1
|
Asif Khan RM, Ahmad NM, Nasir H, Mahmood A, Iqbal M, Janjua HA. Antifouling and Water Flux Enhancement in Polyethersulfone Ultrafiltration Membranes by Incorporating Water-Soluble Cationic Polymer of Poly [2-(Dimethyl amino) ethyl Methacrylate]. Polymers (Basel) 2023; 15:2868. [PMID: 37447513 DOI: 10.3390/polym15132868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 07/15/2023] Open
Abstract
Novel ultrafiltration (UF) polymer membranes were prepared to enhance the antifouling features and filtration performance. Several ultrafiltration polymer membranes were prepared by incorporating different concentrations of water-soluble cationic poly [2-(dimethyl amino) ethyl methacrylate] (PDMAEMA) into a homogenous casting solution of polyethersulfone (PES). After adding PDMAEMA, the effects on morphology, hydrophilicity, thermal stability, mechanical strength, antifouling characteristics, and filtration performance of these altered blended membranes were investigated. It was observed that increasing the quantity of PDMAEMA in PES membranes in turn enhanced surface energy, hydrophilicity, and porosity of the membranes. These new modified PES membranes, after the addition of PDMAEMA, showed better filtration performance by having increased water flux and a higher flux recovery ratio (FRR%) when compared with neat PES membranes. For the PES/PDMAEMA membrane, pure water flux with 3.0 wt.% PDMAEMA and 0.2 MPa pressure was observed as (330.39 L·m-2·h-1), which is much higher than that of the neat PES membrane with the value of (163.158 L·m-2·h-1) under the same conditions. Furthermore, the inclusion of PDMAEMA enhanced the antifouling capabilities of PES membranes. The total fouling ratio (TFR) of the fabricated PES/PDMAEMA membranes with 3.0 wt.% PDMAEMA at 0.2 MPa applied pressure was 36 percent, compared to 64.9 percent for PES membranes.
Collapse
Affiliation(s)
- Raja Muhammad Asif Khan
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology, H-12, Islamabad 44000, Pakistan
| | - Nasir M Ahmad
- Polymer Research Lab., Polymer and Composite Research Group, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology, H-12, Islamabad 44000, Pakistan
| | - Habib Nasir
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology, H-12, Islamabad 44000, Pakistan
| | - Azhar Mahmood
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology, H-12, Islamabad 44000, Pakistan
| | - Mudassir Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology, H-12, Islamabad 44000, Pakistan
| | - Hussnain A Janjua
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, H-12, Islamabad 44000, Pakistan
| |
Collapse
|
2
|
Amiri S, Vatanpour V, He T. Antifouling thin-film nanocomposite NF membrane with polyvinyl alcohol-sodium alginate-graphene oxide nanocomposite hydrogel coated layer for As(III) removal. CHEMOSPHERE 2023; 322:138159. [PMID: 36812992 DOI: 10.1016/j.chemosphere.2023.138159] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Removal of As(III) from the polluted waters is a challenge. It should be oxidized to As(V) for increasing its rejection by RO membranes. However, in this research, As (III) is directly removed by a high permeable and antifouling membrane prepared through the surface coating and in-situ crosslinking procedure of polyvinyl alcohol (PVA) and sodium alginate (SA) as coating materials containing graphene oxide as a hydrophilic additive on a polysulfone support with glutaraldehyde (GA) chemical crosslinking agent. The properties of the prepared membranes were evaluated through contact angle, zeta potential, ATR-FTIR, SEM, and AFM. The addition of GO in the polymeric networks of SA and PVA hydrogel coating layers led to a better hydrophilicity and a smoother surface and a higher negative surface charge resulted in improvment of permeability and rejection of membranes. Among the prepared hydrogel-coated modified membranes, SA-GO/PSf indicated the highest pure water permeability (15.8 L m-2 h-1 bar-1) and BSA permeability (9.57 L m-2 h-1 bar-1), respectively. The best desalination performance (NaCl, MgSO4, and Na2SO4 rejections of 60.0%, 74.5%, and 92.0%, respectively) and As(III) removal (88.4%) along with satisfactory stability and reusability in cyclic continuous filtration was reported for PVA-SA-GO membrane. In addition, the PVA-SA-GO membrane indicated improved fouling resistance toward BSA foulant with the lowest flux decline of 7%.
Collapse
Affiliation(s)
- Saba Amiri
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| | - Tao He
- Laboratory for Membrane Materials and Separation Technologies, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| |
Collapse
|
3
|
Sirotkin N, Khlyustova A, Costerin D, Naumova I, Kalazhokov Z, Kalazhokov K, Titov V, Agafonov A. Synthesis of chitosan/PVA/metal oxide nanocomposite using underwater discharge plasma: characterization and antibacterial activities. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04348-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Liu J, Lin S, Li W, Zhao Y, Liu D, He Z, Wang D, Lei M, Hong B, Wu H. Ten-Hour Stable Noninvasive Brain-Computer Interface Realized by Semidry Hydrogel-Based Electrodes. RESEARCH 2022; 2022:9830457. [PMID: 35356767 PMCID: PMC8933689 DOI: 10.34133/2022/9830457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/13/2022] [Indexed: 01/31/2023]
Abstract
Noninvasive brain-computer interface (BCI) has been extensively studied from many aspects in the past decade. In order to broaden the practical applications of BCI technique, it is essential to develop electrodes for electroencephalogram (EEG) collection with advanced characteristics such as high conductivity, long-term effectiveness, and biocompatibility. In this study, we developed a silver-nanowire/PVA hydrogel/melamine sponge (AgPHMS) semidry EEG electrode for long-lasting monitoring of EEG signal. Benefiting from the water storage capacity of PVA hydrogel, the electrolyte solution can be continuously released to the scalp-electrode interface during used. The electrolyte solution can infiltrate the stratum corneum and reduce the scalp-electrode impedance to 10 kΩ-15 kΩ. The flexible structure enables the electrode with mechanical stability, increases the wearing comfort, and reduces the scalp-electrode gap to reduce contact impedance. As a result, a long-term BCI application based on measurements of motion-onset visual evoked potentials (mVEPs) shows that the 3-hour BCI accuracy of the new electrode (77% to 100%) is approximately the same as that of conventional electrodes supported by a conductive gel during the first hour. Furthermore, the BCI system based on the new electrode can retain low contact impedance for 10 hours on scalp, which greatly improved the ability of BCI technique.
Collapse
Affiliation(s)
- Junchen Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Sen Lin
- State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Wenzheng Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yanzhen Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Dingkun Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhaofeng He
- School of Artificial, Beijing University of Posts and Telecommunications, Beijing 100084, China
| | - Dong Wang
- School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Ming Lei
- State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Bo Hong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hui Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Liu X, Fan X, Liu B, Ding J, Deng Y, Han X, Zhong C, Hu W. Mapping the Design of Electrolyte Materials for Electrically Rechargeable Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006461. [PMID: 34050684 DOI: 10.1002/adma.202006461] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Electrically rechargeable zinc-air batteries (ERZABs) have attracted substantial research interest as one of the best candidate power sources for electric vehicles, grid-scale energy storage, and portable electronics owing to their high theoretical capacity, low cost, and environmental benignity. However, the realization of ERZABs with long cycle life and high energy and power densities is still a considerable challenge. The electrolyte, which serves as the ionic conductor, is one of the core components of ERZABs, as it plays a significant role during the discharge-charge process and greatly influences the rechargeability, operating voltage, lifespan, power density, and safety of ERZABs. Herein, the fundamental electrochemistry of electrolyte materials for ERZABs and the associated challenges are presented. Furthermore, recent advances in electrolyte materials for ERZABs, including alkaline aqueous electrolytes, nonalkaline electrolytes, ionic liquids, and semisolid-state electrolytes are discussed. This work aims to provide insights into the future exploration of high-performance electrolytes and thus promote the development of ERZABs.
Collapse
Affiliation(s)
- Xiaorui Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiayue Fan
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Bin Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jia Ding
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yida Deng
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaopeng Han
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
6
|
Ntshangase NC, Sadare OO, Daramola MO. Effect of Silica Sodalite Functionalization and PVA Coating on Performance of Sodalite Infused PSF Membrane during Treatment of Acid Mine Drainage. MEMBRANES 2021; 11:315. [PMID: 33925776 PMCID: PMC8145470 DOI: 10.3390/membranes11050315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 11/20/2022]
Abstract
In this study, silica sodalite (SSOD) nanoparticles were synthesized by topotactic conversion and functionalized using HNO3/H2SO4 (1:3). The SSOD and functionalized SSOD (fSSOD) nanoparticles were infused into a Polysulfone (Psf) membrane to produce mixed matrix membranes. The membranes were fabricated via the phase inversion method. The membranes and the nanoparticles were characterized using Scanning Electron Microscopy (SEM) to check the morphology of the nanoparticles and the membranes and Fourier Transform Infrared to check the surface chemistry of the nanoparticles and the membranes. Thermal stability of the nanoparticles and the membranes was evaluated using Themogravimetry analysis (TGA) and the degree of hydrophilicity of the membranes was checked via contact angle measurements. The mechanical strength of the membranes and their surface nature (roughness) were checked using a nanotensile instrument and Atomic Force Microscopy (AFM), respectively. The textural property of the nanoparticles were checked by conducting N2 physisorption experiments on the nanoparticles at 77 K. AMD-treatment performance of the fabricated membranes was evaluated in a dead-end filtration cell using a synthetic acid mine drainage (AMD) solution prepared by dissolving a known amount of MgCl2, MnCl2·4H2O, Na2SO4, Al(NO3)3, Fe(NO3)3·9H2O, and Ca2OH2 in deionized water. Results from the N2 physisorption experiments on the nanoparticles at 77 K showed a reduction in surface area and increase in pore diameter of the nanoparticles after functionalization. Performance of the membranes during AMD treatment shows that, at 4 bar, a 10% fSSOD/Psf membrane displayed improved heavy metal rejection >50% for all heavy metals considered, expect the SSOD-loaded membrane that showed a rejection <13% (except for Al3+ 89%). In addition, coating the membranes with a PVA layer improved the antifouling property of the membranes. The effects of multiple PVA coating and behaviour of the membranes during real AMD are not reported in this study, these should be investigated in a future study. Therefore, the newly developed functionalized SSOD infused Psf membranes could find applications in the treatment of AMD or for the removal of heavy metals from wastewater.
Collapse
Affiliation(s)
- Nobuhle C. Ntshangase
- Faculty of Engineering and Built Environment, School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Wits, Johannesburg 2050, South Africa;
| | - Olawumi O. Sadare
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Hatfield, Pretoria 0028, South Africa;
| | - Michael O. Daramola
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Hatfield, Pretoria 0028, South Africa;
| |
Collapse
|
7
|
Itzhak T, Segev-Mark N, Simon A, Abetz V, Ramon GZ, Segal-Peretz T. Atomic Layer Deposition for Gradient Surface Modification and Controlled Hydrophilization of Ultrafiltration Polymer Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15591-15600. [PMID: 33765379 DOI: 10.1021/acsami.0c23084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent years, atomic layer deposition (ALD) has emerged as a powerful technique for polymeric membrane surface modification. In this research, we study Al2O3 growth via ALD on two polymeric phase-inverted membranes: polyacrylonitrile (PAN) and polyetherimide (PEI). We demonstrate that Al2O3 can easily be grown on both membranes with as little as 10 ALD cycles. We investigate the formation of Al2O3 layer gradient through the depth of the membranes using high-resolution transmission electron microscopy and elemental analysis, showing that at short exposure times, Al2O3 accumulates at the top of the membrane, reducing pore size and creating a strong growth gradient, while at long exposure time, more homogeneous growth occurs. This detailed characterization creates the knowledge necessary for controlling the deposition gradient and achieving an efficient growth with minimum pore clogging. By tuning the Al2O3 exposure time and cycles, we demonstrate control over the Al2O3 depth gradient and membranes' pore size, hydrophilicity, and permeability. The oil antifouling performance of membranes is investigated using in situ confocal imaging during flow. This characterization technique reveals that Al2O3 surface modification reduces oil droplet surface coverage.
Collapse
Affiliation(s)
- Tamar Itzhak
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Naama Segev-Mark
- Department of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Assaf Simon
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Volker Abetz
- Institute of Membrane Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht, Germany
- Institute of Physical Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Guy Z Ramon
- Department of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Tamar Segal-Peretz
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
8
|
Aguilar-Sanchez A, Jalvo B, Mautner A, Rissanen V, Kontturi KS, Abdelhamid HN, Tammelin T, Mathew AP. Charged ultrafiltration membranes based on TEMPO-oxidized cellulose nanofibrils/poly(vinyl alcohol) antifouling coating. RSC Adv 2021; 11:6859-6868. [PMID: 35423201 PMCID: PMC8694930 DOI: 10.1039/d0ra10220b] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/03/2021] [Indexed: 11/21/2022] Open
Abstract
This study reports the potential of TEMPO-oxidized cellulose nanofibrils (T-CNF)/poly(vinyl alcohol) (PVA) coatings to develop functionalized membranes in the ultrafiltration regime with outstanding antifouling performance and dimensional/pH stability. PVA acts as an anchoring phase interacting with the polyethersulfone (PES) substrate and stabilizing for the hygroscopic T-CNF via crosslinking. The T-CNF/PVA coated PES membranes showed a nano-textured surface, a change in the surface charge, and improved mechanical properties compared to the original PES substrate. A low reduction (4%) in permeance was observed for the coated membranes, attributable to the nanometric coating thickness, surface charge, and hydrophilic nature of the coated layer. The coated membranes exhibited charge specific adsorption driven by electrostatic interaction combined with rejection due to size exclusion (MWCO 530 kDa that correspond to a size of ∼35-40 nm). Furthermore, a significant reduction in organic fouling and biofouling was found for T-CNF/PVA coated membranes when exposed to BSA and E. coli. The results demonstrate the potential of simple modifications using nanocellulose to manipulate the pore structure and surface chemistry of commercially available membranes without compromising on permeability and mechanical stability.
Collapse
Affiliation(s)
- Andrea Aguilar-Sanchez
- Division of Materials and Environmental Chemistry, Stockholm University Frescativägen 8 10691 Stockholm Sweden
| | - Blanca Jalvo
- Division of Materials and Environmental Chemistry, Stockholm University Frescativägen 8 10691 Stockholm Sweden
| | - Andreas Mautner
- Polymer and Composite Engineering (PaCE) Group, Institute of Materials Chemistry and Research, Faculty of Chemistry, University of Vienna Währinger Str. 42 1090 Wien Austria
| | - Ville Rissanen
- VTT Technical Research Centre of Finland, Solutions for Natural Resources and Environment P. O. Box 1000 FI-02044 VTT Finland
| | - Katri S Kontturi
- VTT Technical Research Centre of Finland, Solutions for Natural Resources and Environment P. O. Box 1000 FI-02044 VTT Finland
| | - Hani Nasser Abdelhamid
- Division of Materials and Environmental Chemistry, Stockholm University Frescativägen 8 10691 Stockholm Sweden
| | - Tekla Tammelin
- VTT Technical Research Centre of Finland, Solutions for Natural Resources and Environment P. O. Box 1000 FI-02044 VTT Finland
| | - Aji P Mathew
- Division of Materials and Environmental Chemistry, Stockholm University Frescativägen 8 10691 Stockholm Sweden
| |
Collapse
|
9
|
Ni C, Zheng X, Zhang Y, Zhang X, Li Y. Multifunctional porous materials with simultaneous high water flux, antifouling and antibacterial performances from ionic liquid grafted polyethersulfone. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Khodaverdi F, Vaziri A, Javanbakht M, Jahanfar M. Improvement of
PAN
separator properties using
PVA
/malonic acid by electrospinning in lithium ion‐batteries. J Appl Polym Sci 2020. [DOI: 10.1002/app.50088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Fartash Khodaverdi
- Department of Petroleum and Chemical Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| | - Ali Vaziri
- Department of Petroleum and Chemical Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| | - Mehran Javanbakht
- Department of Chemistry Amirkabir University of Technology Tehran Iran
| | - Mehdi Jahanfar
- Department of Biological Engineering and Biotechnology Shahid Beheshti University Tehran Iran
| |
Collapse
|
11
|
Zhao P, Xue Y, Zhang R, Cao B, Li P. Fabrication of pervaporation desalination membranes with excellent chemical resistance for chemical washing. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Rahimi Z, Zinatizadeh AA, Zinadini S, van Loosdrecht M. β-cyclodextrin functionalized MWCNTs as a promising antifouling agent in fabrication of composite nanofiltration membranes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116979] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Sokhandan F, Homayoonfal M, Davar F. Application of zinc oxide and sodium alginate for biofouling mitigation in a membrane bioreactor treating urban wastewater. BIOFOULING 2020; 36:660-678. [PMID: 32752888 DOI: 10.1080/08927014.2020.1798934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
This research aimed to mitigate fouling in membrane bioreactors (MBR) through concurrent usage of zinc oxide as an antibacterial agent (A) and sodium alginate as a hydrophilic agent (H) within a polyacrylonitrile membrane (PM) structure. The antibacterial polymeric membranes (APM) and antibacterial hydrophilic polymeric membranes (AHPM) synthesized showed a higher porosity, mechanical strength and bacterial inhibition zone, and a lower contact angle in comparison with PM membranes. EDS, SEM and AFM analyses were used to characterize the chemical, structural, and morphological properties of PM, APM, and AHPM. The flux of PM, APM, and AHPM in MBR was 37, 48, and 51 l m-2 h-1 and COD removal was 81, 93.5, and 96.7%, respectively. After MBR operation for 35 days in an urban wastewater treatment, only 50% of the flux of PM was recovered, while the antibacterial and hydrophilic agents yielded a flux recovery of 72.7 and 100% for APM and AHPM, respectively.
Collapse
Affiliation(s)
- Fatemeh Sokhandan
- Department of Chemical Engineering, College of Engineering, University of Isfahan, Isfahan, Iran
| | - Maryam Homayoonfal
- Department of Chemical Engineering, College of Engineering, University of Isfahan, Isfahan, Iran
| | - Fatemeh Davar
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
14
|
Wang SY, Fang LF, Matsuyama H. Construction of a stable zwitterionic layer on negatively-charged membrane via surface adsorption and cross-linking. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117766] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Peyravi M, Jahanshahi M, Mona Mirmousaei S, Lau WJ. Dynamically Coated Photocatalytic Zeolite–TiO2 Membrane for Oil-in-Water Emulsion Separation. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-019-04335-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Selective swelling of polysulfone/poly(ethylene glycol) block copolymer towards fouling-resistant ultrafiltration membranes. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2019.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Nešović K, Janković A, Radetić T, Vukašinović-Sekulić M, Kojić V, Živković L, Perić-Grujić A, Rhee KY, Mišković-Stanković V. Chitosan-based hydrogel wound dressings with electrochemically incorporated silver nanoparticles – In vitro study. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109257] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Gu L, Xie MY, Jin Y, He M, Xing XY, Yu Y, Wu QY. Construction of Antifouling Membrane Surfaces through Layer-by-Layer Self-Assembly of Lignosulfonate and Polyethyleneimine. Polymers (Basel) 2019; 11:E1782. [PMID: 31683573 PMCID: PMC6918325 DOI: 10.3390/polym11111782] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 01/28/2023] Open
Abstract
Lignin is the second most abundant and low-cost natural polymer, but its high value-added utilization is still lack of effective and economic ways. In this paper, waste lignosulfonate (LS) was introduced to fabricate antifouling membrane surfaces via layer-by-layer self-assembly with polyethyleneimine (PEI). The LS/PEI multilayers were successfully deposited on the polysulfone (PSf) membrane, as demonstrated by ATR-FTIR, XPS, Zeta potential measurements, AFM, and SEM. Meanwhile, the effect of the number of bilayers was investigated in detail on the composition, morphologies, hydrophilicity, and antifouling performance of the membrane surface. As a result, with the bilayer numbers increase to 5, the PSf membrane shows smooth surface with small roughness, and its water contact angle reduces to 44.1°, indicating the improved hydrophilicity. Accordingly, the modified PSf membrane with 5 LS/PEI bilayers repels the adsorption of protein, resulting in good antifouling performance. This work provides a green, facile, and low-cost strategy to construct antifouling membrane surfaces.
Collapse
Affiliation(s)
- Lin Gu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Meng-Yun Xie
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Yu Jin
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Min He
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Xiao-Yan Xing
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Yuan Yu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Qing-Yun Wu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
19
|
Fabrication of PES/PVP Water Filtration Membranes Using Cyrene®, a Safer Bio-Based Polar Aprotic Solvent. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/9692859] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A more sustainable dialysis and water filtration membrane has been developed, by using the new, safer, bio-based solvent Cyrene® in place of N-methyl pyrrolidinone (NMP). The effects of solvent choice, solvent evaporation time, the temperature of casting gel, and coagulation bath together with the additive concentration on porosity and pore size distribution were studied. The results, combined with infrared spectra, SEM images, porosity results, water contact angle (WCA), and water permeation, confirm that Cyrene® is better media to produce polyethersulfone (PES) membranes. New methods, Mercury Intrusion Porosimetry (MIP) and NMR-based pore structure model, were applied to estimate the porosity and pore size distribution of the new membranes produced for the first time with Cyrene® and PVP as additive. Hansen Solubility Parameters in Practice (HSPiP) was used to predict polymer-solvent interactions. The use of Cyrene® resulted in reduced polyvinylpyrrolidone (PVP) loading than required when using NMP and gave materials with larger pores and overall porosity. Two different conditions of casting gel were applied in this study: a hot (70°C) and cold gel (17°C) were cast to obtain membranes with different morphologies and water filtration behaviours.
Collapse
|
20
|
He C, Ji H, Qian Y, Wang Q, Liu X, Zhao W, Zhao C. Heparin-based and heparin-inspired hydrogels: size-effect, gelation and biomedical applications. J Mater Chem B 2019; 7:1186-1208. [DOI: 10.1039/c8tb02671h] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The size-effect, fabrication methods and biomedical applications of heparin-based and heparin-inspired hydrogels are reviewed.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Haifeng Ji
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Yihui Qian
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Qian Wang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Xiaoling Liu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Weifeng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Changsheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
21
|
Fabrication of antifouling and antibacterial polyethersulfone (PES)/cellulose nanocrystals (CNC) nanocomposite membranes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.034] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Simultaneous permeability, selectivity and antibacterial property improvement of PVC ultrafiltration membranes via in-situ quaternization. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Dabaghian Z, Peyravi M, Jahanshahi M, Rad AS. Potential of Advanced Nano-structured Membranes for Landfill Leachate Treatment: A Review. CHEMBIOENG REVIEWS 2018. [DOI: 10.1002/cben.201600020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zoheir Dabaghian
- Babol Noshirvani University of Technology; Department of Chemical Engineering; Nanotechnology Research Institute; Shariati Ave. 47148-71167 Babol Iran
| | - Majid Peyravi
- Babol Noshirvani University of Technology; Department of Chemical Engineering; Nanotechnology Research Institute; Shariati Ave. 47148-71167 Babol Iran
| | - Mohsen Jahanshahi
- Babol Noshirvani University of Technology; Department of Chemical Engineering; Nanotechnology Research Institute; Shariati Ave. 47148-71167 Babol Iran
| | - Ali Shokuhi Rad
- Islamic Azad University; Department of Chemical Engineering; Qaemshahr Branch; Qaemshahr Iran
| |
Collapse
|
24
|
Xu S, Shen L, Li C, Wang Y. Properties and pervaporation performance of poly(vinyl alcohol) membranes crosslinked with various dianhydrides. J Appl Polym Sci 2018. [DOI: 10.1002/app.46159] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sheng Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Ministry of Education; Wuhan 430074 China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology; Wuhan 430074 China
| | - Liang Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Ministry of Education; Wuhan 430074 China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology; Wuhan 430074 China
| | - Cailian Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Ministry of Education; Wuhan 430074 China
| | - Yan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Ministry of Education; Wuhan 430074 China
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology; Wuhan 430074 China
| |
Collapse
|
25
|
Recent advances in hydrophilic modification of PVDF ultrafiltration membranes – a review: part I. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/s0958-2118(17)30191-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Singh R, Purkait MK. Role of poly(2-acrylamido-2-methyl-1-propanesulfonic acid) in the modification of polysulfone membranes for ultrafiltration. J Appl Polym Sci 2017. [DOI: 10.1002/app.45290] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Randeep Singh
- Department of Chemical Engineering; Indian Institute of Technology Guwahati; Guwahati-781039 Assam India
| | - Mihir Kumar Purkait
- Department of Chemical Engineering; Indian Institute of Technology Guwahati; Guwahati-781039 Assam India
| |
Collapse
|
27
|
Yuan H, Ren J. Preparation of poly(vinylidene fluoride) (PVDF)/acetalyzed poly(vinyl alcohol) ultrafiltration membrane with the enhanced hydrophilicity and the anti-fouling property. Chem Eng Res Des 2017. [DOI: 10.1016/j.cherd.2017.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Mázl Chánová E, Pop-Georgievski O, Kumorek MM, Janoušková O, Machová L, Kubies D, Rypáček F. Polymer brushes based on PLLA-b-PEO colloids for the preparation of protein resistant PLA surfaces. Biomater Sci 2017; 5:1130-1143. [DOI: 10.1039/c7bm00009j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deposition of PLLA-b-PEO colloidal nanoparticles from selective solvents onto a polylactide surface resulting in an anti-fouling and cell repulsive surface.
Collapse
Affiliation(s)
- E. Mázl Chánová
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague 6
- Czech Republic
| | - O. Pop-Georgievski
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague 6
- Czech Republic
| | - M. M. Kumorek
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague 6
- Czech Republic
| | - O. Janoušková
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague 6
- Czech Republic
| | - L. Machová
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague 6
- Czech Republic
| | - D. Kubies
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague 6
- Czech Republic
| | - F. Rypáček
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague 6
- Czech Republic
| |
Collapse
|
29
|
Ayyavoo J, Nguyen TPN, Jun BM, Kim IC, Kwon YN. Protection of polymeric membranes with antifouling surfacing via surface modifications. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.06.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
He C, Shi ZQ, Cheng C, Lu HQ, Zhou M, Sun SD, Zhao CS. Graphene oxide and sulfonated polyanion co-doped hydrogel films for dual-layered membranes with superior hemocompatibility and antibacterial activity. Biomater Sci 2016; 4:1431-40. [DOI: 10.1039/c6bm00494f] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
GO based dual-layered membranes with superior hemocompatibility and antibacterial activity have potential application for clinical hemodialysis and many other biomedical therapies.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Zhen-Qiang Shi
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chong Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Hua-Qing Lu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Mi Zhou
- Institute of Textile
- Sichuan University
- Chengdu 610065
- China
| | - Shu-Dong Sun
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
31
|
Zhao X, Liu C. Enhancing the permeation and fouling resistance of PVDF microfiltration membranes by constructing an auto-soak surface. RSC Adv 2016. [DOI: 10.1039/c6ra18714e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A new kind of hydrophilic polyvinylidene fluoride microfiltration membrane with an auto-soak surface was fabricated by plasma treatment and interfacial crosslinking to improve the separation efficiency and fouling resistance in water treatment.
Collapse
Affiliation(s)
- Xinzhen Zhao
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- P. R. China
| | - Changkun Liu
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen 518060
- P. R. China
| |
Collapse
|
32
|
He C, Cheng C, Nie SQ, Wang LR, Nie CX, Sun SD, Zhao CS. Graphene oxide linked sulfonate-based polyanionic nanogels as biocompatible, robust and versatile modifiers of ultrafiltration membranes. J Mater Chem B 2016; 4:6143-6153. [DOI: 10.1039/c6tb01855f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A GO linked sulfonate-based polyanionic nanogel as a membrane modifier has application potential in clinical hemodialysis and other biomedical therapies.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chong Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Sheng-Qiang Nie
- Engineering Technology Research Center for Materials Protection of Wear and Corrosion of Guizhou Province
- University of Guizhou Province
- College of Chemistry and Materials Engineering
- Guiyang University
- China
| | - Ling-Ren Wang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chuan-Xiong Nie
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Shu-Dong Sun
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
33
|
Choi H, Jung Y, Han S, Tak T, Kwon YN. Surface modification of SWRO membranes using hydroxyl poly(oxyethylene) methacrylate and zwitterionic carboxylated polyethyleneimine. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.03.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Galanakis CM. Separation of functional macromolecules and micromolecules: From ultrafiltration to the border of nanofiltration. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2014.11.005] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Pirom T, Sunsandee N, Ramakul P, Pancharoen U, Nootong K, Leepipatpiboon N. Separation of amoxicillin using trioctylmethylammonium chloride via a hollow fiber supported liquid membrane: Modeling and experimental investigation. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2014.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Elumalai S, Muthuraman G. Studies on rhodamine B dye transport through a supported liquid membrane from basic aqueous solutions using phenol as a membrane phase. RSC Adv 2015. [DOI: 10.1039/c5ra14458b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of this work is to investigate the transport of rhodamine B across a supported liquid membrane under various experimental conditions.
Collapse
Affiliation(s)
- S. Elumalai
- PG & Research Department of Chemistry
- Presidency College (Autonomous)
- Chennai-5
- India
| | - G. Muthuraman
- PG & Research Department of Chemistry
- Presidency College (Autonomous)
- Chennai-5
- India
| |
Collapse
|
37
|
Jang H, Song DH, Kim IC, Kwon YN. Fouling control through the hydrophilic surface modification of poly(vinylidene fluoride) membranes. J Appl Polym Sci 2014. [DOI: 10.1002/app.41712] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hanna Jang
- Research Center for Biobased Chemistry; Korea Research Institute of Chemical Technology; P. O. Box 107, Daejeon 305-600 Republic of Korea
| | - Du-Hyun Song
- Research Center for Biobased Chemistry; Korea Research Institute of Chemical Technology; P. O. Box 107, Daejeon 305-600 Republic of Korea
| | - In-Chul Kim
- Research Center for Biobased Chemistry; Korea Research Institute of Chemical Technology; P. O. Box 107, Daejeon 305-600 Republic of Korea
| | - Young-Nam Kwon
- School of Urban and Environmental Engineering; Ulsan National Institute of Science and Technology; Ulsan 689-798 Republic of Korea
| |
Collapse
|
38
|
Yuan H, Wang Y, Cheng L, Liu W, Ren J, Meng L. Improved Antifouling Property of Poly(ether sulfone) Ultrafiltration Membrane through Blending with Poly(vinyl alcohol). Ind Eng Chem Res 2014. [DOI: 10.1021/ie502797k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Haikuan Yuan
- College
of Chemical Engineering, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Yanmei Wang
- School
of Chemical Engineering and Environmental Science, Weifang University of Science and Technology, 262700 Weifang, China
| | - Liang Cheng
- Chemical
Engineering Research Center, East China University of Science and Technology, 200237 Shanghai, China
| | - Wangcai Liu
- Key Laboratory for Polymerization Engineering and Technology
of Ningbo, Institute of Chemical
Engineering, Ningbo University of Technology, 315016 Ningbo, China
| | - Jie Ren
- College
of Chemical Engineering, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Linghao Meng
- College
of Chemical Engineering, Zhejiang University of Technology, 310014 Hangzhou, China
| |
Collapse
|
39
|
Dudchenko AV, Rolf J, Russell K, Duan W, Jassby D. Organic fouling inhibition on electrically conducting carbon nanotube–polyvinyl alcohol composite ultrafiltration membranes. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.05.041] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Feng Y, Lin X, Li H, He L, Sridhar T, Suresh AK, Bellare J, Wang H. Synthesis and Characterization of Chitosan-Grafted BPPO Ultrafiltration Composite Membranes with Enhanced Antifouling and Antibacterial Properties. Ind Eng Chem Res 2014. [DOI: 10.1021/ie502599p] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yi Feng
- Department
of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Xiaocheng Lin
- Department
of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huazhen Li
- Department
of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Lizhong He
- Department
of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Tam Sridhar
- Department
of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Akkihebbal K Suresh
- Department
of Chemical Engineering, Indian Institute of Technology Bombay, Bombay, Maharashtra 400076, India
| | - Jayesh Bellare
- Department
of Chemical Engineering, Indian Institute of Technology Bombay, Bombay, Maharashtra 400076, India
| | | |
Collapse
|
41
|
Solution blowing of chitosan/PVA hydrogel nanofiber mats. Carbohydr Polym 2014; 101:1116-21. [DOI: 10.1016/j.carbpol.2013.10.056] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 11/23/2022]
|
42
|
Wei X, Wu S. Preparation of novel PP-g-BMA sorbent by two-step irradiation method for elimination of homopolymerization in grafting process. JOURNAL OF POLYMER RESEARCH 2013. [DOI: 10.1007/s10965-013-0292-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Peng B, Chu X, Li Y, Li D, Chen Y, Zhao J. Adsorption kinetics and stability of poly(ethylene oxide)-block-polystyrene micelles on polystyrene surface. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.08.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Lakra R, Saranya R, Lukka Thuyavan Y, Sugashini S, Begum K, Arthanareeswaran G. Separation of acetic acid and reducing sugars from biomass derived hydrosylate using biopolymer blend polyethersulfone membrane. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.08.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Chen G, Zhang F, Logan BE, Hickner MA. Poly(vinyl alcohol) separators improve the coulombic efficiency of activated carbon cathodes in microbial fuel cells. Electrochem commun 2013. [DOI: 10.1016/j.elecom.2013.05.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
46
|
Biofouling-resistance control of expanded poly(tetrafluoroethylene) membrane via atmospheric plasma-induced surface PEGylation. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.03.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
47
|
Yuan H, Ren J, Cheng L, Shen L. Preparation and characterization of a poly(vinyl alcohol)/tetraethoxysilane ultrafiltration membrane by a sol-gel method. J Appl Polym Sci 2013. [DOI: 10.1002/app.39502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Liang Cheng
- Chemical Engineering Research Center; East China University of Science and Technology; Shanghai; 200237; China
| | | |
Collapse
|
48
|
Peng B, Li Y, Zhao Z, Chen Y, Han CC. Facile surface modification of PVDF microfiltration membrane by strong physical adsorption of amphiphilic copolymers. J Appl Polym Sci 2013. [DOI: 10.1002/app.39516] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bo Peng
- Laboratory of Polymer Physics and Chemistry; Institute of Chemistry, The Chinese Academy of Sciences; Beijing; 100190; People's Republic of China
| | - Yuyan Li
- Laboratory of Polymer Physics and Chemistry; Institute of Chemistry, The Chinese Academy of Sciences; Beijing; 100190; People's Republic of China
| | - Zhiguo Zhao
- Laboratory of Polymer Physics and Chemistry; Institute of Chemistry, The Chinese Academy of Sciences; Beijing; 100190; People's Republic of China
| | - Yongming Chen
- Laboratory of Polymer Physics and Chemistry; Institute of Chemistry, The Chinese Academy of Sciences; Beijing; 100190; People's Republic of China
| | - Charles C. Han
- Laboratory of Polymer Physics and Chemistry; Institute of Chemistry, The Chinese Academy of Sciences; Beijing; 100190; People's Republic of China
| |
Collapse
|
49
|
Preparation and characterization of AA/AMPS grafted polypropylene by two-steps electron beam irradiation for filtration of cigarette smoke. JOURNAL OF POLYMER RESEARCH 2012. [DOI: 10.1007/s10965-012-0044-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
PEGylation of anti-biofouling polysulfone membranes via liquid- and vapor-induced phase separation processing. J Memb Sci 2012. [DOI: 10.1016/j.memsci.2012.02.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|