• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4670599)   Today's Articles (0)
For: Israni SH, Harold MP. Methanol steam reforming in single-fiber packed bed Pd–Ag membrane reactor: Experiments and modeling. J Memb Sci 2011;369:375-87. [DOI: 10.1016/j.memsci.2010.12.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Number Cited by Other Article(s)
1
Bakhtyari A, Bardool R, Reza Rahimpour M, Mofarahi M, Lee CH. Performance Analysis and Artificial Intelligence Modeling for Enhanced Hydrogen Production by Catalytic Bio-alcohol Reforming in a Membrane-Assisted Reactor. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
2
Zhao C, Liu Y, Zhu H, Feng J, Jiang H, An F, Jin Y, Xu W, Yang Z, Sun B. Hydrophobically modified Pd membrane for the efficient purification of hydrogen in light alcohols steam reforming process. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
3
Lakhtaria P, Ribeirinha P, Huhtinen W, Viik S, Sousa J, Mendes A. Hydrogen production via aqueous-phase reforming for high-temperature proton exchange membrane fuel cells - a review. OPEN RESEARCH EUROPE 2022;1:81. [PMID: 37645145 PMCID: PMC10445907 DOI: 10.12688/openreseurope.13812.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/22/2022] [Indexed: 08/31/2023]
4
Applicability of membrane reactor technology in industrial hydrogen producing reactions: Current effort and future directions. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
5
Saidi M, Safaripour M. Pure Hydrogen and Propylene Coproduction in Catalytic Membrane Reactor‐Assisted Propane Dehydrogenation. Chem Eng Technol 2020. [DOI: 10.1002/ceat.201900209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
6
Qureshi F, Ahmad F, Idrees M, Khan AA, Zaidi S. Simulation of methanol steam reforming process for the production of hydrogen. Chem Ind 2019. [DOI: 10.1080/00194506.2019.1689186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
7
Two-dimensional MOF-derived nanoporous Cu/Cu2O networks as catalytic membrane reactor for the continuous reduction of p-nitrophenol. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
8
Wang M, Zhou Y, Tan X, Gao J, Liu S. Nickel hollow fiber membranes for hydrogen separation from reformate gases and water gas shift reactions operated at high temperatures. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
9
Cai L, Hu S, Cao Z, Li H, Zhu X, Yang W. Dual‐phase membrane reactor for hydrogen separation with high tolerance to CO 2 and H 2 S impurities. AIChE J 2018. [DOI: 10.1002/aic.16491] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
10
Dalena F, Senatore A, Basile M, Knani S, Basile A, Iulianelli A. Advances in Methanol Production and Utilization, with Particular Emphasis toward Hydrogen Generation via Membrane Reactor Technology. MEMBRANES 2018;8:E98. [PMID: 30340434 PMCID: PMC6316867 DOI: 10.3390/membranes8040098] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 11/30/2022]
11
Progress in Methanol Steam Reforming Modelling via Membrane Reactors Technology. MEMBRANES 2018;8:membranes8030065. [PMID: 30126137 PMCID: PMC6161194 DOI: 10.3390/membranes8030065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/27/2018] [Accepted: 08/08/2018] [Indexed: 11/17/2022]
12
Modeling Fixed Bed Membrane Reactors for Hydrogen Production through Steam Reforming Reactions: A Critical Analysis. MEMBRANES 2018;8:membranes8020034. [PMID: 29921794 PMCID: PMC6026897 DOI: 10.3390/membranes8020034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 11/30/2022]
13
Fornari AC, Menechini Neto R, Lenzi GG, dos Santos OAA, de Matos Jorge LM. Utilization of sol-gel CuO-ZnO-Al2 O3 catalysts in the methanol steam reforming for hydrogen production. CAN J CHEM ENG 2017. [DOI: 10.1002/cjce.23005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
14
Murmura M, Cerbelli S, Annesini M. Transport-reaction-permeation regimes in catalytic membrane reactors for hydrogen production. The steam reforming of methane as a case study. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2016.12.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
15
An equilibrium theory for catalytic steam reforming in membrane reactors. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2016.11.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
16
Murmura MA, Cerbelli S, Annesini MC. Modelling and optimization of hydrogen yield in membrane steam reforming reactors. CAN J CHEM ENG 2017. [DOI: 10.1002/cjce.22787] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
17
Wang M, Song J, Li Y, Tan X, Chu Y, Liu S. Hydrogen separation at elevated temperatures using metallic nickel hollow fiber membranes. AIChE J 2017. [DOI: 10.1002/aic.15652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
18
Murmura M, Cerbelli S, Turchetti L, Annesini M. Transport-permeation regimes in an annular membrane separator for hydrogen purification. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2015.12.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
19
Nekhamkina O, Sheintuch M. Approximate models of concentration-polarization in Pd-membrane separators. Fast numerical analysis. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2015.11.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
20
Sheintuch M. Can the permeance of a Pd-based membrane be predicted from first principles? Curr Opin Chem Eng 2015. [DOI: 10.1016/j.coche.2015.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
21
Hydrogen Production for PEM Fuel Cells. BIOFUELS AND BIOREFINERIES 2015. [DOI: 10.1007/978-94-017-7330-0_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
22
Modeling H2 transport through a Pd or Pd/Ag membrane, and its inhibition by co-adsorbates, from first principles. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.04.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
23
Sá S, Sousa JM, Mendes A. Steam reforming of methanol over a CuO/ZnO/Al2O3 catalyst part II: A carbon membrane reactor. Chem Eng Sci 2011. [DOI: 10.1016/j.ces.2011.06.074] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA