1
|
Raman RK, Ganesan S, Alagumalai A, Sudhakaran Menon V, Gurusamy Thangavelu SA, Krishnamoorthy A. Rational Design, Synthesis, and Structure-Property Relationship Studies of a Library of Thermoplastic Polyurethane Films as an Effective and Scalable Encapsulation Material for Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53935-53950. [PMID: 37935023 DOI: 10.1021/acsami.3c12607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Hybrid organic-inorganic metal halide perovskite solar cell (PSC) technology is experiencing rapid growth due to its simple solution chemistry, high power conversion efficiency (PCE), and potential for low-cost mass production. Nevertheless, the primary obstacle preventing the upscaling and widespread outdoor deployment of PSC technology is the poor long-term device stability, which stems from the inherent instability of perovskite materials in the presence of oxygen and moisture. To address this issue, in this work, we have synthesized a series of thermoplastic polyurethanes (TPUs) through a rational design by utilizing polyols having different molecular weights and diverse isocyanates (aromatic and aliphatic). Thorough characterization of these TPUs (ASTM and ISO standards) along with structure-property relationship studies were carried out for the first time and were then used as the encapsulation material for PSCs. The prepared TPUs were robust and adhered well with the glass substrate, and the use of low temperature during the encapsulation process avoided the degradation of the perovskite absorber and other organic layers in the device stack. The encapsulated devices retained more than 93% of their initial power conversion efficiency (PCE) for over 1000 h after exposure to harsh environmental conditions such as high relative humidity (80 ± 5% RH). Furthermore, the encapsulated perovskite absorbers showed remarkable stability when they were soaked in water. This article demonstrates the potential of TPU as a suitable and easily scalable encapsulant for PSCs and pave the way for extending the lifetime and commercialization of PSCs.
Collapse
Affiliation(s)
- Rohith Kumar Raman
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Saraswathi Ganesan
- Organic and Perovskite Photovoltaics Laboratory (OPPV), Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ananthan Alagumalai
- Organic and Perovskite Photovoltaics Laboratory (OPPV), Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Vidya Sudhakaran Menon
- Organic and Perovskite Photovoltaics Laboratory (OPPV), Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Senthil A Gurusamy Thangavelu
- Organic and Perovskite Photovoltaics Laboratory (OPPV), Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ananthanarayanan Krishnamoorthy
- Organic and Perovskite Photovoltaics Laboratory (OPPV), Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| |
Collapse
|
2
|
Wang J, Wang M, Xu C, Han Y, Qin X, Zhang L. Tailored Dynamic Viscoelasticity of Polyurethanes Based on Different Diols. Polymers (Basel) 2023; 15:2623. [PMID: 37376269 DOI: 10.3390/polym15122623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The development of damping and tire materials has led to a growing need to customize the dynamic viscoelasticity of polymers. In the case of polyurethane (PU), which possesses a designable molecular structure, the desired dynamic viscoelasticity can be achieved by carefully selecting flexible soft segments and employing chain extenders with diverse chemical structures. This process involves fine-tuning the molecular structure and optimizing the degree of micro-phase separation. It is worth noting that the temperature at which the loss peak occurs increases as the soft segment structure becomes more rigid. By incorporating soft segments with varying degrees of flexibility, the loss peak temperature can be adjusted within a broad range, from -50 °C to 14 °C. Furthermore, when the molecular structure of the chain extender becomes more regular, it enhances interaction between the soft and hard segments, leading to a higher degree of micro-phase separation. This phenomenon is evident from the increased percentage of hydrogen-bonding carbonyl, a lower loss peak temperature, and a higher modulus. By modifying the molecular weight of the chain extender, we can achieve precise control over the loss peak temperature, allowing us to regulate it within the range of -1 °C and 13 °C. To summarize, our research presents a novel approach for tailoring the dynamic viscoelasticity of PU materials and thus offers a new avenue for further exploration in this field.
Collapse
Affiliation(s)
- Jiadong Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Min Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chenxin Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Han
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuan Qin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Institute of Emergent Elastomers, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Wu Y, Xiao K, zhu L, Luo Q. Preparation and application of equilibrium modified atmosphere packaging membranes with polylactic acid and polymers of intrinsic microporosity. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
4
|
Sepehri Sadeghian MS, Raisi A. A thermodynamic study on relationship between gas separation properties and microstructure of polyurethane membranes. Sci Rep 2023; 13:6038. [PMID: 37055449 PMCID: PMC10102001 DOI: 10.1038/s41598-023-32908-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023] Open
Abstract
The lattice fluid (LF) thermodynamic model and extended Vrentas' free-volume (E-VSD) theory were coupled to study the gas separation properties of the linear thermoplastic polyurethane (TPU) membranes with different chemical structures by analyzing their microstructures. A set of characteristic parameters were extracted using the repeating unit of the TPU samples and led to prediction of reliable polymer densities (AARD < 6%) and gas solubilities. The viscoelastic parameters, which were obtained from the DMTA analysis, were also estimated the gas diffusion vs. temperature, precisely. The degree of microphase mixing based on the DSC analysis was in order: TPU-1 (4.84 wt%) < TPU-2 (14.16 wt%) < TPU-3 (19.92 wt%). It was found that the TPU-1 membrane had the highest degree of crystallinity, but showed higher gas solubilities and permeabilities because this membrane has the least degree of microphase mixing. These values, in combination with the gas permeation results, showed that the content of the hard segment along with the degree of microphase mixing and other microstructural parameters like crystallinity were the determinative parameters.
Collapse
Affiliation(s)
- Mohammad Sajad Sepehri Sadeghian
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave., P.O. Box 15875-4413, Tehran, Iran
| | - Ahmadreza Raisi
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave., P.O. Box 15875-4413, Tehran, Iran.
| |
Collapse
|
5
|
Fakhar A, Zarabadipoor M, Talakesh MM, Sadeghi M. Gas permeation through polyethylene glycol/polytetramethylene glycol based polyurethane–silica mixed matrix membranes and interfacial morphology study via modeling approach. J Appl Polym Sci 2023. [DOI: 10.1002/app.53831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Afsaneh Fakhar
- Department of Chemical Engineering Isfahan University of Technology Isfahan Iran
| | | | | | - Morteza Sadeghi
- Department of Chemical Engineering Isfahan University of Technology Isfahan Iran
- Department of Science and Engineering Macquarie University Macquarie Park New South Wales Australia
| |
Collapse
|
6
|
Salahshoori I, Asghari M, Namayandeh Jorabchi M, Wohlrab S, Rabiei M, Raji M, Afsari M. Methylene diisocyanate - aided tailoring of nanotitania for dispersion engineering through polyurethane mixed matrix membranes: experimental investigations. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023] Open
|
7
|
Hong T, Li Y, Wang S, Li Y, Jing X. Polyurethane-based gas separation membranes: A review and perspectives. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Investigation of the Gas Separation Properties of Polyurethane Membranes in Presence of Boehmite Nanoparticles. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02480-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Nasrollahi N, Yousefpoor M, Khataee A, Vatanpour V. Polyurethane-based separation membranes: a review on fabrication techniques, applications, and future prospectives. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Coelho I, Pires RF, Gonçalves SB, Bonifácio VDB, Faria M. Gas Permeability and Mechanical Properties of Polyurethane-Based Membranes for Blood Oxygenators. MEMBRANES 2022; 12:826. [PMID: 36135845 PMCID: PMC9502098 DOI: 10.3390/membranes12090826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
The production of medical devices follows strict guidelines where bio- and hemocompatibility, mechanical strength, and tear resistance are important features. Segmented polyurethanes (PUs) are an important class of polymers that fulfill many of these requirements, thus justifying the investigation of novel derivatives with enhanced properties, such as modulated carbon dioxide and oxygen permeability. In this work, three segmented polyurethane-based membranes, containing blocks of hard segments (HSs) dispersed in a matrix of soft segment (SS) blocks, were prepared by reacting a PU prepolymer (PUR) with tris(hydroxymethyl)aminomethane (TRIS), Congo red (CR) and methyl-β-cyclodextrin (MBCD), rendering PU/TRIS, PU/CR and PU/MBCD membranes. The pure (control) PU membrane exhibited the highest degree of phase segregation between HSs and SSs followed by PU/TRIS and PU/MBCD membranes, and the PU/CR membrane displayed the highest degree of mixing. Pure PU and PU/CR membranes exhibited the highest and lowest values of Young's modulus, tangent moduli and ultimate tensile strength, respectively, suggesting that the introduction of CR increases molecular mobility, thus reducing stiffness. The CO2 permeability was highest for the PU/CR membrane, 347 Barrer, and lowest for the pure PU membrane, 278 Barrer, suggesting that a higher degree of mixing between HSs and SSs leads to higher CO2 permeation rates. The permeability of O2 was similar for all membranes, but ca. 10-fold lower than the CO2 permeability.
Collapse
Affiliation(s)
- Inês Coelho
- Center of Physics and Engineering of Advanced Materials (CeFEMA), Laboratory for Physics of Materials and Emerging Technologies (LaPMET), Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Rita F. Pires
- Center of Physics and Engineering of Advanced Materials (CeFEMA), Laboratory for Physics of Materials and Emerging Technologies (LaPMET), Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Sérgio B. Gonçalves
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Vasco D. B. Bonifácio
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Bioengeneering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Mónica Faria
- Center of Physics and Engineering of Advanced Materials (CeFEMA), Laboratory for Physics of Materials and Emerging Technologies (LaPMET), Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
11
|
da Luz M, Dias G, Zimmer H, Bernard FL, do Nascimento JF, Einloft S. Poly(ionic liquid)s-based polyurethane blends: effect of polyols structure and ILs counter cations in CO2 sorption performance of PILs physical blends. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03799-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Hu J, Dong T, Bu H, Sun T, Zhang J, Xu C, Yun X. Construction of gas permeable channel in poly(l-lactic acid) membrane and its control of the micro atmosphere in okra packaging. Int J Biol Macromol 2022; 219:519-529. [DOI: 10.1016/j.ijbiomac.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/05/2022]
|
13
|
Kiani S, Raisi A. Evaluation of polyurethane/nylon 6(3) blend membranes for enhanced
CO
2
separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sahar Kiani
- Department of Chemical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Ahmadreza Raisi
- Department of Chemical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| |
Collapse
|
14
|
Norouzi A, Kojabad ME, Chapalaghi M, Hosseinkhani A, nareh AA, Lay EN. Polyester-based polyurethane mixed-matrix membranes incorporating carbon nanotube-titanium oxide coupled nanohybrid for carbon dioxide capture enhancement: molecular simulation and experimental study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Maleh MS, Kiani S, Raisi A. Study on the advantageous effect of nano-clay and polyurethane on structure and CO2 separation performance of polyethersulfone based ternary mixed matrix membranes. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Pourmohammadi-Mahunaki M, Haddadi-Asl V, Roghani-Mamaqani H, Koosha M, Yazdi M. Effect of chain extender length and molecular architecture on phase separation and rheological properties of ether-based polyurethanes. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03907-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Assis Silva FC, da Costa Lourenço T, van der Spoel D, Aparicio S, Azevedo Dos Reis R, Costa LT. The structure of CO 2 and CH 4 at the interface of a poly(urethane urea) oligomer model from the microscopic point of view. J Chem Phys 2021; 155:044704. [PMID: 34340392 DOI: 10.1063/5.0049007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The world desperately needs new technologies and solutions for gas capture and separation. To make this possible, molecular modeling is applied here to investigate the structural, thermodynamic, and dynamical properties of a model for the poly(urethane urea) (PUU) oligomer model to selectively capture CO2 in the presence of CH4. In this work, we applied a well-known approach to derive atomic partial charges for atoms in a polymer chain based on self-consistent sampling using quantum chemistry and stochastic dynamics. The interactions of the gases with the PUU model were studied in a pure gas based system as well as in a gas mixture. A detailed structure characterization revealed high interaction of CO2 molecules with the hard segments of the PUU. Therefore, the structural and energy properties explain the reasons for the greater CO2 sorption than CH4. We find that the CO2 sorption is higher than the CH4 with a selectivity of 7.5 at 298 K for the gas mixture. We characterized the Gibbs dividing surface for each system, and the CO2 is confined for a long time at the gas-oligomer model interface. The simulated oligomer model showed performance above the 2008 Robeson's upper bound and may be a potential material for CO2/CH4 separation. Further computational and experimental studies are needed to evaluate the material.
Collapse
Affiliation(s)
| | | | - David van der Spoel
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, P.O. Box 596, SE-75124 Uppsala, Sweden
| | | | - Rodrigo Azevedo Dos Reis
- Departamento de Operações e Projetos Industriais, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciano T Costa
- MolMod-CS, Departamento de Físico-Química, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
18
|
García Jiménez CD, Habert AC, Borges CP. Polyurethane/polyethersulfone dual‐layer anisotropic membranes for
CO
2
removal from flue gas. J Appl Polym Sci 2021. [DOI: 10.1002/app.50476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Alberto Cláudio Habert
- Chemical Engineering Program COPPE, Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Cristiano Piacsek Borges
- Chemical Engineering Program COPPE, Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
19
|
Pournaghshband Isfahani A, Shahrooz M, Yamamoto T, Muchtar A, Ito MM, Yamaguchi D, Takenaka M, Sivaniah E, Ghalei B. Influence of microstructural variations on morphology and separation properties of polybutadiene-based polyurethanes. RSC Adv 2021; 11:15449-15456. [PMID: 35424034 PMCID: PMC8698806 DOI: 10.1039/d1ra00764e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/19/2021] [Indexed: 12/01/2022] Open
Abstract
Polybutadiene-based polyurethanes with different cis/trans/1,2-vinyl microstructure contents are synthesized. The phase morphology and physical properties of the polymers are investigated using spectroscopic analysis (FTIR and Raman), differential scanning calorimetry (DSC), X-ray scattering (WAXD and SAXS) and atomic force microscopy (AFM). In addition, their gas transport properties are determined for different gases at 4 bar and 25 °C. Thermodynamic incompatibility and steric hindrance of pendant groups are the dominant factors affecting the morphology and properties of the PUs. FTIR spectra, DSC, and SAXS analysis reveal a higher extent of phase mixing in high vinyl-content PUs. Moreover, the SAXS analysis and AFM phase images indicate smaller microdomains by increasing the vinyl content. Smaller permeable soft domains as well as the lower phase separation of the PUs with higher vinyl content create more tortuous pathways for gas molecules and deteriorate the gas permeability of the membranes.
Collapse
Affiliation(s)
- Ali Pournaghshband Isfahani
- Institute for Integrated Cell-Materials Sciences (iCeMS), Kyoto University Yoshida-Honmachi, Sakyo-ku 606-8501 Kyoto Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku 615-8510 Kyoto Japan
| | - Mahdi Shahrooz
- Institute for Sustainable Industries and Liveable Cities, Victoria University 14428 Melbourne VIC Australia
| | - Takuma Yamamoto
- Institute for Integrated Cell-Materials Sciences (iCeMS), Kyoto University Yoshida-Honmachi, Sakyo-ku 606-8501 Kyoto Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku 615-8510 Kyoto Japan
| | - Ansori Muchtar
- Institute for Integrated Cell-Materials Sciences (iCeMS), Kyoto University Yoshida-Honmachi, Sakyo-ku 606-8501 Kyoto Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku 615-8510 Kyoto Japan
| | - Masateru M Ito
- Institute for Integrated Cell-Materials Sciences (iCeMS), Kyoto University Yoshida-Honmachi, Sakyo-ku 606-8501 Kyoto Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku 615-8510 Kyoto Japan
| | - Daisuke Yamaguchi
- Institute for Integrated Cell-Materials Sciences (iCeMS), Kyoto University Yoshida-Honmachi, Sakyo-ku 606-8501 Kyoto Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku 615-8510 Kyoto Japan
| | - Mikihito Takenaka
- Institute for Integrated Cell-Materials Sciences (iCeMS), Kyoto University Yoshida-Honmachi, Sakyo-ku 606-8501 Kyoto Japan
- Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | - Easan Sivaniah
- Institute for Integrated Cell-Materials Sciences (iCeMS), Kyoto University Yoshida-Honmachi, Sakyo-ku 606-8501 Kyoto Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku 615-8510 Kyoto Japan
| | - Behnam Ghalei
- Institute for Integrated Cell-Materials Sciences (iCeMS), Kyoto University Yoshida-Honmachi, Sakyo-ku 606-8501 Kyoto Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku 615-8510 Kyoto Japan
| |
Collapse
|
20
|
Suhail F, Batool M, Shah AT, Tabassum S, Khan AL, Gilani MA. Highly CO2 selective mixed matrix membranes of polysulfone based on hetaryl modified SBA-16 particles. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Kim D, Hossain I, Kim Y, Choi O, Kim TH. PEG/PPG-PDMS-Adamantane-based Crosslinked Terpolymer Using the ROMP Technique to Prepare a Highly Permeable and CO 2-Selective Polymer Membrane. Polymers (Basel) 2020; 12:E1674. [PMID: 32727152 PMCID: PMC7464022 DOI: 10.3390/polym12081674] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/02/2022] Open
Abstract
In this study, precursor molecules based on PEG/PPG and polydimethylsiloxane (PDMS), both widely used rubbery polymers, were copolymerized with bulky adamantane into copolymer membranes. Ring-opening metathesis polymerization (ROMP) was employed during the polymerization process to create a structure with both ends crosslinked. The precursor molecules and corresponding polymer membranes were characterized using various analytical methods. The polymer membranes were fabricated using different compositions of PDMS and adamantane, to determine how the network structure affected their gas separation performance. PEG/PPG, in which CO2 is highly soluble, was copolymerized with PDMS, which has high permeability, and adamantane, which controlled the crosslinking density with a rigid and bulky structure. It was confirmed that the resulting crosslinked polymer membranes exhibited high solubility and diffusivity for CO2. Further, their crosslinked structure using ROMP technique made it possible to form good films. The membranes fabricated in the present study exhibited excellent performance, i.e., CO2 permeability of up to 514.5 Barrer and CO2/N2 selectivity of 50.9.
Collapse
Affiliation(s)
- Dongyoung Kim
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (D.K.); (I.H.)
- Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (Y.K.); (O.C.)
| | - Iqubal Hossain
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (D.K.); (I.H.)
- Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (Y.K.); (O.C.)
| | - Yeonho Kim
- Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (Y.K.); (O.C.)
| | - Ook Choi
- Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (Y.K.); (O.C.)
| | - Tae-Hyun Kim
- Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (D.K.); (I.H.)
- Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea; (Y.K.); (O.C.)
| |
Collapse
|
22
|
Norouzbahari S, Gharibi R. An investigation on structural and gas transport properties of modified cross-linked PEG-PU membranes for CO2 separation. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Mehmood O, Farrukh S, Hussain A, Rehman A, Liu Y, Butt S, Pervaiz E. Optimization analysis of polyurethane based mixed matrix gas separation membranes by incorporation of gamma-cyclodextrin metal organic frame work. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01179-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Molavi H, Shojaei A, Mousavi SA, Ahmadi SA. Effect of reactive diluent on gas separation behavior of photocurable acrylated polyurethane composite membranes. J Appl Polym Sci 2020. [DOI: 10.1002/app.48293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hossein Molavi
- Institute for Nanoscience and Nanotechnology (INST)Sharif University of Technology, P.O. Box 11155‐8639 Tehran Iran
| | - Akbar Shojaei
- Institute for Nanoscience and Nanotechnology (INST)Sharif University of Technology, P.O. Box 11155‐8639 Tehran Iran
- Department of Chemical and Petroleum EngineeringSharif University of Technology, P.O. Box 11155‐9465 Tehran Iran
| | - Seyyed Abbas Mousavi
- Department of Chemical and Petroleum EngineeringSharif University of Technology, P.O. Box 11155‐9465 Tehran Iran
| | | |
Collapse
|
25
|
The effect of poly(alkyl (meth)acrylate) segments on the thermodynamic properties, morphology and gas permeation properties of poly(alkyl (meth)acrylate)-b-poly(dimethyl siloxane) triblock copolymer membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Elucidating the effect of chain extenders substituted by aliphatic side chains on morphology and gas separation of polyurethanes. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Aframehr WM, Molki B, Bagheri R, Heidarian P, Davodi SM. Characterization and enhancement of the gas separation properties of mixed matrix membranes: Polyimide with nickel oxide nanoparticles. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2019.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Sadeghi M, Isfahani AP, Shamsabadi AA, Favakeh S, Soroush M. Improved gas transport properties of polyurethane–urea membranes through incorporating a cadmium‐based metal organic framework. J Appl Polym Sci 2019. [DOI: 10.1002/app.48704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Morteza Sadeghi
- Department of Chemical EngineeringIsfahan University of Technology Isfahan 84156‐83111 Iran
| | | | | | - Sahar Favakeh
- Department of Chemical EngineeringIsfahan University of Technology Isfahan 84156‐83111 Iran
| | - Masoud Soroush
- Department of Chemical and Biological EngineeringDrexel University Philadelphia USA
| |
Collapse
|
29
|
Methylsilicone-functionalized superhydrophobic polyurethane porous membranes as antifouling oil absorbents. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Fakhar A, Sadeghi M, Dinari M, Lammertink R. Association of hard segments in gas separation through polyurethane membranes with aromatic bulky chain extenders. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.062] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
|
32
|
Sadeghi M, Arabi Shamsabadi A, Ronasi A, Isfahani AP, Dinari M, Soroush M. Engineering the dispersion of nanoparticles in polyurethane membranes to control membrane physical and transport properties. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.08.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Near-infrared light triggered shape memory and self-healable polyurethane/functionalized graphene oxide composites containing diselenide bonds. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.10.059] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Marcano A, Fatyeyeva K, Koun M, Dubuis P, Grimme M, Marais S. Recent developments in the field of barrier and permeability properties of segmented polyurethane elastomers. REV CHEM ENG 2018. [DOI: 10.1515/revce-2017-0033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Polyurethane (PU) elastomers represent an important class of segmented copolymers. Thanks to many available chemical compositions, a rather broad range of chemical, physical, and biocompatible properties of PU can be obtained. These polymers are often characterized by high tensile and tear strength, elongation, fatigue life, and wear resistance. However, their relatively high permeability towards gases and water as well as their biocompatibility still limits the PU’s practical application, especially for biomedical use, for example, in implants and medical devices. In this review, the barrier and permeability properties of segmented PUs related to their chemical structure and physical and chemical properties have been discussed, including the latest developments and different approaches to improve the PU barrier properties.
Collapse
Affiliation(s)
- Aracelys Marcano
- Normandie University, UNIROUEN, INSA ROUEN, CNRS, PBS , 76000 Rouen , France
- CARMAT SA, 36 Avenue de l’Europe, Immeuble l’Etendard , 78140 Vélizy Villacoublay , France
| | - Kateryna Fatyeyeva
- Normandie University, UNIROUEN, INSA ROUEN, CNRS, PBS , 76000 Rouen , France
| | - Malys Koun
- ALTEN, 221bis Bd. Jean Jaurès , 92100 Boulogne-Billancourt , France
| | - Pascal Dubuis
- INOPROD, 46 Rue de Sarlieve , 63800 Cournon D’Auvergne , France
| | - Marc Grimme
- CARMAT SA, 36 Avenue de l’Europe, Immeuble l’Etendard , 78140 Vélizy Villacoublay , France
| | - Stéphane Marais
- Normandie University, UNIROUEN, INSA ROUEN, CNRS, PBS , 76000 Rouen , France
| |
Collapse
|
35
|
Molavi H, Shojaei A, Mousavi SA. Photo-curable acrylate polyurethane as efficient composite membrane for CO2 separation. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.06.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Pournaghshband Isfahani A, Sadeghi M, Wakimoto K, Shrestha BB, Bagheri R, Sivaniah E, Ghalei B. Pentiptycene-Based Polyurethane with Enhanced Mechanical Properties and CO 2-Plasticization Resistance for Thin Film Gas Separation Membranes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17366-17374. [PMID: 29708720 DOI: 10.1021/acsami.7b18475] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of thin film composite (TFC) membranes offers an opportunity to achieve the permeability/selectivity requirements for optimum CO2 separation performance. However, the durability and performance of thin film gas separation membranes are mostly challenged by weak mechanical properties and high CO2 plasticization. Here, we designed new polyurethane (PU) structures with bulky aromatic chain extenders that afford preferred mechanical properties for ultra-thin-film formation. An improvement of about 1500% in Young's modulus and 600% in hardness was observed for pentiptycene-based PUs compared to the typical PU membranes. Single (CO2, H2, CH4, and N2) and mixed (CO2/N2 and CO2/CH4) gas permeability tests were performed on the PU membranes. The resulting TFC membranes showed a high CO2 permeance up to 1400 GPU (10-6 cm3(STP) cm-2 s-1 cmHg-1) and the CO2/N2 and CO2/H2 selectivities of about 22 and 2.1, respectively. The enhanced mechanical properties of pentiptycene-based PUs result in high-performance thin membranes with the similar selectivity of the bulk polymer. The thin film membranes prepared from pentiptycene-based PUs also showed a twofold enhanced plasticization resistance compared to non-pentiptycene-containing PU membranes.
Collapse
Affiliation(s)
| | - Morteza Sadeghi
- Department of Chemical Engineering , Isfahan University of Technology , Isfahan 84156-83111 , Isfahan , Iran
| | - Kazuki Wakimoto
- Institute for Integrated Cell-Material Sciences (iCeMS) , Kyoto University , 606-8501 Kyoto , Japan
| | - Binod Babu Shrestha
- Institute for Integrated Cell-Material Sciences (iCeMS) , Kyoto University , 606-8501 Kyoto , Japan
| | - Rouhollah Bagheri
- Department of Chemical Engineering , Isfahan University of Technology , Isfahan 84156-83111 , Isfahan , Iran
| | - Easan Sivaniah
- Institute for Integrated Cell-Material Sciences (iCeMS) , Kyoto University , 606-8501 Kyoto , Japan
| | - Behnam Ghalei
- Institute for Integrated Cell-Material Sciences (iCeMS) , Kyoto University , 606-8501 Kyoto , Japan
| |
Collapse
|
37
|
Almeida MLB, Ayres E, Moura FCC, Oréfice RL. Polyurethane foams containing residues of petroleum industry catalysts as recoverable pH-sensitive sorbents for aqueous pesticides. JOURNAL OF HAZARDOUS MATERIALS 2018; 346:285-295. [PMID: 29288980 DOI: 10.1016/j.jhazmat.2017.12.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/03/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
To investigate ways of mitigating the contamination of water with herbicides, which is a well-recognized global problem, we prepared natural resource-based polyurethane foams containing different amounts of petroleum industry catalyst residue (RC) and tested them as atrazine (ATZ, a common herbicide) sorbents in aqueous solutions. The above sorbents were characterized by infrared spectroscopy, electron microscopy, microtomography, thermogravimetric analysis, and X-ray diffraction. The adsorption/desorption of ATZ thereon was investigated as a function of foam composition, pH, initial ATZ concentration, and time. The obtained results showed that the porosity, pore size, and pore interconnectivity of the prepared sorbents were well suited for optimal ATZ removal. At pH 2, foams with high RC contents achieved higher ATZ removal efficiencies (e.g., 25%) than the pristine foam (12%). Conversely, ATZ removal was disfavored at high pH, which was attributed to restricted ATZ-sorbent interactions due to changes in the sorbent surface charge. The presence of other species (such as pectin, which is usually found in fruits) did not interfere with ATZ removal. ATZ desorption was most effective at high pH, enabling the regeneration and re-use of sorbents and thus reducing large-scale application costs.
Collapse
Affiliation(s)
- Marys Lene B Almeida
- Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Eliane Ayres
- Department of Materials, Technologies and Processes, School of Design, Minas Gerais State University, Belo Horizonte, Brazil
| | | | - Rodrigo L Oréfice
- Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
38
|
|
39
|
Gharibi R, Ghadimi A, Yeganeh H, Sadatnia B, Gharedaghi M. Preparation and evaluation of hybrid organic-inorganic poly(urethane-siloxane) membranes with build-in poly(ethylene glycol) segments for efficient separation of CO2/CH4 and CO2/H2. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.11.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
|
41
|
Reis RA, Pereira JHC, Campos ACC, Barboza EM, Delpech MC, Cesar DV, Dahmouche K, Bandeira CF. Waterborne poly(urethane-urea) gas permeation membranes for CO2/CH4separation. J Appl Polym Sci 2017. [DOI: 10.1002/app.46003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rodrigo A. Reis
- Institute of Chemistry, Universidade do Estado do Rio de Janeiro (UERJ), Campus Maracanã, P H L C, S. 310, São Francisco Xavier St., 524; Rio de Janeiro Brazil 20550-013
| | - Juliana H. C. Pereira
- Institute of Chemistry, Universidade do Estado do Rio de Janeiro (UERJ), Campus Maracanã, P H L C, S. 310, São Francisco Xavier St., 524; Rio de Janeiro Brazil 20550-013
| | - Antoniel C. C. Campos
- Institute of Chemistry, Universidade do Estado do Rio de Janeiro (UERJ), Campus Maracanã, P H L C, S. 310, São Francisco Xavier St., 524; Rio de Janeiro Brazil 20550-013
| | - Elaine M. Barboza
- Institute of Chemistry, Universidade do Estado do Rio de Janeiro (UERJ), Campus Maracanã, P H L C, S. 310, São Francisco Xavier St., 524; Rio de Janeiro Brazil 20550-013
| | - Marcia C. Delpech
- Institute of Chemistry, Universidade do Estado do Rio de Janeiro (UERJ), Campus Maracanã, P H L C, S. 310, São Francisco Xavier St., 524; Rio de Janeiro Brazil 20550-013
| | - Deborah V. Cesar
- Institute of Chemistry, Universidade do Estado do Rio de Janeiro (UERJ), Campus Maracanã, P H L C, S. 310, São Francisco Xavier St., 524; Rio de Janeiro Brazil 20550-013
| | - Karim Dahmouche
- Campus de Xerém, Universidade Federal do Rio de Janeiro (UFRJ), Estrada de Xerém, 27, Xerém - Duque de Caxias; Brazil 25245-390
| | - Cirlene F. Bandeira
- Department of Materials and Technology; Universidade Estadual Paulista (UNESP), Dr. Ariberto Pereira da Cunha Ave., 333; Guaratinguetá Brazil 12516-410
| |
Collapse
|
42
|
Ghalei B, Pournaghshband Isfahani A, Sadeghi M, Vakili E, Jalili A. Polyurethane-mesoporous silica gas separation membranes. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4198] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Behnam Ghalei
- Institute for Integrated Cell-Material Sciences (iCeMS); Kyoto University; Yoshida-Honmachi, Sakayo-ku Kyoto 606-8501 Japan
| | - Ali Pournaghshband Isfahani
- Institute for Integrated Cell-Material Sciences (iCeMS); Kyoto University; Yoshida-Honmachi, Sakayo-ku Kyoto 606-8501 Japan
| | - Morteza Sadeghi
- Department of Chemical Engineering; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Eshagh Vakili
- Polymer Group, Chemical Engineering Department; Tarbiat Modares University; Jalal Al Ahmad Highway Tehran 14155-143 Iran
| | - Alireza Jalili
- Department of Energy Science and Technology; Kyoto University; Yoshida-Honmachi, Sakayo-ku Kyoto 606-8501 Japan
| |
Collapse
|
43
|
Isfahani AP, Sadeghi M, Wakimoto K, Gibbons AH, Bagheri R, Sivaniah E, Ghalei B. Enhancement of CO2 capture by polyethylene glycol-based polyurethane membranes. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.08.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Gholizadeh B, Arefazar A, Barikani M, Hemmati M. Polar/nonpolar gas transfer through PEO-based copolymers membranes. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2017. [DOI: 10.1080/10601325.2017.1336724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- B. Gholizadeh
- Polymer engineering and color technology department, Amir Kabir University, Tehran, Iran
| | - A. Arefazar
- Polymer engineering and color technology department, Amir Kabir University, Tehran, Iran
- Nano and smart polymers centre of excellence, Amir Kabir University, Tehran, Iran
| | - M. Barikani
- Iran polymer and petrochemical institute, Tehran, Iran
| | - M. Hemmati
- Polymer science & engineering department, Research Institute of Petroleum Industry, Tehran, Iran
| |
Collapse
|
45
|
Mozaffari V, Sadeghi M, Fakhar A, Khanbabaei G, Ismail A. Gas separation properties of polyurethane/poly(ether-block-amide) (PU/PEBA) blend membranes. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.05.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
|
47
|
Srivastava S, Biswas A, Senapati S, Ray B, Rana D, Aswal VK, Maiti P. Novel shape memory behaviour in IPDI based polyurethanes: Influence of nanoparticle. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.12.080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Isfahani AP, Sadeghi M, Dehaghani AHS, Aravand MA. Enhancement of the gas separation properties of polyurethane membrane by epoxy nanoparticles. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.08.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Crone BC, Garland JL, Sorial GA, Vane LM. Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product: A review. WATER RESEARCH 2016; 104:520-531. [PMID: 27595700 DOI: 10.1016/j.watres.2016.08.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low removal efficiencies (Chemical Oxygen Demand (COD), Suspended Solids (SS), and Nutrients), alkalinity demand, and potential greenhouse gas (GHG) emissions have limited its application to warmer climates. Although well designed anaerobic Membrane Bioreactors (AnMBRs) are able to effectively treat DWW at psychrophilic temperatures (10-30 °C), lower temperatures increase methane solubility leading to increased energy losses in the form of dissolved methane in the effluent. Estimates of dissolved methane losses are typically based on concentrations calculated using Henry's Law but advection limitations can lead to supersaturation of methane between 1.34 and 6.9 times equilibrium concentrations and 11-100% of generated methane being lost in the effluent. In well mixed systems such as AnMBRs which use biogas sparging to control membrane fouling, actual concentrations approach equilibrium values. Non-porous membranes have been used to recover up to 92.6% of dissolved methane and well suited for degassing effluents of Upflow Anaerobic Sludge Blanket (UASB) reactors which have considerable solids and organic contents and can cause pore wetting and clogging in microporous membrane modules. Microporous membranes can recover up to 98.9% of dissolved methane in AnMBR effluents which have low COD and SS concentrations. Sequential Down-flow Hanging Sponge (DHS) reactors have been used to recover between 57 and 88% of dissolved methane from Upflow Anaerobic Sludge Blanket (UASB) reactor effluent at concentrations of greater than 30% and oxidize the rest for a 99% removal of total dissolved methane. They can also remove 90% of suspended solids and COD in UASB effluents and produce a high quality effluent. In situ degassing can increase process stability, COD removal, biomass retention, and headspace methane concentrations. A model for estimating energy consumption associated with membrane-based dissolved methane recovery predicts that recovered dissolved and headspace methane may provide all the energy required for operation of an anaerobic system treating DWW at psychrophilic temperatures.
Collapse
Affiliation(s)
- Brian C Crone
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH, 45268, USA; Department of Biomedical Chemical, and Environmental Engineering, University of Cincinnati, P.O. Box 210012, Cincinnati, OH, USA.
| | - Jay L Garland
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH, 45268, USA.
| | - George A Sorial
- Department of Biomedical Chemical, and Environmental Engineering, University of Cincinnati, P.O. Box 210012, Cincinnati, OH, USA.
| | - Leland M Vane
- National Risk Management Research Laboratory, Office of Research and Development, United States Environmental Protection Agency Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH, 45268, USA.
| |
Collapse
|
50
|
Hu W, Han X, Liu L, Zhang X, Xue J, Wang B, Zhang P, Cao X. PEG/PVDF membranes for separating organosulphur compounds fromn-heptane: Effect of PEG molecular weight. CAN J CHEM ENG 2016. [DOI: 10.1002/cjce.22657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wenling Hu
- School of Chemical Engineering; Northwest University; Xi'an Shaanxi 710069 China
| | - Xiaolong Han
- School of Chemical Engineering; Northwest University; Xi'an Shaanxi 710069 China
| | - Liangliang Liu
- School of Chemical Engineering; Northwest University; Xi'an Shaanxi 710069 China
| | - Xin Zhang
- School of Chemical Engineering; Northwest University; Xi'an Shaanxi 710069 China
| | - Juanqin Xue
- School of Metallurgy Engineering; Xi'an University of Architecture and Technology; Xi'an Shaanxi 710055 China
| | - Baoyi Wang
- Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Peng Zhang
- Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Xingzhong Cao
- Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|