1
|
Krishna SS, Sudheesh MS, Viswanad V. Liposomal drug delivery to the lungs: a post covid-19 scenario. J Liposome Res 2023; 33:410-424. [PMID: 37074963 DOI: 10.1080/08982104.2023.2199068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/10/2023] [Indexed: 04/20/2023]
Abstract
High local delivery of anti-infectives to the lungs is required for activity against infections of the lungs. The present pandemic has highlighted the potential of pulmonary delivery of anti-infective agents as a viable option for infections like Covid-19, which specifically causes lung infections and mortality. To prevent infections of such type and scale in the future, target-specific delivery of drugs to the pulmonary region is a high-priority area in the field of drug delivery. The suboptimal effect of oral delivery of anti-infective drugs to the lungs due to the poor biopharmaceutical property of the drugs makes this delivery route very promising for respiratory infections. Liposomes have been used as an effective delivery system for drugs due to their biocompatible and biodegradable nature, which can be used effectively for target-specific drug delivery to the lungs. In the present review, we focus on the use of liposomal drug delivery of anti-infectives for the acute management of respiratory infections in the wake of Covid-19 infection.
Collapse
Affiliation(s)
- S Swathi Krishna
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Kochi, India
| | - M S Sudheesh
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Kochi, India
| | - Vidya Viswanad
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Kochi, India
| |
Collapse
|
2
|
Rissel R, Moellmann C, Albertsmeier V, Renz M, Ruemmler R, Kamuf J, Hartmann EK, Ziebart A. Clinical dosage of lidocaine does not impact the biomedical outcome of sepsis-induced acute respiratory distress syndrome in a porcine model. PeerJ 2023; 11:e15875. [PMID: 37637154 PMCID: PMC10448879 DOI: 10.7717/peerj.15875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Background Sepsis is a common disease in intensive care units worldwide, which is associated with high morbidity and mortality. This process is often associated with multiple organ failure including acute lung injury. Although massive research efforts have been made for decades, there is no specific therapy for sepsis to date. Early and best treatment is crucial. Lidocaine is a common local anesthetic and used worldwide. It blocks the fast voltage-gated sodium (Na+) channels in the neuronal cell membrane responsible for signal propagation. Recent studies show that lidocaine administered intravenously improves pulmonary function and protects pulmonary tissue in pigs under hemorrhagic shock, sepsis and under pulmonary surgery. The aim of this study is to show that lidocaine inhalative induces equivalent effects as lidocaine intravenously in pigs in a lipopolysaccharide (LPS)-induced sepsis with acute lung injury. Methods After approval of the local State and Institutional Animal Care Committee, to induce the septic inflammatory response a continuous infusion of lipopolysaccharide (LPS) was administered to the pigs in deep anesthesia. Following induction and stabilisation of sepsis, the study medication was randomly assigned to one of three groups: (1) lidocaine intravenously, (2) lidocaine per inhalation and (3) sham group. All animals were monitored for 8 h using advanced and extended cardiorespiratory monitoring. Postmortem assessment included pulmonary mRNA expression of mediators of early inflammatory response (IL-6 & TNF-alpha), wet-to-dry ratio and lung histology. Results Acute respiratory distress syndrome (ARDS) was successfully induced after sepsis-induction with LPS in all three groups measured by a significant decrease in the PaO2/FiO2 ratio. Further, septic hemodynamic alterations were seen in all three groups. Leucocytes and platelets dropped statistically over time due to septic alterations in all groups. The wet-to-dry ratio and the lung histology showed no differences between the groups. Additionally, the pulmonary mRNA expression of the inflammatory mediators IL-6 and TNF-alpha showed no significant changes between the groups. The proposed anti-inflammatory and lung protective effects of lidocaine in sepsis-induced acute lung injury could not be proven in this study.
Collapse
Affiliation(s)
- René Rissel
- Department of Anaesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Christian Moellmann
- Department of Anaesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Victoria Albertsmeier
- Department of Anaesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Miriam Renz
- Department of Anaesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Robert Ruemmler
- Department of Anaesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Jens Kamuf
- Department of Anaesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Erik K. Hartmann
- Department of Anaesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| | - Alexander Ziebart
- Department of Anaesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
3
|
Sixt S, Gruber M, Kolle G, Galla T, Bitzinger D. The Effect of Local Anesthetics on Neutrophils in the Context of Different Isolation Techniques. Biomedicines 2023; 11:2170. [PMID: 37626667 PMCID: PMC10452207 DOI: 10.3390/biomedicines11082170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Various functions of polymorphonuclear neutrophils (PMNs) are related to diseases and postoperative plasma changes. The influence of some local anesthetics (LAs) on PMNs obtained by conventional isolation methods and their functions has already been demonstrated. This study investigates the effect of selected LAs on PMNs, comparing a new isolation method with conventional ones. To obtain the PMNs, we performed either gelafundin sedimentation, hypotonic lysis or density gradient centrifugation. Subsequently, PMNs were mixed with different concentrations of bupivacaine, levobupivacaine, lidocaine or ropivacaine. Live cell imaging and flow cytometry were performed to quantify the migration, ROS production, NETosis and antigen expression of PMNs. We found the inhibition of chemotaxis and ROS production by LAs. PMNs showed a strong reduction in time to half maximal NETosis in response to bupivacaine and lidocaine, but not to levobupivacaine and ropivacaine. We also found distinct differences in survival time and migration duration between the isolation methods. This suggests that the careful selection of LAs has a short-term impact on in vitro PMNs.
Collapse
Affiliation(s)
- Sara Sixt
- Department of Anesthesiology, University Hospital Regensburg, 93042 Regensburg, Germany
| | | | | | | | | |
Collapse
|
4
|
Bustamante C, Pinilla L, Amaris O. An Approach to Acute SARS-CoV-2 Management with Complementary
Neuraltherapeutic Medicine: A Case Report. CLINICAL MEDICINE INSIGHTS-CASE REPORTS 2023; 16:11795476231159584. [PMID: 37033677 PMCID: PMC10076607 DOI: 10.1177/11795476231159584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/07/2023] [Indexed: 04/09/2023]
Abstract
Background: It has been proposed that the immunomodulatory capacity of neuraltherapeutic
medicine (NTM) functions by means of stimuli to the nervous system, which
influences the self-regulatory and plastic capacity of the nervous system,
especially through the autonomic balance between the sympathetic and
parasympathetic nervous systems. Several studies report the usefulness of
NTM in inflammatory pathologies. Case presentation: A case report through a retrospective review of the medical history of an
82-year-old male patient with a diagnosis of acute SARS-CoV-2 who received a
therapeutic intervention of NTM at the beginning of his hospitalization and
presented satisfactory clinical evolution, with a follow-up for 18 months
without post-COVID sequelae. A patient diagnosed with acute pneumonia for
SARS-CoV-2, and mild ARDS, with markers of severity given by the history of
COPD, advanced age, and elevation of LDH, ferritin, and CRP. On the third
day of hospitalization, he presented an episode of pulmonary
thromboembolism. He presented significant clinical improvement with
in-hospital management for 9 days and underwent out-patient control with no
post-COVID sequelae. Conclusions: NTM could be useful for the management of acute inflammatory diseases,
including viral diseases such as SARS-CoV-2, in a mild or severe state of
inflammation, when added to allopathic medicine, and it can improve clinical
evolution and long-term sequelae. More studies are needed to validate this
information.
Collapse
Affiliation(s)
- Carlos Bustamante
- Carlos Bustamante, Universidad Nacional de
Colombia, Carrera 71 # 64d 68, Bogota, 111011, Colombia.
| | | | | |
Collapse
|
5
|
Alipour S, Mahmoudi L, Ahmadi F. Pulmonary drug delivery: an effective and convenient delivery route to combat COVID-19. Drug Deliv Transl Res 2023; 13:705-715. [PMID: 36260223 PMCID: PMC9580423 DOI: 10.1007/s13346-022-01251-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 02/05/2023]
Abstract
The recent outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, China has spread rapidly around the world, leading to a widespread and urgent effort to develop and use comprehensive approaches in the treatment of COVID-19. While oral therapy is accepted as an effective and simple method, since the primary site of infection and disease progression of COVID-19 is mainly through the lungs, inhaled drug delivery directly to the lungs may be the most appropriate route of administration. To prevent or treat primary SARS-CoV-2 infections, it is essential to target the virus port of entry in the respiratory tract and airway epithelium, which requires rapid and high-intensity inhibition or control of viral entry or replication. To achieve success in this field, inhalation therapy is the most attractive treatment approach due to efficacy/safety profiles. In this review article, pulmonary drug delivery as a unique treatment option in lung diseases will be briefly reviewed. Then, possible inhalation therapies for the treatment of symptoms of COVID-19 will be discussed and the results of clinical trials will be presented. By pulmonary delivery of the currently approved drugs for COVID-19, efficacy of the treatment would be improved along with reducing systemic side effects.
Collapse
Affiliation(s)
- Shohreh Alipour
- Pharmaceutical Sciences Research Center and Department of Food & Drug Quality Control, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Laleh Mahmoudi
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Ahmadi
- Center for Nanotechnology in Drug Delivery and Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Liu X, Zheng F, Tian L, Li T, Zhang Z, Ren Z, Chen X, Chen W, Li K, Sheng J. Lidocaine inhibits influenza a virus replication by up-regulating IFNα4 via TBK1-IRF7 and JNK-AP1 signaling pathways. Int Immunopharmacol 2023; 115:109706. [PMID: 36638664 DOI: 10.1016/j.intimp.2023.109706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Influenza A viruses (IAV), significant respiratory pathogenic agents, cause seasonal epidemics and global pandemics in intra- and interannual cycles. Despite effective therapies targeting viral proteins, the continuous generation of drug-resistant IAV strains is challenging. Therefore, exploring novel host-specific antiviral treatment strategies is urgently needed. Here, we found that lidocaine, widely used for local anesthesia and sedation, significantly inhibited H1N1(PR8) replication in macrophages. Interestingly, its antiviral effect did not depend on the inhibition of voltage-gated sodium channels (VGSC), the main target of lidocaine for anesthesia. Lidocaine significantly upregulated early IFN-I, interferon α4 (IFNα4) mRNA, and protein levels, but not those of early IFNβ in mouse RAW 264.7 cell line and human THP-1 derived macrophages. Knocking out IFNα4 by CRISPR-Cas9 partly reversed lidocaine's inhibition of PR8 replication in macrophages. Mechanistically, lidocaine upregulated IFNα4 by activating TANK-binding kinase 1 (TBK1)-IRF7 and JNK-AP1 signaling pathways. These findings indicate that lidocaine has an incredible antiviral potential by enhancing IFN-I signaling in macrophages. In conclusion, our results indicate the potential auxiliary role of lidocaine for anti-influenza A virus therapy and even for anti-SARS-CoV-2 virus therapy, especially in the absence of a specific medicine.
Collapse
Affiliation(s)
- Xueer Liu
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Fengqing Zheng
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Lu Tian
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Tian Li
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Zelin Zhang
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Zhihui Ren
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Xiaoxuan Chen
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Weiqiang Chen
- Department of Neurosurgery, First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou 515041, Guangdong, China.
| | - Kangsheng Li
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China.
| | - Jiangtao Sheng
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China.
| |
Collapse
|
7
|
Hamed RS, Naser AI, Al-Allaf LI, Taqa GA. The impact of Lidocaine gel on TNF-α expression in surgically induced oral mucosal ulcers: an immunohistochemical analysis in rabbits. JOURNAL OF ORAL MEDICINE AND ORAL SURGERY 2023. [DOI: 10.1051/mbcb/2023001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background: Besides being a local anesthetic agent lidocaine is a promising anti-inflammatory agent with limited studies on its effect on the mucosa. Aim: Assess the anti-inflammatory effect of lidocaine following surgical induction wound in the oral mucosa as assessed by tumor necrosis factor-α (TNF-α) expression. Materials and methods: The study was conducted on 32 albino rabbits that were categorized into 2 equal groups of 16 rabbits: In the control group an oral wound was surgically induced and left without treatment and in the treatment group an oral wound was surgically induced and received topical Lidocaine gel. Euthanasia of animals was carried out on days 1, 3, 7, and 10, and sample sites were processed for histopathological and immunohistochemical staining for TNF-α. Results: In the histological observations, it was noticed that the healing process was more rapid and convenient in the test group compared to the control group. For Immunohistochemical assessment, the TNF-α started to express clearly at 1 day and gradually decreased and disappeared at 10 days with a superior effect of the lidocaine group over the control group. Conclusion: Lidocaine seems to have anti-inflammatory reactions by lowering TNF-α levels and preventing the production of pro-inflammatory cytokines.
Collapse
|
8
|
A case report of an 18-year-old receiving nebulized lidocaine for treatment of COVID-19 cough. Heart Lung 2023; 57:140-143. [PMID: 36201924 PMCID: PMC9515246 DOI: 10.1016/j.hrtlng.2022.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/13/2022]
Abstract
An 18-year-old girl presenting with respiratory and gastrointestinal symptoms was found to have COVID-19 pneumonia and severe acute respiratory distress syndrome (ARDS). She was transferred to our pediatric intensive care unit (PICU) for ongoing mechanical ventilation and initiation of venovenous extracorporeal membrane oxygenation (VV-ECMO) for management of progressive hypoxic respiratory failure. She developed a worsening cough with associated life-threatening desaturation events that impaired ECMO flow and required deep sedation. Despite multiple sedative agents, our patient continued to have frequent coughing episodes with associated tachycardia, hypertension, and hypoxemia. The PICU team started nebulized lidocaine 1% 4 mL (40 mg) every 6 hours with albuterol pretreatment, gabapentin, and scheduled ipratropium. Lidocaine levels were <1 mcg/mL throughout the treatment duration. Nebulized lidocaine was stopped after 18 days given improvement in coughing episode severity. Our patient is one of the first reports of an adolescent patient receiving nebulized lidocaine for COVID-19 associated cough. Administration of nebulized lidocaine was well tolerated in this patient without adverse effects and was associated with decreased sedation needs. Given the widespread impact of the COVID-19 pandemic and its sequelae in pediatric, adolescent, and adult patients, additional research is warranted to explore options for management of COVID-19 associated cough.
Collapse
|
9
|
The Effects of H2S and Recombinant Human Hsp70 on Inflammation Induced by SARS and Other Agents In Vitro and In Vivo. Biomedicines 2022; 10:biomedicines10092155. [PMID: 36140256 PMCID: PMC9496158 DOI: 10.3390/biomedicines10092155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
The ongoing epidemic caused by SARS-CoV-2 infection led to the search for fundamentally new ways and means to combat inflammation and other pathologies caused by this virus. Using a cellular model of lipopolysaccharide (LPS)-induced sepsis (human promonocytes), we showed that both a hydrogen sulfide donor (sodium thiosulfate, STS) and a recombinant Heat shock protein 70 (rHsp70) effectively block all major inflammatory mediators when administrated before and after LPS challenge. The protective anti-inflammatory effect of rHsp70 and H2S was also confirmed in vivo using various animal models of pneumonia. Specifically, it was found that rHsp70 injections prevented the development of the acute respiratory distress syndrome in highly pathogenic pneumonia in mice, increased animal survival, and reduced the number of Programmed death-1 (PD-1)-positive T-lymphocytes in peripheral blood. Based on our model experiments we developed a combined two-phase therapeutic approach for the treatment of COVID-19 patients. This procedure includes the inhalation of hot helium–oxygen mixtures for induction of endogenous Hsp70 in the first phase and STS inhalation in the second phase. The use of this approach has yielded positive results in COVID-19 patients, reducing the area of lung lesions, restoring parameters of innate immunity and T-cell immune response against coronavirus infection, and preventing the development of pulmonary fibrosis and immune exhaustion syndrome.
Collapse
|
10
|
He S, Gui J, Xiong K, Chen M, Gao H, Fu Y. A roadmap to pulmonary delivery strategies for the treatment of infectious lung diseases. J Nanobiotechnology 2022; 20:101. [PMID: 35241085 PMCID: PMC8892824 DOI: 10.1186/s12951-022-01307-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
Pulmonary drug delivery is a highly attractive topic for the treatment of infectious lung diseases. Drug delivery via the pulmonary route offers unique advantages of no first-pass effect and high bioavailability, which provides an important means to deliver therapeutics directly to lung lesions. Starting from the structural characteristics of the lungs and the biological barriers for achieving efficient delivery, we aim to review literatures in the past decade regarding the pulmonary delivery strategies used to treat infectious lung diseases. Hopefully, this review article offers new insights into the future development of therapeutic strategies against pulmonary infectious diseases from a delivery point of view.
Collapse
Affiliation(s)
- Siqin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jiajia Gui
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Kun Xiong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Novel mucoadhesive carriers based on alginate-acrylamide hydrogels for drug delivery. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Rylova A, Chowdhury S, Amirfarzan H, Leissner KB, Schumann R. Intravenous lidocaine infusion in a case of severe COVID-19 infection. J Anaesthesiol Clin Pharmacol 2021; 37:481-483. [PMID: 34759566 PMCID: PMC8562453 DOI: 10.4103/joacp.joacp_562_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/11/2021] [Accepted: 03/07/2021] [Indexed: 12/15/2022] Open
Abstract
A subset of patients with COVID-19 develops a severe inflammatory response that may lead to respiratory and multiorgan failure. Effective treatment strategies to mitigate or interrupt this self-destructive inflammatory process are limited. The local anesthetic lidocaine has anti-inflammatory properties in addition to its analgesic, antiarrhythmic, and sedating effects that may be beneficial in critically ill COVID-19 patients. We report the case of a patient with COVID-19 induced severe respiratory distress who was intubated and received supportive treatment including proning and neuromuscular blockade. He developed a strong inflammatory response that we treated with an intermittent lidocaine infusion resulting in subsequent resolution. This case occurred prior to emerging data from a large dexamethasone use trial that demonstrated a survival benefit from its use in hospitalized COVID-19 patients. At the time, lidocaine was the only anti-inflammatory medication our patient received.
Collapse
Affiliation(s)
- Anna Rylova
- VA Boston Healthcare System, 400 VFW Pkwy, West Roxbury, MA 02132, USA
| | - Seema Chowdhury
- VA Boston Healthcare System, 400 VFW Pkwy, West Roxbury, MA 02132, USA
| | - Houman Amirfarzan
- VA Boston Healthcare System, 400 VFW Pkwy, West Roxbury, MA 02132, USA
| | - Kay B Leissner
- VA Boston Healthcare System, 400 VFW Pkwy, West Roxbury, MA 02132, USA
| | - Roman Schumann
- VA Boston Healthcare System, 400 VFW Pkwy, West Roxbury, MA 02132, USA
| |
Collapse
|
13
|
Abstract
Drug delivery via the pulmonary route is a cornerstone in the pharmaceutical sector as an alternative to oral and parenteral administration. Nebulizer inhalation treatment offers multiple drug administration, easily employed with tidal breathing, suitable for children and elderly, can be adapted for severe patients and visible spray ensures patient satisfaction. This review discusses the operational and mechanical characteristics of nebulizer delivery devices in terms of aerosol production processes, their usage, benefits and drawbacks that are currently shaping the contemporary landscape of inhaled drug delivery. With the advent of particle engineering, novel inhaled nanosystems can be successfully developed to increase lung deposition and decrease pulmonary clearance. The above-mentioned advances might pave the path for treating a life-threatening disorder like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which is also discussed in the current state of the art.
Collapse
|
14
|
Karnina R, Arif SK, Hatta M, Bukhari A. Molecular mechanisms of lidocaine. Ann Med Surg (Lond) 2021; 69:102733. [PMID: 34457261 PMCID: PMC8379473 DOI: 10.1016/j.amsu.2021.102733] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 02/08/2023] Open
Abstract
Lidocaine is an amide-class local anesthetic used clinically to inhibit pain sensations. Systemic administration of lidocaine has antinociceptive, antiarrhythmic, anti-inflammatory, and antithrombotic effects. Lidocaine exerts these effects under both acute and chronic pain conditions and acute respiratory distress syndrome through mechanisms that can be independent of its primary mechanism of action, sodium channel inhibition. Here we review the pathophysiological underpinnings of lidocaine's role as an anti-nociceptive, anti-inflammatory mediated by toll-like receptor (TLR) and nuclear factor kappa-β (NF-kβ) signalling pathways and downstream cytokine effectors high mobility group box 1 (HMGB1) and tumour necrosis factor-α (TNF-α).
Collapse
Affiliation(s)
- Resiana Karnina
- Doctoral Program of Biomedical Sciences, Faculty of Medicine, Hasanuddin University, Makassar, Sulawesi Selatan, Indonesia
- Faculty of Medicine, Muhammadiyah University of Jakarta, Banten, Indonesia
| | - Syafri Kamsul Arif
- Department of Anesthesiology, Faculty of Medicine, Hasanuddin University, Sulawesi Selatan, Indonesia
| | - Mochammad Hatta
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Sulawesi Selatan, Indonesia
| | - Agussalim Bukhari
- Department of Nutritional Sciences, Faculty of Medicine, Hasanuddin University, Sulawesi Selatan, Indonesia
| |
Collapse
|
15
|
Mousavi SZ, Rahmanian M, Sami A. A connectivity map-based drug repurposing study and integrative analysis of transcriptomic profiling of SARS-CoV-2 infection. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 86:104610. [PMID: 33130005 PMCID: PMC7598903 DOI: 10.1016/j.meegid.2020.104610] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/29/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022]
Abstract
AIMS The recent outbreak of COVID-19 has become a global health concern. There are currently no effective treatment strategies and vaccines for the treatment or prevention of this fatal disease. The current study aims to determine promising treatment options for the COVID-19 through a computational drug repurposing approach. MATERIALS AND METHODS In this study, we focus on differentially expressed genes (DEGs), detected in SARS-CoV-2 infected cell lines including "the primary human lung epithelial cell line NHBE" and "the transformed lung alveolar cell line A549". Next, the identified DEGs are used in the connectivity map (CMap) analysis to identify similarly acting therapeutic candidates. Furthermore, to interpret lists of DEGs, pathway enrichment and protein network analysis are performed. Genes are categorized into easily interpretable pathways based on their biological functions, and overrepresentation of each pathway is tested in comparison to what is expected randomly. KEY FINDINGS The results suggest the effectiveness of lansoprazole, folic acid, sulfamonomethoxine, tolnaftate, diclofenamide, halcinonide, saquinavir, metronidazole, ebselen, lidocaine and benzocaine, histone deacetylase (HDAC) inhibitors, heat shock protein 90 (HSP90) inhibitors, and many other clinically approved drugs as potent drugs against COVID-19 outbreak. SIGNIFICANCE Making new drugs remain a lengthy process, so the drug repurposing approach provides an insight into the therapeutics that might be helpful in this pandemic. In this study, pathway enrichment and protein network analysis are also performed, and the effectiveness of some drugs obtained from the CMap analysis has been investigated according to previous researches.
Collapse
|
16
|
Anti-inflammatory aspects of Lidocaine: a neglected therapeutic stance for COVID-19. Heart Lung 2020; 49:877-878. [PMID: 32980171 PMCID: PMC7498228 DOI: 10.1016/j.hrtlng.2020.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022]
|