1
|
Zhou X, Xin G, Wan C, Li F, Wang Y, Zhang K, Yu X, Li S, Huang W. Myricetin reduces platelet PANoptosis in sepsis to delay disseminated intravascular coagulation. Biochem Biophys Res Commun 2024; 724:150140. [PMID: 38852506 DOI: 10.1016/j.bbrc.2024.150140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/11/2024]
Abstract
Sepsis is a severe inflammatory disease characterized by cytokine storm, often accompanied by disseminated intravascular coagulation (DIC). PANoptosis is a novel form of cell death triggered by cytokine storms, characterized by a cascade reaction of pyroptosis, apoptosis, and necroptosis. It exists in septic platelets and is closely associated with the onset and progression of DIC. However, there remains an unmet need for drugs targeting PANoptosis. The anti-PANoptosis effect of myricetin was predicted using network pharmacology and confirmed through molecular docking. In vitro platelet activation models demonstrated that myricetin significantly attenuated platelet particle release, integrin activation, adhesion, spreading, clot retraction, and aggregation. Moreover, in a sepsis model, myricetin reduced inflammatory infiltration in lung tissue and platelet activation while improving DIC. Additionally, whole blood sequencing samples from sepsis patients and healthy individuals were analyzed to elucidate the up-regulation of the PANoptosis targets. Our findings demonstrate the inhibitory effect of myricetin on septic platelet PANoptosis, indicating its potential as a novel anti-cellular PANoptosis candidate and therapeutic agent for septic DIC. Furthermore, our study establishes a foundation for utilizing network pharmacology in the discovery of new drugs to treat various diseases.
Collapse
Affiliation(s)
- Xiaoli Zhou
- Natural and Biomimetic Medicine Research Center, West China School of Medicine, West China Hospital, Sichuan University, China; College of Health, Yuncheng Vocational and Technical University, China
| | - Guang Xin
- Natural and Biomimetic Medicine Research Center, West China School of Medicine, West China Hospital, Sichuan University, China
| | - Chengyu Wan
- Natural and Biomimetic Medicine Research Center, West China School of Medicine, West China Hospital, Sichuan University, China
| | - Fan Li
- Natural and Biomimetic Medicine Research Center, West China School of Medicine, West China Hospital, Sichuan University, China
| | - Yilan Wang
- Natural and Biomimetic Medicine Research Center, West China School of Medicine, West China Hospital, Sichuan University, China
| | - Kun Zhang
- Natural and Biomimetic Medicine Research Center, West China School of Medicine, West China Hospital, Sichuan University, China
| | - Xiuxian Yu
- Natural and Biomimetic Medicine Research Center, West China School of Medicine, West China Hospital, Sichuan University, China
| | - Shiyi Li
- Natural and Biomimetic Medicine Research Center, West China School of Medicine, West China Hospital, Sichuan University, China
| | - Wen Huang
- Natural and Biomimetic Medicine Research Center, West China School of Medicine, West China Hospital, Sichuan University, China.
| |
Collapse
|
2
|
Zhang X, Bao M, Zhang J, Zhu L, Wang D, Liu X, Xu L, Luan L, Liu Y, Liu Y. Neuroprotective mechanism of ribisin A on H 2O 2-induced PC12 cell injury model. Tissue Cell 2024; 87:102322. [PMID: 38367324 DOI: 10.1016/j.tice.2024.102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/19/2024]
Abstract
Ribisin A has been shown to have neurotrophic activity. The aim of this study was to evaluate the neuroprotective effect of ribisin A on injured PC12 cells and elucidate its mechanism. In this project, PC12 cells were induced by H2O2 to establish an injury model. After treatment with ribisin A, the neuroprotective mechanism of ribisin A was investigated by methyl tetrazolium (MTT) assay, Enzyme-linked immunosorbent assay (ELISA), flow cytometric analysis, fluorescent probe analysis, and western blot. We found that ribisin A decreased the rate of lactate dehydrogenase (LDH) release, increased cellular superoxide dismutase (SOD) level, decreased the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), Ca2+ expression and reactive oxygen species (ROS). Moreover, ribisin A significantly increased mitochondrial membrane potential (MMP) and inhibited apoptosis of PC12 cells. Meanwhile, ribisin A activated the phosphorylation of ERK1/2 and its downstream molecule CREB by upregulating the expression of Trk A and Trk B, the upstream molecules of the ERK signaling pathway.
Collapse
Affiliation(s)
- Xin Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Mengyu Bao
- School of Pharmaceutical Sciences, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jingyi Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lihao Zhu
- Sishui Siheyuan Culture and Tourism Development Company, Ltd, Sishui 273200, China
| | - Di Wang
- School of Pharmaceutical Sciences, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xin Liu
- School of Pharmaceutical Sciences, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lingchuan Xu
- School of Pharmaceutical Sciences, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lijuan Luan
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Yuguo Liu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Key Laboratory of Medicinal Fungi and Resource Development in Shandong Province, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
3
|
Zheng Y, Li Y, Li M, Wang R, Jiang Y, Zhao M, Lu J, Li R, Li X, Shi S. COVID-19 cooling: Nanostrategies targeting cytokine storm for controlling severe and critical symptoms. Med Res Rev 2024; 44:738-811. [PMID: 37990647 DOI: 10.1002/med.21997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/16/2023] [Accepted: 10/29/2023] [Indexed: 11/23/2023]
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to wreak havoc worldwide, the "Cytokine Storm" (CS, also known as the inflammatory storm) or Cytokine Release Syndrome has reemerged in the public consciousness. CS is a significant contributor to the deterioration of infected individuals. Therefore, CS control is of great significance for the treatment of critically ill patients and the reduction of mortality rates. With the occurrence of variants, concerns regarding the efficacy of vaccines and antiviral drugs with a broad spectrum have grown. We should make an effort to modernize treatment strategies to address the challenges posed by mutations. Thus, in addition to the requirement for additional clinical data to monitor the long-term effects of vaccines and broad-spectrum antiviral drugs, we can use CS as an entry point and therapeutic target to alleviate the severity of the disease in patients. To effectively combat the mutation, new technologies for neutralizing or controlling CS must be developed. In recent years, nanotechnology has been widely applied in the biomedical field, opening up a plethora of opportunities for CS. Here, we put forward the view of cytokine storm as a therapeutic target can be used to treat critically ill patients by expounding the relationship between coronavirus disease 2019 (COVID-19) and CS and the mechanisms associated with CS. We pay special attention to the representative strategies of nanomaterials in current neutral and CS research, as well as their potential chemical design and principles. We hope that the nanostrategies described in this review provide attractive treatment options for severe and critical COVID-19 caused by CS.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mao Li
- Health Management Centre, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - Rujing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Martin CM, Slessarev M, Campbell E, Basmaji J, Ball I, Fraser DD, Leligdowicz A, Mele T, Priestap F, Tschirhart BJ, Bentall T, Lu X, Feng Q. Annexin A5 in Patients With Severe COVID-19 Disease: A Single-Center, Randomized, Double-Blind, Placebo-Controlled Feasibility Trial. Crit Care Explor 2023; 5:e0986. [PMID: 37811130 PMCID: PMC10558223 DOI: 10.1097/cce.0000000000000986] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
OBJECTIVES To evaluate the study design and feasibility of drug administration and safety in a randomized clinical trial of recombinant human annexin A5 (SY-005), a constitutively expressed protein with anti-inflammatory, antiapoptotic, and anticoagulant properties, in patients with severe coronavirus disease 2019 (COVID-19). DESIGN Double-blind, randomized clinical trial. SETTING Two ICUs at an academic medical center. PATIENTS/SUBJECTS Adults admitted to the ICU with a confirmed diagnosis of COVID-19 and requiring ventilatory or vasopressor support. INTERVENTIONS SY-005, a recombinant human annexin A5, at 50 or 100 µg/kg IV every 12 hours for 7 days. MEASUREMENTS AND MAIN RESULTS We enrolled 18 of the 55 eligible patients (33%) between April 21, 2021, and February 3, 2022. We administered 82% (196/238) of the anticipated doses of study medication and 86% (169/196) were given within 1 hour of the scheduled time. There were no drug-related serious adverse events. We captured 100% of the data that would be required for measuring clinical outcomes in a phase 2 or 3 trial. LIMITATIONS The small sample size was a result of decreasing admissions of patients with COVID-19, which triggered a stopping rule for the trial. CONCLUSIONS Although enrollment was low, administration of SY-005 to critically ill patients with COVID-19 every 12 hours for up to 7 days was feasible and safe. Further clinical trials of annexin A5 for the treatment of COVID-19 are warranted. Given reduction of severe COVID-19 disease, future studies should explore the safety and effectiveness of SY-005 use in non-COVID-related sepsis.
Collapse
Affiliation(s)
- Claudio M Martin
- Division of Critical Care Medicine, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - Marat Slessarev
- Division of Critical Care Medicine, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - Eileen Campbell
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - John Basmaji
- Division of Critical Care Medicine, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - Ian Ball
- Division of Critical Care Medicine, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
- Department of Epidemiology and Biostatistics, Western University, London, ON, Canada
| | - Douglas D Fraser
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
- Department of Pediatrics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Aleksandra Leligdowicz
- Division of Critical Care Medicine, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - Tina Mele
- Division of Critical Care Medicine, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
- Department of Surgery, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Fran Priestap
- Division of Critical Care Medicine, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - Brent J Tschirhart
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| | - Tracey Bentall
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - Xiangru Lu
- Department of Surgery, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Qingping Feng
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| |
Collapse
|
5
|
Dhanya CR, Shailaja A, Mary AS, Kandiyil SP, Savithri A, Lathakumari VS, Veettil JT, Vandanamthadathil JJ, Madhavan M. RNA Viruses, Pregnancy and Vaccination: Emerging Lessons from COVID-19 and Ebola Virus Disease. Pathogens 2022; 11:800. [PMID: 35890044 PMCID: PMC9322689 DOI: 10.3390/pathogens11070800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Pathogenic viruses with an RNA genome represent a challenge for global human health since they have the tremendous potential to develop into devastating pandemics/epidemics. The management of the recent COVID-19 pandemic was possible to a certain extent only because of the strong foundations laid by the research on previous viral outbreaks, especially Ebola Virus Disease (EVD). A clear understanding of the mechanisms of the host immune response generated upon viral infections is a prime requisite for the development of new therapeutic strategies. Hence, we present here a comparative study of alterations in immune response upon SARS-CoV-2 and Ebola virus infections that illustrate many common features. Vaccination and pregnancy are two important aspects that need to be studied from an immunological perspective. So, we summarize the outcomes and immune responses in vaccinated and pregnant individuals in the context of COVID-19 and EVD. Considering the significance of immunomodulatory approaches in combating both these diseases, we have also presented the state of the art of such therapeutics and prophylactics. Currently, several vaccines against these viruses have been approved or are under clinical trials in various parts of the world. Therefore, we also recapitulate the latest developments in these which would inspire researchers to look for possibilities of developing vaccines against many other RNA viruses. We hope that the similar aspects in COVID-19 and EVD open up new avenues for the development of pan-viral therapies.
Collapse
Affiliation(s)
| | - Aswathy Shailaja
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Aarcha Shanmugha Mary
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610105, India;
| | | | - Ambili Savithri
- Department of Biochemistry, Sree Narayana College, Kollam 691001, India;
| | | | | | | | - Maya Madhavan
- Department of Biochemistry, Government College for Women, Thiruvananthapuram 695014, India
| |
Collapse
|
6
|
Wang Y, Wu M, Li Y, Yuen HH, He ML. The effects of SARS-CoV-2 infection on modulating innate immunity and strategies of combating inflammatory response for COVID-19 therapy. J Biomed Sci 2022; 29:27. [PMID: 35505345 PMCID: PMC9063252 DOI: 10.1186/s12929-022-00811-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
The global pandemic of COVID-19 has caused huge causality and unquantifiable loss of social wealth. The innate immune response is the first line of defense against SARS-CoV-2 infection. However, strong inflammatory response associated with dysregulation of innate immunity causes severe acute respiratory syndrome (SARS) and death. In this review, we update the current knowledge on how SARS-CoV-2 modulates the host innate immune response for its evasion from host defense and its corresponding pathogenesis caused by cytokine storm. We emphasize Type I interferon response and the strategies of evading innate immune defense used by SARS-CoV-2. We also extensively discuss the cells and their function involved in the innate immune response and inflammatory response, as well as the promises and challenges of drugs targeting excessive inflammation for antiviral treatment. This review would help us to figure out the current challenge questions of SARS-CoV-2 infection on innate immunity and directions for future studies.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Mandi Wu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Yichen Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Ho Him Yuen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China. .,CityU Shenzhen Research Institute, Nanshan, Shenzhen, China.
| |
Collapse
|
7
|
Stewart A, Sinclair E, Ng JCF, O’Hare JS, Page A, Serangeli I, Margreitter C, Orsenigo F, Longman K, Frampas C, Costa C, Lewis HM, Kasar N, Wu B, Kipling D, Openshaw PJM, Chiu C, Baillie JK, Scott JT, Semple MG, Bailey MJ, Fraternali F, Dunn-Walters DK. Pandemic, Epidemic, Endemic: B Cell Repertoire Analysis Reveals Unique Anti-Viral Responses to SARS-CoV-2, Ebola and Respiratory Syncytial Virus. Front Immunol 2022; 13:807104. [PMID: 35592326 PMCID: PMC9111746 DOI: 10.3389/fimmu.2022.807104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/15/2022] [Indexed: 11/17/2022] Open
Abstract
Immunoglobulin gene heterogeneity reflects the diversity and focus of the humoral immune response towards different infections, enabling inference of B cell development processes. Detailed compositional and lineage analysis of long read IGH repertoire sequencing, combining examples of pandemic, epidemic and endemic viral infections with control and vaccination samples, demonstrates general responses including increased use of IGHV4-39 in both Zaire Ebolavirus (EBOV) and COVID-19 patient cohorts. We also show unique characteristics absent in Respiratory Syncytial Virus or yellow fever vaccine samples: EBOV survivors show unprecedented high levels of class switching events while COVID-19 repertoires from acute disease appear underdeveloped. Despite the high levels of clonal expansion in COVID-19 IgG1 repertoires there is a striking lack of evidence of germinal centre mutation and selection. Given the differences in COVID-19 morbidity and mortality with age, it is also pertinent that we find significant differences in repertoire characteristics between young and old patients. Our data supports the hypothesis that a primary viral challenge can result in a strong but immature humoral response where failures in selection of the repertoire risk off-target effects.
Collapse
Affiliation(s)
- Alexander Stewart
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Emma Sinclair
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Joseph Chi-Fung Ng
- Randall Centre for Cell & Molecular Biophysics, King’s College London, London, United Kingdom
| | - Joselli Silva O’Hare
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
- Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Audrey Page
- Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Ilaria Serangeli
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Sapienza Università di Roma, Rome, Italy
| | | | - Federica Orsenigo
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Katherine Longman
- Department of Chemistry, University of Surrey, Guildford, United Kingdom
| | - Cecile Frampas
- Department of Chemistry, University of Surrey, Guildford, United Kingdom
| | - Catia Costa
- Department of Chemistry, University of Surrey, Guildford, United Kingdom
| | - Holly-May Lewis
- Department of Chemistry, University of Surrey, Guildford, United Kingdom
| | - Nora Kasar
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Bryan Wu
- Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - David Kipling
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Peter JM Openshaw
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Christopher Chiu
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - J Kenneth Baillie
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Janet T. Scott
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Malcolm G. Semple
- Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Melanie J. Bailey
- Department of Chemistry, University of Surrey, Guildford, United Kingdom
| | - Franca Fraternali
- Randall Centre for Cell & Molecular Biophysics, King’s College London, London, United Kingdom
| | | |
Collapse
|
8
|
Pasharawipas T. Perspectives Concerning Various Symptoms of SARS-CoV-2 Detected Individuals. Open Microbiol J 2021. [DOI: 10.2174/1874285802115010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
After exposure to SARS-CoV-2, varying symptoms of COVID-19 ranging from asymptomatic symptoms to morbidity and mortality have been exhibited in each individual. SARS-CoV-2 requires various cellular molecules for penetration into a target host cell. Angiotensin-converting enzyme2 (ACE2) acts as the viral receptor molecule. After attachment, SARS-CoV-2 also requires the transmembrane protease serine-2 (TMPRSS-2) and furin molecules, which serve as co-receptors for penetration into the target cell and for subsequent replication. In the meantime, a major histocompatibility complex (MHC) is required for the induction of adaptive immune cells, especially cytotoxic T cells and helper T cells, to clear the virally infected cells. This perspective review article proposes different aspects to explain the varying symptoms of the individuals who have been exposed to SARS-CoV-2, which relates to the polymorphisms of these involved molecules.
Collapse
|
9
|
Long-circulating XTEN864-annexin A5 fusion protein for phosphatidylserine-related therapeutic applications. Apoptosis 2021; 26:534-547. [PMID: 34405304 PMCID: PMC8370750 DOI: 10.1007/s10495-021-01686-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 01/21/2023]
Abstract
Annexin A5 (anxA5) is a marker for apoptosis, but has also therapeutic potential in cardiovascular diseases, cancer, and, due to apoptotic mimicry, against dangerous viruses, which is limited by the short blood circulation. An 864-amino-acid XTEN polypeptide was fused to anxA5. XTEN864-anxA5 was expressed in Escherichia coli and purified using XTEN as tag. XTEN864-anxA5 was coupled with DTPA and indium-111. After intravenous or subcutaneous injection of 111In-XTEN864-anxA5, mouse blood samples were collected for blood half-life determination and organ samples for biodistribution using a gamma counter. XTEN864-anxA5 was labeled with 6S-IDCC to confirm binding to apoptotic cells using flow cytometry. To demonstrate targeting of atherosclerotic plaques, XTEN864-anxA5 was labeled with MeCAT(Ho) and administered intravenously to atherosclerotic ApoE−/− mice. MeCAT(Ho)-XTEN864-anxA5 was detected together with MeCAT(Tm)-MAC-2 macrophage antibodies by imaging mass cytometry (CyTOF) of aortic root sections. The ability of anxA5 to bind apoptotic cells was not affected by XTEN864. The blood half-life of XTEN864-anxA5 was 13 h in mice after IV injection, markedly longer than the 7-min half-life of anxA5. 96 h after injection, highest amounts of XTEN864-anxA5 were found in liver, spleen, and kidney. XTEN864-anxA5 was found to target the adventitia adjacent to atherosclerotic plaques. XTEN864-anxA5 is a long-circulating fusion protein that can be efficiently produced in E. coli and potentially circulates in humans for several days, making it a promising therapeutic drug.
Collapse
|
10
|
Iba T, Levy JH, Levi M. Viral-induced inflammatory coagulation disorders: Preparing for another epidemic. Thromb Haemost 2021; 122:8-19. [PMID: 34331297 PMCID: PMC8763450 DOI: 10.1055/a-1562-7599] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A number of viral infectious diseases have emerged or reemerged from wildlife vectors that have generated serious threats to global health. Increased international traveling and commerce increase the risk of transmission of viral or other infectious diseases. In addition, recent climate changes accelerate the potential spread of domestic disease. The Coronavirus disease 2019 (COVID-19) pandemic is an important example of the worldwide spread, and the current epidemic will unlikely be the last. Viral hemorrhagic fevers, such as Dengue and Lassa fevers, may also have the potential to spread worldwide with a significant impact on public health with unpredictable timing. Based on the important lessons learned from COVID-19, it would be prudent to prepare for future pandemics of life-threatening viral diseases. Among the various threats, this review focuses on the coagulopathy of acute viral infections since hypercoagulability has been a major challenge in COVID-19, but represents a different presentation compared to viral hemorrhagic fever. However, both thrombosis and hemorrhage are understood as the result of thromboinflammation due to viral infections, and the role of anticoagulation is important to consider.
Collapse
Affiliation(s)
- Toshiaki Iba
- Emergency and Disaster Medicine, Juntendo University, Bunkyo-ku, Japan
| | - J H Levy
- Anesthesiology and Critcal Care, Duke University, Durham, United States
| | - Marcel Levi
- Department of Gastroenterology, University College London Hospitals NHS Foundation Trust, London, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
11
|
COVID-19: imbalance of multiple systems during infection and importance of therapeutic choice and dosing of cardiac and anti-coagulant therapies. Mol Biol Rep 2021; 48:2917-2928. [PMID: 33837899 PMCID: PMC8035598 DOI: 10.1007/s11033-021-06333-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/01/2021] [Indexed: 12/26/2022]
Abstract
The renin-angiotensin-aldosterone system and its metabolites play an important role in homeostasis of body, especially the cardiovascular system. In this study, we discuss the imbalance of multiple systems during the infection and the importance of therapeutic choice, dosing, and laboratory monitoring of cardiac and anti-coagulant therapies in COVID-19 patients. The crosstalk between angiotensin, kinin-kallikrein system, as well as inflammatory and coagulation systems plays an essential role in COVID-19. Cardiac complications and coagulopathies imply the crosstalks between the mentioned systems. We believe that the blockage of bradykinin can be a good option in the management of COVID-19 and CVD in patients and that supportive treatment of respiratory and cardiologic complications is needed in COVID-19 patients. Ninety-one percent of COVID-19 patients who were admitted to hospital with a prolonged aPTT were positive for lupus anticoagulant, which increases the risk of thrombosis and prolonged aPTT. Therefore, the question that is posed at this juncture is whether it is safe to use the prophylactic dose of heparin particularly in those with elevated D-dimer levels. It should be noted that timing is of high importance in anti-coagulant therapy; therefore, we should consider the level of D-dimer, fibrinogen, drug-drug interactions, and risk factors during thromboprophylaxis administration. Fibrinogen is an independent predictor of resistance to heparin and should be considered before thromboprophylaxis. Alteplase and Futhan might be a good choice to assess the condition of heparin resistance. Finally, the treatment option, dosing, and laboratory monitoring of anticoagulant therapy are critical decisions in COVID-19 patients.
Collapse
|
12
|
Tong DM, Zhou YT, Wang YW. COVID-19-Associated Acute Brain Dysfunction Related to Sepsis. J Clin Med Res 2021; 13:82-91. [PMID: 33747322 PMCID: PMC7935626 DOI: 10.14740/jocmr4437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/13/2021] [Indexed: 12/17/2022] Open
Abstract
In global term, as of November 30, 2020, over 30 million people has been infected by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and more than 10,000,000 of them died of acute organ failure. Our reviews have shown that coronavirus disease 2019 (COVID-19) patients with pneumonia and acute respiratory distress syndrome (ARDS) have life-threatening acute brain dysfunction (ABD), ranging from altered mental status/delirium to stupor/coma. Altered mental status/delirium was the most common manifestation of ABD caused by severe COVID-19. The prevalence of altered mental status and/or delirium was up to 66-79.5%, and prevalence of coma was 10%. The most common clinical type of COVID-19-associated ABD was COVID-19-associated acute stroke including ischemic and hemorrhagic stroke (n > 350 cases), followed by COVID-19-associated encephalopathy (n > 200 cases), and COVID-19-associated central nervous system (CNS) infection (n > 70 cases). According to the Sepsis-3 criteria, we confess that severe COVID-19-associated ABD with ARDS and altered mental status is related to sepsis. Moreover, we also review the diagnosis and treatment of COVID-19-associated ABD with sepsis. In view of the fact that COVID-19 is at the peak of epidemic worldwide, we hope that this review will provide evidence of COVID-19 sepsis threating to the brain dysunction. Thus, recognizing the COVID-19-associated ABD related to sepsis is very important for early empirical combination therapy to survive severe COVID-19.
Collapse
Affiliation(s)
- Dao Ming Tong
- Department of Neurology, Affiliated Shuyang Hospital of Xuzhou Medical University, Jiangsu, China
| | - Ye Ting Zhou
- Department of Surgery, Affiliated Shuyang Hospital of Xuzhou Medical University, Jiangsu, China
| | - Yuan Wei Wang
- Department of Neurology, Affiliated Shuyang Hospital of Xuzhou Medical University, Jiangsu, China
| |
Collapse
|
13
|
Lind SE. Phosphatidylserine is an overlooked mediator of COVID-19 thromboinflammation. Heliyon 2021; 7:e06033. [PMID: 33495740 PMCID: PMC7817455 DOI: 10.1016/j.heliyon.2021.e06033] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/29/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
A ubiquitous component of cell membrane, phosphatidylserine (PS), is likely to play a major, but as yet unrecognized, role in the thromboinflammation of COVID-19 and other critical illnesses. PS is present in all plasma membranes but is "hidden" on the inner surface by the action of an ATP-requiring enzyme. Failure of PS to be sequestered on the inner surface of cell membranes, release of PS-containing microparticles from cells, or shedding of enveloped viruses allows it to interact with extracellular proteins, including those of the coagulation and complement systems. Detection and quantification of circulating PS is not standardized, and current methodologies have either focused on circulating cellular elements or subcellular plasma components, but not both. PS may also promote thromboinflammation without circulating if expressed on the surface of endothelial cells, a condition that might only be documented if novel imaging techniques are developed. Research into the role of PS in inflammation and coagulation, called here a "procoagulant phospholipidopathy" may provide novel insights and therapeutic approaches for patients with a variety of illnesses.
Collapse
Affiliation(s)
- Stuart E Lind
- Departments of Medicine and Pathology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| |
Collapse
|
14
|
Yang Y, Shi J, Ge S, Guo S, Xing X, Wang Y, Cheng A, Liu Q, Li J, Ning Y, He F, Xu G. Association between Prolonged Intermittent Renal Replacement Therapy and All-Cause Mortality in COVID-19 Patients Undergoing Invasive Mechanical Ventilation: A Retrospective Cohort Study. Blood Purif 2020; 50:481-488. [PMID: 33271549 PMCID: PMC7801996 DOI: 10.1159/000512099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/02/2020] [Indexed: 12/01/2022]
Abstract
Background The mortality rate of critically ill patients with coronavirus disease 2019 (COVID-19) was high. We aimed to assess the association between prolonged intermittent renal replacement therapy (PIRRT) and mortality in patients with COVID-19 undergoing invasive mechanical ventilation. Methods This retrospective cohort study included all COVID-19 patients receiving invasive mechanical ventilation between February 12 and March 2, 2020. All patients were followed until death or March 28, and all survivors were followed for at least 30 days. Results For 36 hospitalized COVID-19 patients receiving invasive mechanical ventilation, the mean age was 69.4 (±10.8) years, and 30 patients (83.3%) were men. Twenty-two (61.1%) patients received PIRRT (PIRRT group), and 14 cases (38.9%) were managed with conventional strategy (non-PIRRT group). There were no differences in age, sex, comorbidities, complications, treatments, and most of the laboratory findings. During the median follow-up period of 9.5 (interquartile range 4.3–33.5) days, 13 of 22 (59.1%) patients in the PIRRT group and 11 of 14 (78.6%) patients in the non-PIRRT group died. Kaplan-Meier analysis demonstrated prolonged survival in patients in the PIRRT group compared with that in the non-PIRRT group (p = 0.042). The association between PIRRT and a reduced risk of mortality remained significant in 3 different models, with adjusted hazard ratios varying from 0.332 to 0.398. Increased IL–2 receptor, TNF-α, procalcitonin, prothrombin time, and NT-proBNP levels were significantly associated with an increased risk of mortality in patients with PIRRT. Conclusion PIRRT may be beneficial for the treatment of COVID-19 patients with invasive mechanical ventilation. Further prospective multicenter studies with larger sample sizes are required.
Collapse
Affiliation(s)
- Yi Yang
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Shi
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuwang Ge
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiming Guo
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Xing
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Wang
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anying Cheng
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingquan Liu
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhua Li
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Ning
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan He
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Gang Xu
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Serag WM, Mohammed BSE, Mohamed MM, Elsayed BE. Predicting the risk of portal vein thrombosis in patients with liver cirrhosis and hepatocellular carcinoma. Heliyon 2020; 6:e04677. [PMID: 32904199 PMCID: PMC7452450 DOI: 10.1016/j.heliyon.2020.e04677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 01/24/2023] Open
Abstract
The mechanisms of the hypercoagulable state in cirrhotics with and without hepatocellular carcinoma are incompetently comprehended. Objective: We aimed to explore the plasma Annexin A5/PS + MP ratio in these patients. Higher levels of Annexin A5 and PhosphatidylSerine bearing microparticles have been observed in cases of inflammation and increased coagulation but there are no studies which explore if there is an association between them and PVT in cirrhotics with and without HCC. So, our goal is to estimate their role in predicting PVT within HCV cirrhotics with and without HCC. 91 HCV cirrhotics with and without HCC and 20 healthy people (controls) were enlisted. Cirrhotics with and without HCC who developed PVT displayed higher levels of PS + MPs and lower Annexin A5/PS + MPs ratio (38.73 ± 1.92) and (0.00238 ± 0.00047) than cirrhotics who didn't develop PVT (22.19 ± 10.58) and (0.00451 ± 0.0023) (P < 0.001). Among the tested factors, lower Annexin A5/PS + MPs ratio show higher performance in predicting PVT in total cirrhotics, AUC, 0.919 followed by PS + MPs level, 0.876, Portal flow velocity, 0.842, Plasma Annexin A5 level, 0.509. In our hypothesis, As phosphatidylserine exposure increase due to increased level of circulating microparticles in cirrhotics with and without HCC, anenxin-A5 may be secreted by platelets and endothelial cells into the circulation as a physiological response to inactivate the elevated levels of PS bearing MPs produced in these patients but the increase in anenxin-A5 level isn't equivalent to the increase in PS bearing MPs levels. The equilibrium between plasma annexin A5 and PS bearing MPs levels is defected.
Collapse
Affiliation(s)
| | | | | | - Basem Eysa Elsayed
- National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| |
Collapse
|
16
|
The involvement of annexin A1 in human placental response to maternal Zika virus infection. Antiviral Res 2020; 179:104809. [PMID: 32360947 DOI: 10.1016/j.antiviral.2020.104809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 04/02/2020] [Accepted: 04/25/2020] [Indexed: 12/22/2022]
Abstract
The association of Zika virus infection (ZIKV) with congenital malformation and neurological sequelae brought a significant global concern. Recent studies have shown that maternal viral infection leads to inflammation in the placental tissue. In this context, the antiinflammatory protein annexin 1 (ANXA1) has a major determination of the resolution of inflammation and it has been positively associated with antiparasitic activity in infected placental explants. Although these effects have been explored to some degree, ANXA1 expression and potential properties have not yet been fully elucidated in placentas infected with ZIKV. This study was conducted to evaluate the histopathology, inflammatory process and elucidate if ANXA1 were differently expressed in placentas of ZIKV-infected mothers. Three classification groups were used in this study: Neg/Neg (mother and placenta negative for the virus), Pos/Neg (infected mother, but no virus detected in placenta) and Pos/Pos (mother and placenta infected with ZIKV). ANXA1 was expressed in syncytiotrophoblast cells of all studied groups, and its expression was decreased in Pos/Neg group, which displayed also an increase of the inflammatory response, as evinced from the recruitment of inflammatory cells, increased levels of placenta cytokines, and evidence of impaired tissue repair. The presence of ZIKV in placentas of Pos/Pos group shows structural alterations, including detachment and disorganization of the trophoblastic epithelium. In summary, our results suggest that maternal infection with ZIKV, even without direct tissue infection, leads to a placental inflammatory response probably related to the modulation of ANXA1. After placental infection, structural changes - including inflammatory cells influx - are observed leading to placental dysfunction and reduced fetal weight. Our study sheds additional light on the outcomes of ZIKV infection in trophoblast and reveals a potential involvement of ANXA1 in the placental biology.
Collapse
|