1
|
Rasizadeh R, Aghbash PS, Nahand JS, Entezari-Maleki T, Baghi HB. SARS-CoV-2-associated organs failure and inflammation: a focus on the role of cellular and viral microRNAs. Virol J 2023; 20:179. [PMID: 37559103 PMCID: PMC10413769 DOI: 10.1186/s12985-023-02152-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
SARS-CoV-2 has been responsible for the recent pandemic all over the world, which has caused many complications. One of the hallmarks of SARS-CoV-2 infection is an induced immune dysregulation, in some cases resulting in cytokine storm syndrome, acute respiratory distress syndrome and many organs such as lungs, brain, and heart that are affected during the SARS-CoV-2 infection. Several physiological parameters are altered as a result of infection and cytokine storm. Among them, microRNAs (miRNAs) might reflect this poor condition since they play a significant role in immune cellular performance including inflammatory responses. Both host and viral-encoded miRNAs are crucial for the successful infection of SARS-CoV-2. For instance, dysregulation of miRNAs that modulate multiple genes expressed in COVID-19 patients with comorbidities (e.g., type 2 diabetes, and cerebrovascular disorders) could affect the severity of the disease. Therefore, altered expression levels of circulating miRNAs might be helpful to diagnose this illness and forecast whether a COVID-19 patient could develop a severe state of the disease. Moreover, a number of miRNAs could inhibit the expression of proteins, such as ACE2, TMPRSS2, spike, and Nsp12, involved in the life cycle of SARS-CoV-2. Accordingly, miRNAs represent potential biomarkers and therapeutic targets for this devastating viral disease. In the current study, we investigated modifications in miRNA expression and their influence on COVID-19 disease recovery, which may be employed as a therapy strategy to minimize COVID-19-related disorders.
Collapse
Affiliation(s)
- Reyhaneh Rasizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Entezari-Maleki
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166/15731, Iran.
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Chatterjee S, Nalla LV, Sharma M, Sharma N, Singh AA, Malim FM, Ghatage M, Mukarram M, Pawar A, Parihar N, Arya N, Khairnar A. Association of COVID-19 with Comorbidities: An Update. ACS Pharmacol Transl Sci 2023; 6:334-354. [PMID: 36923110 PMCID: PMC10000013 DOI: 10.1021/acsptsci.2c00181] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Indexed: 03/03/2023]
Abstract
Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) which was identified in Wuhan, China in December 2019 and jeopardized human lives. It spreads at an unprecedented rate worldwide, with serious and still-unfolding health conditions and economic ramifications. Based on the clinical investigations, the severity of COVID-19 appears to be highly variable, ranging from mild to severe infections including the death of an infected individual. To add to this, patients with comorbid conditions such as age or concomitant illnesses are significant predictors of the disease's severity and progression. SARS-CoV-2 enters inside the host cells through ACE2 (angiotensin converting enzyme2) receptor expression; therefore, comorbidities associated with higher ACE2 expression may enhance the virus entry and the severity of COVID-19 infection. It has already been recognized that age-related comorbidities such as Parkinson's disease, cancer, diabetes, and cardiovascular diseases may lead to life-threatening illnesses in COVID-19-infected patients. COVID-19 infection results in the excessive release of cytokines, called "cytokine storm", which causes the worsening of comorbid disease conditions. Different mechanisms of COVID-19 infections leading to intensive care unit (ICU) admissions or deaths have been hypothesized. This review provides insights into the relationship between various comorbidities and COVID-19 infection. We further discuss the potential pathophysiological correlation between COVID-19 disease and comorbidities with the medical interventions for comorbid patients. Toward the end, different therapeutic options have been discussed for COVID-19-infected comorbid patients.
Collapse
Affiliation(s)
- Sayan Chatterjee
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Lakshmi Vineela Nalla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India.,Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh 522302, India
| | - Monika Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Nishant Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Aditya A Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Fehmina Mushtaque Malim
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Manasi Ghatage
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Mohd Mukarram
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Abhijeet Pawar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Nidhi Parihar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India
| | - Neha Arya
- Department of Translational Medicine, All India Institute of Medical Sciences (AIIMS), Bhopal, Bhopal 462020, India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 382355, India.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno 602 00, Czech Republic.,ICRC-FNUSA Brno 656 91, Czech Republic.,Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 62500 Brno, Czechia
| |
Collapse
|
3
|
Wanhella KJ, Fernandez-Patron C. Biomarkers of ageing and frailty may predict COVID-19 severity. Ageing Res Rev 2022; 73:101513. [PMID: 34838734 PMCID: PMC8611822 DOI: 10.1016/j.arr.2021.101513] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/11/2021] [Accepted: 11/09/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) is caused by the novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) - the culprit of an ongoing pandemic responsible for the loss of over 3 million lives worldwide within a year and a half. While the majority of SARS-CoV-2 infected people develop no or mild symptoms, some become severely ill and may die from COVID-19-related complications. In this review, we compile and comment on a number of biomarkers that have been identified and are expected to enhance the detection, protection and treatment of individuals at high risk of developing severe illnesses, as well as enable the monitoring of COVID-19 prognosis and responsiveness to therapeutic interventions. Consistent with the emerging notion that the majority of COVID-19 deaths occur in older and frail individuals, we researched the scientific literature and report the identification of a subset of COVID-19 biomarkers indicative of increased vulnerability to developing severe COVID-19 in older and frail patients. Mechanistically, increased frailty results from reduced disease tolerance, a phenomenon aggravated by ageing and comorbidities. While biomarkers of ageing and frailty may predict COVID-19 severity, biomarkers of disease tolerance may predict resistance to COVID-19 with socio-economic factors such as access to adequate health care remaining as major non-biomolecular influencers of COVID-19 outcomes.
Collapse
|
4
|
Chérifi F, Laraba-Djebari F. Bioactive Molecules Derived from Snake Venoms with Therapeutic Potential for the Treatment of Thrombo-Cardiovascular Disorders Associated with COVID-19. Protein J 2021; 40:799-841. [PMID: 34499333 PMCID: PMC8427918 DOI: 10.1007/s10930-021-10019-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 01/08/2023]
Abstract
As expected, several new variants of Severe Acute Respiratory Syndrome-CoronaVirus-2 (SARS-CoV-2) emerged and have been detected around the world throughout this Coronavirus Disease of 2019 (COVID-19) pandemic. Currently, there is no specific developed drug against COVID-19 and the challenge of developing effective antiviral strategies based on natural agents with different mechanisms of action becomes an urgent need and requires identification of genetic differences among variants. Such data is used to improve therapeutics to combat SARS-CoV-2 variants. Nature is known to offer many biotherapeutics from animal venoms, algae and plant that have been historically used in traditional medicine. Among these bioresources, snake venom displays many bioactivities of interest such as antiviral, antiplatelet, antithrombotic, anti-inflammatory, antimicrobial and antitumoral. COVID-19 is a viral respiratory sickness due to SARS-CoV-2 which induces thrombotic disorders due to cytokine storm, platelet hyperactivation and endothelial dysfunction. This review aims to: (1) present an overview on the infection, the developed thrombo-inflammatory responses and mechanisms of induced thrombosis of COVID-19 compared to other similar pathogenesis; (2) underline the role of natural compounds such as anticoagulant, antiplatelet and thrombolytic agents; (3) investigate the management of coagulopathy related to COVID-19 and provide insight on therapeutic such as venom compounds. We also summarize the updated advances on antiviral proteins and peptides derived from snake venoms that could weaken coagulopathy characterizing COVID-19.
Collapse
Affiliation(s)
- Fatah Chérifi
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, USTHB, BP 32, El-Alia, Bab Ezzouar, Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, USTHB, BP 32, El-Alia, Bab Ezzouar, Algiers, Algeria.
| |
Collapse
|
5
|
Kuchi Bhotla H, Balasubramanian B, Meyyazhagan A, Pushparaj K, Easwaran M, Pappusamy M, Alwin Robert A, Arumugam VA, Tsibizova V, Msaad Alfalih A, Aljowaie RM, Saravanan M, Di Renzo GC. Opportunistic mycoses in COVID-19 patients/survivors: Epidemic inside a pandemic. J Infect Public Health 2021; 14:1720-1726. [PMID: 34700291 PMCID: PMC8518133 DOI: 10.1016/j.jiph.2021.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/30/2022] Open
Abstract
Being considered minor vexations, fungal infections hinder the life of about 15% of the world population superficially, with rare threats to life in case of invasive sepsis. A significant rise in the intrusive mycoses due to machiavellian fungal species is observed over the years due to increased pathology and fatality in people battling life-threatening diseases. Individuals undergoing therapy with immune suppressive drugs plus recovering from viral infections have shown to develop fungal sepsis as secondary infections while recovering or after. Currently, the whole world is fighting against the fright of Coronavirus disease (COVID-19), and corticosteroids being the primitive therapeutic to combat the COVID-19 inflammation, leads to an immune-compromised state, thereby allowing the not so harmful fungi to violate the immune barrier and flourish in the host. A wide range of fungal co-infection is observed in the survivors and patients of COVID-19. Fungal species of Candida, Aspergillus and Mucorales, are burdening the lives of COVID-19 patients/survivors in the form of Yellow/Green, White and Black fungus. This is the first article of its kind to assemble note on fungal infections seen in the current human health scenario till date and provides a strong message to the clinicians, researchers and physicians around the world "non-pathological fungus should not be dismissed as contaminants, they can quell immunocompromised hosts".
Collapse
Affiliation(s)
- Haripriya Kuchi Bhotla
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, 560029 Karnataka, India
| | | | - Arun Meyyazhagan
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, 560029 Karnataka, India; Department of Obstetrics and Gynecology, Centre for Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy.
| | - Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641 043, Tamil Nadu, India
| | - Murugesh Easwaran
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu 641 046, India
| | - Manikantan Pappusamy
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, 560029 Karnataka, India
| | - Asirvatham Alwin Robert
- Department of Endocrinology and Diabetes, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Vijaya Anand Arumugam
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Valentina Tsibizova
- Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, Saint-Petersburg, Russian Federation
| | - Abdullah Msaad Alfalih
- Department of Botany and Microbiology, College of Science, King Saud University, P.O Box 24552, 11495, Riyadh, Saudi Arabia
| | - Reem M Aljowaie
- Department of Botany and Microbiology, College of Science, King Saud University, P.O Box 24552, 11495, Riyadh, Saudi Arabia
| | - Muthupandian Saravanan
- Department of Microbiology and Immunology, Division of Biomedical Sciences, School of Medicine, College of Health Science, Mekelle University, Mekelle, 1871, Ethiopia; Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College, 600077, Chennai, Tamil Nadu, India.
| | - Gian Carlo Di Renzo
- Department of Obstetrics and Gynecology, Centre for Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy.
| |
Collapse
|
6
|
Jose J, Magoon R, Makhija N. Immature Platelet Fraction and COVID-19: Maturing prognostic links! JOURNAL OF CARDIAC CRITICAL CARE TSS 2021. [DOI: 10.1055/s-0041-1732836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
AbstractPrompted by the combination of an ever-evolving comprehension of the platelet activation as a pivotal perpetuator of an ongoing systemic inflammatory process and an encouraging literature on the prognostic role of immature platelet fraction (IPF) in septic and prothrombotic settings, we present an elaborated account of the possible prognostic links between IPF and Coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Jes Jose
- Department of Cardiac Anesthesiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Jayanagar, Bengaluru, Karnataka, India
| | - Rohan Magoon
- Department of Cardiac Anaesthesia, Atal Bihari Vajpayee Institute of Medical Sciences (ABVIMS) and Dr. Ram Manohar Lohia Hospital, Baba Kharak Singh Marg, New Delhi, India
| | - Neeti Makhija
- Department of Cardiac Anaesthesia, Cardiothoracic Centre, CNC, All India Institute of Medical Sciences, New Delhi, Ansari Nagar, India
| |
Collapse
|
7
|
López-Cortés A, Guevara-Ramírez P, Kyriakidis NC, Barba-Ostria C, León Cáceres Á, Guerrero S, Ortiz-Prado E, Munteanu CR, Tejera E, Cevallos-Robalino D, Gómez-Jaramillo AM, Simbaña-Rivera K, Granizo-Martínez A, Pérez-M G, Moreno S, García-Cárdenas JM, Zambrano AK, Pérez-Castillo Y, Cabrera-Andrade A, Puig San Andrés L, Proaño-Castro C, Bautista J, Quevedo A, Varela N, Quiñones LA, Paz-y-Miño C. In silico Analyses of Immune System Protein Interactome Network, Single-Cell RNA Sequencing of Human Tissues, and Artificial Neural Networks Reveal Potential Therapeutic Targets for Drug Repurposing Against COVID-19. Front Pharmacol 2021; 12:598925. [PMID: 33716737 PMCID: PMC7952300 DOI: 10.3389/fphar.2021.598925] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background: There is pressing urgency to identify therapeutic targets and drugs that allow treating COVID-19 patients effectively. Methods: We performed in silico analyses of immune system protein interactome network, single-cell RNA sequencing of human tissues, and artificial neural networks to reveal potential therapeutic targets for drug repurposing against COVID-19. Results: We screened 1,584 high-confidence immune system proteins in ACE2 and TMPRSS2 co-expressing cells, finding 25 potential therapeutic targets significantly overexpressed in nasal goblet secretory cells, lung type II pneumocytes, and ileal absorptive enterocytes of patients with several immunopathologies. Then, we performed fully connected deep neural networks to find the best multitask classification model to predict the activity of 10,672 drugs, obtaining several approved drugs, compounds under investigation, and experimental compounds with the highest area under the receiver operating characteristics. Conclusion: After being effectively analyzed in clinical trials, these drugs can be considered for treatment of severe COVID-19 patients. Scripts can be downloaded at https://github.com/muntisa/immuno-drug-repurposing-COVID-19.
Collapse
Affiliation(s)
- Andrés López-Cortés
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, A Coruña, Spain
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Nikolaos C. Kyriakidis
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Carlos Barba-Ostria
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Ángela León Cáceres
- Heidelberg Institute of Global Health, Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- Instituto de Salud Pública, Facultad de Medicina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Tropical Herping, Quito, Ecuador
| | - Santiago Guerrero
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Esteban Ortiz-Prado
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Cristian R. Munteanu
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, A Coruña, Spain
- Biomedical Research Institute of A Coruna (INIBIC), University Hospital Complex of A Coruna (CHUAC), A Coruña, Spain
- Centro de Información en Tecnologías de la Información y las Comunicaciones (CITIC), A Coruña, Spain
| | - Eduardo Tejera
- Grupo de Bio-Quimioinformática, Universidad de Las Américas (UDLA), Quito, Ecuador
| | | | | | - Katherine Simbaña-Rivera
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Adriana Granizo-Martínez
- Carrera de Medicina, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Gabriela Pérez-M
- Centro Clínico Quirúrgico Ambulatorio Hospital del Día El Batán, Instituto Ecuatoriano de Seguridad Social, Quito, Ecuador
| | - Silvana Moreno
- Department of Plant Biology, Faculty of Natural Resources and Agricultural Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jennyfer M. García-Cárdenas
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
- Biomedical Research Institute of A Coruna (INIBIC), University Hospital Complex of A Coruna (CHUAC), A Coruña, Spain
| | | | - Alejandro Cabrera-Andrade
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, A Coruña, Spain
- Grupo de Bio-Quimioinformática, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Lourdes Puig San Andrés
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | | | - Jhommara Bautista
- Facultad de Ingeniería y Ciencias Aplicadas-Biotecnología, Universidad de Las Américas, Quito, Ecuador
| | - Andreina Quevedo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Nelson Varela
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis Abel Quiñones
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - César Paz-y-Miño
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| |
Collapse
|
8
|
Park J, Kim H, Kim SY, Kim Y, Lee JS, Dan K, Seong MW, Han D. In-depth blood proteome profiling analysis revealed distinct functional characteristics of plasma proteins between severe and non-severe COVID-19 patients. Sci Rep 2020; 10:22418. [PMID: 33376242 PMCID: PMC7772338 DOI: 10.1038/s41598-020-80120-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/15/2020] [Indexed: 01/08/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected over forty million patients worldwide. Although most coronavirus disease 2019 (COVID-19) patients have a good prognosis, some develop severe illness. Markers that define disease severity or predict clinical outcome need to be urgently developed as the mortality rate in critical cases is approximately 61.5%. In the present study, we performed in-depth proteome profiling of undepleted plasma from eight COVID-19 patients. Quantitative proteomic analysis using the BoxCar method revealed that 91 out of 1222 quantified proteins were differentially expressed depending on the severity of COVID-19. Importantly, we found 76 proteins, previously not reported, which could be novel prognostic biomarker candidates. Our plasma proteome signatures captured the host response to SARS-CoV-2 infection, thereby highlighting the role of neutrophil activation, complement activation, platelet function, and T cell suppression as well as proinflammatory factors upstream and downstream of interleukin-6, interleukin-1B, and tumor necrosis factor. Consequently, this study supports the development of blood biomarkers and potential therapeutic targets to aid clinical decision-making and subsequently improve prognosis of COVID-19.
Collapse
Affiliation(s)
- Joonho Park
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, 71 Daehak-ro, Seoul, Republic of Korea
| | - Hyeyoon Kim
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, 71 Daehak-ro, Seoul, Republic of Korea
| | - So Yeon Kim
- Department of Laboratory Medicine, National Medical Center, Seoul, Korea
| | - Yeonjae Kim
- Department of Infectious Disease, National Medical Center, Seoul, Korea
| | - Jee-Soo Lee
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Seoul, Republic of Korea
| | - Kisoon Dan
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, 71 Daehak-ro, Seoul, Republic of Korea
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Seoul, Republic of Korea.
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, 71 Daehak-ro, Seoul, Republic of Korea.
| |
Collapse
|