1
|
Kajumba MM, Kakooza-Mwesige A, Nakasujja N, Koltai D, Canli T. Treatment-resistant depression: molecular mechanisms and management. MOLECULAR BIOMEDICINE 2024; 5:43. [PMID: 39414710 PMCID: PMC11485009 DOI: 10.1186/s43556-024-00205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/03/2024] [Indexed: 10/18/2024] Open
Abstract
Due to the heterogeneous nature of depression, the underlying etiological mechanisms greatly differ among individuals, and there are no known subtype-specific biomarkers to serve as precise targets for therapeutic efficacy. The extensive research efforts over the past decades have not yielded much success, and the currently used first-line conventional antidepressants are still ineffective for close to 66% of patients. Most clinicians use trial-and-error treatment approaches, which seem beneficial to only a fraction of patients, with some eventually developing treatment resistance. Here, we review evidence from both preclinical and clinical studies on the pathogenesis of depression and antidepressant treatment response. We also discuss the efficacy of the currently used pharmacological and non-pharmacological approaches, as well as the novel emerging therapies. The review reveals that the underlying mechanisms in the pathogenesis of depression and antidepressant response, are not specific, but rather involve an interplay between various neurotransmitter systems, inflammatory mediators, stress, HPA axis dysregulation, genetics, and other psycho-neurophysiological factors. None of the current depression hypotheses sufficiently accounts for the interactional mechanisms involved in both its etiology and treatment response, which could partly explain the limited success in discovering efficacious antidepressant treatment. Effective management of treatment-resistant depression (TRD) requires targeting several interactional mechanisms, using subtype-specific and/or personalized therapeutic modalities, which could, for example, include multi-target pharmacotherapies in augmentation with psychotherapy and/or other non-pharmacological approaches. Future research guided by interaction mechanisms hypotheses could provide more insights into potential etiologies of TRD, precision biomarker targets, and efficacious therapeutic modalities.
Collapse
Affiliation(s)
- Mayanja M Kajumba
- Department of Mental Health and Community Psychology, Makerere University, P. O. Box 7062, Kampala, Uganda.
| | - Angelina Kakooza-Mwesige
- Department of Pediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Pediatrics and Child Health, Mulago National Referral Hospital, Kampala, Uganda
| | - Noeline Nakasujja
- Department of Psychiatry, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Deborah Koltai
- Duke Division of Global Neurosurgery and Neurology, Department of Neurosurgery, Durham, NC, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, USA
| | - Turhan Canli
- Department of Psychology, Stony Brook University, New York, USA
- Department of Psychiatry, Stony Brook University, New York, USA
| |
Collapse
|
2
|
Wu X, Liu L, Xue X, Li X, Zhao K, Zhang J, Li W, Yao W, Ding S, Jia C, Zhu F. Captive ERVWE1 triggers impairment of 5-HT neuronal plasticity in the first-episode schizophrenia by post-transcriptional activation of HTR1B in ALKBH5-m6A dependent epigenetic mechanisms. Cell Biosci 2023; 13:213. [PMID: 37990254 PMCID: PMC10664518 DOI: 10.1186/s13578-023-01167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Abnormalities in the 5-HT system and synaptic plasticity are hallmark features of schizophrenia. Previous studies suggest that the human endogenous retrovirus W family envelope (ERVWE1) is an influential risk factor for schizophrenia and inversely correlates with 5-HT4 receptor in schizophrenia. To our knowledge, no data describes the effect of ERVWE1 on 5-HT neuronal plasticity. N6-methyladenosine (m6A) regulates gene expression and impacts synaptic plasticity. Our research aims to systematically investigate the effects of ERVWE1 on 5-HT neuronal plasticity through m6A modification in schizophrenia. RESULTS HTR1B, ALKBH5, and Arc exhibited higher levels in individuals with first-episode schizophrenia compared to the controls and showed a strong positive correlation with ERVWE1. Interestingly, HTR1B was also correlated with ALKBH5 and Arc. Further analyses confirmed that ALKBH5 may be an independent risk factor for schizophrenia. In vitro studies, we discovered that ERVWE1 enhanced HTR1B expression, thereby activating the ERK-ELK1-Arc pathway and reducing the complexity and spine density of 5-HT neurons. Furthermore, ERVWE1 reduced m6A levels through ALKBH5 demethylation. ERVWE1 induced HTR1B upregulation by improving its mRNA stability in ALKBH5-m6A-dependent epigenetic mechanisms. Importantly, ALKBH5 mediated the observed alterations in 5-HT neuronal plasticity induced by ERVWE1. CONCLUSIONS Overall, HTR1B, Arc, and ALKBH5 levels were increased in schizophrenia and positively associated with ERVWE1. Moreover, ALKBH5 was a novel risk gene for schizophrenia. ERVWE1 impaired 5-HT neuronal plasticity in ALKBH5-m6A dependent mechanism by the HTR1B-ERK-ELK1-Arc pathway, which may be an important contributor to aberrant synaptic plasticity in schizophrenia.
Collapse
Affiliation(s)
- Xiulin Wu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | | | - Xing Xue
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xuhang Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Kexin Zhao
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jiahang Zhang
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wenshi Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wei Yao
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shuang Ding
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Chen Jia
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
3
|
DeRosa H, Richter T, Wilkinson C, Hunter RG. Bridging the Gap Between Environmental Adversity and Neuropsychiatric Disorders: The Role of Transposable Elements. Front Genet 2022; 13:813510. [PMID: 35711940 PMCID: PMC9196244 DOI: 10.3389/fgene.2022.813510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/13/2022] [Indexed: 12/21/2022] Open
Abstract
Long regarded as “junk DNA,” transposable elements (TEs) have recently garnered much attention for their role in promoting genetic diversity and plasticity. While many processes involved in mammalian development require TE activity, deleterious TE insertions are a hallmark of several psychiatric disorders. Moreover, stressful events including exposure to gestational infection and trauma, are major risk factors for developing psychiatric illnesses. Here, we will provide evidence demonstrating the intersection of stressful events, atypical TE expression, and their epigenetic regulation, which may explain how neuropsychiatric phenotypes manifest. In this way, TEs may be the “bridge” between environmental perturbations and psychopathology.
Collapse
Affiliation(s)
- Holly DeRosa
- Psychology Department, Developmental Brain Sciences Program, College of Liberal Arts, University of Massachusetts Boston, Boston, MA, United States
| | - Troy Richter
- Psychology Department, Developmental Brain Sciences Program, College of Liberal Arts, University of Massachusetts Boston, Boston, MA, United States
| | - Cooper Wilkinson
- Psychology Department, Developmental Brain Sciences Program, College of Liberal Arts, University of Massachusetts Boston, Boston, MA, United States
| | - Richard G Hunter
- Psychology Department, Developmental Brain Sciences Program, College of Liberal Arts, University of Massachusetts Boston, Boston, MA, United States
| |
Collapse
|
4
|
Antihuman Endogenous Retrovirus Immune Response and Adaptive Dysfunction in Autism. Biomedicines 2022; 10:biomedicines10061365. [PMID: 35740387 PMCID: PMC9220180 DOI: 10.3390/biomedicines10061365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 11/22/2022] Open
Abstract
ASD is a neurodevelopmental disorder of unknown aetiology but with a known contribution of pathogenic immune-mediated mechanisms. HERVs are associated with several neuropsychiatric diseases, including ASD. We studied anti-HERV-W, -K and -H-env immune profiles in ASD children to analyse differences between their respective mothers and child/mother control pairs and possible correlations to ASD severity and loss of adaptive abilities. Of the 84 studied individuals, 42 children (23 ASD and 19 neurotypical) and their paired mothers underwent clinical and neuropsychological evaluations. ASD severity was analysed with standardised tests. Adaptive functioning was studied with ABAS-II and GAC index. Plasma anti-env responses of HERV-K, -H and -W were tested with indirect ELISA. ASD and neurotypical children did not differ in age, gender, comorbidities and anti-HERV responses. In children with ASD, anti-HERV levels were not correlated to ASD severity, while a significant inverse correlation was found between anti-HERV-W-248-262 levels and adaptive/social abilities. Upregulation of anti-HERV-W response correlates to dysfunctional social and adaptive competences in ASD but not in controls, suggesting anti-HERV response plays a role in the appearance of peculiar ASD symptoms.
Collapse
|
5
|
Transposable Elements and Human Diseases: Mechanisms and Implication in the Response to Environmental Pollutants. Int J Mol Sci 2022; 23:ijms23052551. [PMID: 35269693 PMCID: PMC8910135 DOI: 10.3390/ijms23052551] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Transposable elements (TEs) are recognized as major players in genome plasticity and evolution. The high abundance of TEs in the human genome, especially the Alu and Long Interspersed Nuclear Element-1 (LINE-1) repeats, makes them responsible for the molecular origin of several diseases. This involves several molecular mechanisms that are presented in this review: insertional mutation, DNA recombination and chromosomal rearrangements, modification of gene expression, as well as alteration of epigenetic regulations. This literature review also presents some of the more recent and/or more classical examples of human diseases in which TEs are involved. Whether through insertion of LINE-1 or Alu elements that cause chromosomal rearrangements, or through epigenetic modifications, TEs are widely implicated in the origin of human cancers. Many other human diseases can have a molecular origin in TE-mediated chromosomal recombination or alteration of gene structure and/or expression. These diseases are very diverse and include hemoglobinopathies, metabolic and neurological diseases, and common diseases. Moreover, TEs can also have an impact on aging. Finally, the exposure of individuals to stresses and environmental contaminants seems to have a non-negligible impact on the epigenetic derepression and mobility of TEs, which can lead to the development of diseases. Thus, improving our knowledge of TEs may lead to new potential diagnostic markers of diseases.
Collapse
|
6
|
Helmy M, Selvarajoo K. Systems Biology to Understand and Regulate Human Retroviral Proinflammatory Response. Front Immunol 2021; 12:736349. [PMID: 34867957 PMCID: PMC8635014 DOI: 10.3389/fimmu.2021.736349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/21/2021] [Indexed: 01/13/2023] Open
Abstract
The majority of human genome are non-coding genes. Recent research have revealed that about half of these genome sequences make up of transposable elements (TEs). A branch of these belong to the endogenous retroviruses (ERVs), which are germline viral infection that occurred over millions of years ago. They are generally harmless as evolutionary mutations have made them unable to produce viral agents and are mostly epigenetically silenced. Nevertheless, ERVs are able to express by still unknown mechanisms and recent evidences have shown links between ERVs and major proinflammatory diseases and cancers. The major challenge is to elucidate a detailed mechanistic understanding between them, so that novel therapeutic approaches can be explored. Here, we provide a brief overview of TEs, human ERVs and their links to microbiome, innate immune response, proinflammatory diseases and cancer. Finally, we recommend the employment of systems biology approaches for future HERV research.
Collapse
Affiliation(s)
- Mohamed Helmy
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Computer Science, Lakehead University, Thunder Bay, ON, Canada
| | - Kumar Selvarajoo
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Synthetic Biology Translational Research Program & SynCTI, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Kent Ridge, Singapore
| |
Collapse
|