1
|
de Vries JJ, Visser C, van Ommen M, Rokx C, van Nood E, van Gorp ECM, Goeijenbier M, van den Akker JPC, Endeman H, Rijken DC, Kruip MJHA, Weggeman M, Koopman J, de Maat MPM. Levels of Fibrinogen Variants Are Altered in Severe COVID-19. TH OPEN 2023; 7:e217-e225. [PMID: 37501780 PMCID: PMC10370639 DOI: 10.1055/a-2102-4521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/28/2023] [Indexed: 07/29/2023] Open
Abstract
Background Fibrinogen variants as a result of alternative messenger RNA splicing or protein degradation can affect fibrin(ogen) functions. The levels of these variants might be altered during coronavirus disease 2019 (COVID-19), potentially affecting disease severity or the thrombosis risk. Aim To investigate the levels of fibrinogen variants in plasma of patients with COVID-19. Methods In this case-control study, we measured levels of functional fibrinogen using the Clauss assay. Enzyme-linked immunosorbent assays were used to measure antigen levels of total, intact (nondegraded Aα chain), extended Aα chain (α E ), and γ' fibrinogen in healthy controls, patients with pneumococcal infection in the intensive care unit (ICU), ward patients with COVID-19, and ICU patients with COVID-19 (with and without thrombosis, two time points). Results Healthy controls and ward patients with COVID-19 ( n = 10) showed similar fibrinogen (variant) levels. ICU patients with COVID-19 who later did ( n = 19) or did not develop thrombosis ( n = 18) and ICU patients with pneumococcal infection ( n = 6) had higher absolute levels of functional, total, intact, and α E fibrinogen than healthy controls ( n = 7). The relative α E fibrinogen levels were higher in ICU patients with COVID-19 than in healthy controls, while relative γ' fibrinogen levels were lower. After diagnosis of thrombosis, only the functional fibrinogen levels were higher in ICU patients with COVID-19 and thrombosis than in those without, while no differences were observed in the other fibrinogen variants. Conclusion Our results show that severe COVID-19 is associated with increased levels of α E fibrinogen and decreased relative levels of γ' fibrinogen, which may be a cause or consequence of severe disease, but this is not associated with the development of thrombosis.
Collapse
Affiliation(s)
- Judith J de Vries
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Chantal Visser
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Casper Rokx
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Els van Nood
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Eric C M van Gorp
- Department of Internal Medicine, Erasmus MC, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Viroscience, Erasmus MC, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marco Goeijenbier
- Department of Viroscience, Erasmus MC, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Adult Intensive Care, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Henrik Endeman
- Department of Adult Intensive Care, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dingeman C Rijken
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marieke J H A Kruip
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | - Moniek P M de Maat
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Mölzer C, Heissigerova J, Wilson HM, Kuffova L, Forrester JV. Immune Privilege: The Microbiome and Uveitis. Front Immunol 2021; 11:608377. [PMID: 33569055 PMCID: PMC7868421 DOI: 10.3389/fimmu.2020.608377] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/04/2020] [Indexed: 02/03/2023] Open
Abstract
Immune privilege (IP), a term introduced to explain the unpredicted acceptance of allogeneic grafts by the eye and the brain, is considered a unique property of these tissues. However, immune responses are modified by the tissue in which they occur, most of which possess IP to some degree. The eye therefore displays a spectrum of IP because it comprises several tissues. IP as originally conceived can only apply to the retina as it contains few tissue-resident bone-marrow derived myeloid cells and is immunologically shielded by a sophisticated barrier – an inner vascular and an outer epithelial barrier at the retinal pigment epithelium. The vascular barrier comprises the vascular endothelium and the glia limitans. Immune cells do not cross the blood-retinal barrier (BRB) despite two-way transport of interstitial fluid, governed by tissue oncotic pressure. The BRB, and the blood-brain barrier (BBB) mature in the neonatal period under signals from the expanding microbiome and by 18 months are fully established. However, the adult eye is susceptible to intraocular inflammation (uveitis; frequency ~200/100,000 population). Uveitis involving the retinal parenchyma (posterior uveitis, PU) breaches IP, while IP is essentially irrelevant in inflammation involving the ocular chambers, uveal tract and ocular coats (anterior/intermediate uveitis/sclerouveitis, AU). Infections cause ~50% cases of AU and PU but infection may also underlie the pathogenesis of immune-mediated “non-infectious” uveitis. Dysbiosis accompanies the commonest form, HLA-B27–associated AU, while latent infections underlie BRB breakdown in PU. This review considers the pathogenesis of uveitis in the context of IP, infection, environment, and the microbiome.
Collapse
Affiliation(s)
- Christine Mölzer
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jarmila Heissigerova
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Heather M Wilson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lucia Kuffova
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Eye Clinic, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - John V Forrester
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|