandr Vladimirovich Shabrov
- Department of Ecological Physiology, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", 12 Academic Pavlov St, Saint-Petersburg, 197022, Russia
| | - Andrey Yur'evich Yurov
- Department of Ecological Physiology, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", 12 Academic Pavlov St, Saint-Petersburg, 197022, Russia
| | - Nadezhda Leonidovna Guseva
- Department of Ecological Physiology, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", 12 Academic Pavlov St, Saint-Petersburg, 197022, Russia
| | - Elizaveta Aleksandrovna Agapova
- Department of Ecological Physiology, Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", 12 Academic Pavlov St, Saint-Petersburg, 197022, Russia
| |
Collapse
|
4
|
Ferini‐Strambi L. Sleep disorders and increased risk of dementia. Eur J Neurol 2022; 29:3484-3485. [PMID: 36094745 PMCID: PMC9826356 DOI: 10.1111/ene.15562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 01/11/2023]
|
5
|
Zelmanovich R, Pierre K, Felisma P, Cole D, Goldman M, Lucke-Wold B. High Altitude Cerebral Edema: Improving Treatment Options. BIOLOGICS (BASEL, SWITZERLAND) 2022; 2:81-91. [PMID: 35425940 PMCID: PMC9006955 DOI: 10.3390/biologics2010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
High altitude illness in its most severe form can lead to high altitude cerebral edema (HACE). Current strategies have focused on prevention with graduated ascents, pharmacologic prophylaxis, and descent at first signs of symptoms. Little is understood regarding treatment with steroids and oxygenation being commonly utilized. Pre-clinical studies with turmeric derivatives have offered promise due to its anti-inflammatory and antioxidant properties, but they warrant validation clinically. Ongoing work is focused on better understanding the disease pathophysiology with an emphasis on the glymphatic system and venous outflow obstruction. This review highlights what is known regarding diagnosis, treatment, and prevention, while also introducing novel pathophysiology mechanisms warranting further investigation.
Collapse
Affiliation(s)
| | - Kevin Pierre
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| | - Patrick Felisma
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| | - Dwayne Cole
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| | - Matthew Goldman
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Kylkilahti TM, Berends E, Ramos M, Shanbhag NC, Töger J, Markenroth Bloch K, Lundgaard I. Achieving brain clearance and preventing neurodegenerative diseases-A glymphatic perspective. J Cereb Blood Flow Metab 2021; 41:2137-2149. [PMID: 33461408 PMCID: PMC8392766 DOI: 10.1177/0271678x20982388] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
Age-related neurodegenerative diseases are a growing burden to society, and many are sporadic, meaning that the environment, diet and lifestyle play significant roles. Cerebrospinal fluid (CSF)-mediated clearing of brain waste products via perivascular pathways, named the glymphatic system, is receiving increasing interest, as it offers unexplored perspectives on understanding neurodegenerative diseases. The glymphatic system is involved in clearance of metabolic by-products such as amyloid-β from the brain, and its function is believed to lower the risk of developing some of the most common neurodegenerative diseases. Here, we present magnetic resonance imaging (MRI) data on the heart cycle's control of CSF flow in humans which corroborates findings from animal studies. We also review the importance of sleep, diet, vascular health for glymphatic clearance and find that these factors are also known players in brain longevity.
Collapse
Affiliation(s)
- Tekla Maria Kylkilahti
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Eline Berends
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Marta Ramos
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Nagesh C Shanbhag
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Johannes Töger
- Diagnostic Radiology, Department of Clinical Sciences, Lund University and Skane University Hospital Lund, Lund, Sweden
| | | | - Iben Lundgaard
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Simka M, Latacz P. Numerical modeling of blood flow in the internal jugular vein with the use of computational fluid mechanics software. Phlebology 2021; 36:541-548. [PMID: 33611976 DOI: 10.1177/0268355521996087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To determine the site and nature of altered hemodynamics in pathological internal jugular veins. METHOD With the use of computational fluid mechanics software we simulated blood flow in 3 D models of the internal jugular veins that exhibited different morphologies, including nozzle-like strictures in their upper parts and valves in the lower parts. RESULTS In a majority of models with nozzle-like strictures, especially those positioned asymmetrically, abnormal flow pattern was revealed, with significant flow separation and regions with reversed flow. Abnormal valves had no significant impact on flow in a case of already altered flow evoked by stricture in upper part of the vein. CONCLUSIONS In our jugular model, cranially-located stenoses, which in clinical practice are primarily caused by external compression, cause more significant outflow impact respect to endoluminal defects and pathological valves located more caudally.
Collapse
Affiliation(s)
- Marian Simka
- Department of Anatomy, Institute of Medicine, University of Opole, Opole, Poland
| | - Paweł Latacz
- Department of Neurology, University Hospital, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|