1
|
Lei J, Guo Z, Liu W. Cellulose acetate/fiber paper composite membrane for separation of an oil-in-water emulsion. NEW J CHEM 2021. [DOI: 10.1039/d1nj02236a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The cellulose composite membrane combines the advantages of cellulose acetate and cellulose filter paper with good antifouling performance and excellent mechanical properties.
Collapse
Affiliation(s)
- Jun Lei
- Ministry of Education
- Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei University
- Wuhan 430062
- People's Republic of China
| | - Zhiguang Guo
- Ministry of Education
- Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei University
- Wuhan 430062
- People's Republic of China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- People's Republic of China
| |
Collapse
|
2
|
Zhou J, He HL, Sun F, Su Y, Yu HY, Gu JS. Structural parameters reduction in polyamide forward osmosis membranes via click modification of the polysulfone support. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124082] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
3
|
He Y, Hoi H, Montemagno CD, Abraham S. Functionalized polymeric membrane with aquaporin using click chemistry for water purification application. J Appl Polym Sci 2018. [DOI: 10.1002/app.46678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yuan He
- Ingenuity Lab, Chemical and Materials Engineering Department; University of Alberta; Edmonton Alberta T6G1H9 Canada
| | - Hiofan Hoi
- Ingenuity Lab, Chemical and Materials Engineering Department; University of Alberta; Edmonton Alberta T6G1H9 Canada
| | | | - Sinoj Abraham
- Ingenuity Lab, Chemical and Materials Engineering Department; University of Alberta; Edmonton Alberta T6G1H9 Canada
- Mechanical Engineering Department; University of Alberta; Edmonton Alberta T6G1H9 Canada
| |
Collapse
|
4
|
Enhancement of Resistance to Protein Fouling of Poly(ether imide) Membrane by Surface Grafting with PEG under Organic Solvent-free Condition. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-018-2144-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Zhao X, Zhang R, Liu Y, He M, Su Y, Gao C, Jiang Z. Antifouling membrane surface construction: Chemistry plays a critical role. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.01.039] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
6
|
Wu JJ, Zhou J, Rong JQ, Lu Y, Dong H, Yu HY, Gu JS. Grafting Branch Length and Density Dependent Performance of Zwitterionic Polymer Decorated Polypropylene Membrane. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-018-2013-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Li H, Shi W, Su Y, Zhang H, Qin X. Preparation and characterization of carboxylated multiwalled carbon nanotube/polyamide composite nanofiltration membranes with improved performance. J Appl Polym Sci 2017. [DOI: 10.1002/app.45268] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hongbin Li
- School of Textile Engineering, Henan Engineering Laboratory of New Textile Development, Henan University of Engineering; Zhengzhou 450007 People's Republic of China
| | - Wenying Shi
- School of Textile Engineering, Henan Engineering Laboratory of New Textile Development, Henan University of Engineering; Zhengzhou 450007 People's Republic of China
| | - Yuheng Su
- School of Textile Engineering, Henan Engineering Laboratory of New Textile Development, Henan University of Engineering; Zhengzhou 450007 People's Republic of China
| | - Haixia Zhang
- School of Textile Engineering, Henan Engineering Laboratory of New Textile Development, Henan University of Engineering; Zhengzhou 450007 People's Republic of China
| | - Xiaohong Qin
- School of Textile Engineering, Henan Engineering Laboratory of New Textile Development, Henan University of Engineering; Zhengzhou 450007 People's Republic of China
- School of Textile Science, Donghua University; Shanghai 201620 People's Republic of China
| |
Collapse
|
8
|
Dizman C, Altinkok C, Tasdelen MA. Synthesis of self-curable polysulfone containing pendant benzoxazine units via CuAAC click chemistry. Des Monomers Polym 2016; 20:293-299. [PMID: 29491800 PMCID: PMC5812181 DOI: 10.1080/15685551.2016.1257379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/28/2016] [Indexed: 11/23/2022] Open
Abstract
Synthesis, characterization, and properties of new thermally curable polysulfone containing benzoxazine moieties in the side chain were investigated. First, chloromethylation and subsequent azidation processes were performed to form polysulfone containing pendant clickable azide groups. Independently, antagonist 3,4-dihydro-3-(prop-2-ynyl)-2H-benzoxazine was prepared by using paraformaldehyde, phenol and propargylamine. The following copper(I) catalyzed azide-alkyne cycloaddition click reaction was applied to obtain self-curable polysulfone with pendant benzoxazine units. The polymer and intermediates at various stages were characterized by 1H-NMR, 13C-NMR and FT-IR spectroscopies. The thermal properties and curing behavior of final polymer were investigated by differential scanning calorimetry and thermal gravimetric analysis. Compared to the neat polysulfone, the obtained polymers exhibited thermally more stable polymers.
Collapse
Affiliation(s)
- Cemil Dizman
- Institute of Chemical Technology, TUBITAK Marmara Research Center, Kocaeli, Turkey
| | - Cagatay Altinkok
- Faculty of Engineering, Department of Polymer Engineering, Yalova University, Yalova, Turkey
| | - Mehmet Atilla Tasdelen
- Faculty of Engineering, Department of Polymer Engineering, Yalova University, Yalova, Turkey
| |
Collapse
|
9
|
Xiang T, Lu T, Xie Y, Zhao WF, Sun SD, Zhao CS. Zwitterionic polymer functionalization of polysulfone membrane with improved antifouling property and blood compatibility by combination of ATRP and click chemistry. Acta Biomater 2016; 40:162-171. [PMID: 27039977 DOI: 10.1016/j.actbio.2016.03.044] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/26/2016] [Accepted: 03/30/2016] [Indexed: 11/15/2022]
Abstract
The chemical compositions are very important for designing blood-contacting membranes with good antifouling property and blood compatibility. In this study, we propose a method combining ATRP and click chemistry to introduce zwitterionic polymer of poly(sulfobetaine methacrylate) (PSBMA), negatively charged polymers of poly(sodium methacrylate) (PNaMAA) and/or poly(sodium p-styrene sulfonate) (PNaSS), to improve the antifouling property and blood compatibility of polysulfone (PSf) membranes. Attenuated total reflectance-Fourier transform infrared spectra, X-ray photoelectron spectroscopy and water contact angle results confirmed the successful grafting of the functional polymers. The antifouling property and blood compatibility of the modified membranes were systematically investigated. The zwitterionic polymer (PSBMA) grafted membranes showed good resistance to protein adsorption and bacterial adhesion; the negatively charged polymer (PNaSS or PNaMAA) grafted membranes showed improved blood compatibility, especially the anticoagulant property. Moreover, the PSBMA/PNaMAA modified membrane showed both antifouling property and anticoagulant property, and exhibited a synergistic effect in inhibiting blood coagulation. The functionalization of membrane surfaces by a combination of ATRP and click chemistry is demonstrated as an effective route to improve the antifouling property and blood compatibility of membranes in blood-contact.
Collapse
Affiliation(s)
- Tao Xiang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ting Lu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wei-Feng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; Fiber and Polymer Technology, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden.
| | - Shu-Dong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
10
|
Improved performance of poly(piperazine amide) composite nanofiltration membranes by adding aluminum hydroxide nanospheres. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.04.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Wang LL, Wu JJ, Zhang ZB, Zhou J, He XC, Yu HY, Gu JS. Methoxypolyethylene glycol grafting on polypropylene membrane for enhanced antifouling characteristics – Effect of pendant length and grafting density. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Zhou J, Hu B. Fabrication of a poly( N-vinyl-2-pyrrolidone) modified macroporous polypropylene membrane via one-pot reversible-addition fragmentation chain-transfer polymerization and click chemistry. J Appl Polym Sci 2015. [DOI: 10.1002/app.42649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jin Zhou
- Department of Material and Chemical Engineering; Chizhou University; 199 Muzhi Road Chizhou Anhui 247000 China
| | - Bing Hu
- Department of Material and Chemical Engineering; Chizhou University; 199 Muzhi Road Chizhou Anhui 247000 China
| |
Collapse
|
13
|
A simple but efficient zwitterionization method towards cellulose membrane with superior antifouling property and biocompatibility. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.06.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Polysulfone membranes clicked with poly (ethylene glycol) of high density and uniformity for oil/water emulsion purification: Effects of tethered hydrogel microstructure. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.07.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.06.029] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Shi Q, Meng JQ, Xu RS, Du XL, Zhang YF. Synthesis of hydrophilic polysulfone membranes having antifouling and boron adsorption properties via blending with an amphiphilic graft glycopolymer. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.05.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Padaki M, Isloor AM, Kumar R, Fauzi Ismail A, Matsuura T. Synthesis, characterization and desalination study of composite NF membranes of novel Poly[(4-aminophenyl)sulfonyl]butanediamide (PASB) and methyalated Poly[(4-aminophenyl)sulfonyl]butanediamide (mPASB) with Polysulfone (PSf). J Memb Sci 2013. [DOI: 10.1016/j.memsci.2012.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Wu XM, Wang LL, Wang Y, Gu JS, Yu HY. Surface modification of polypropylene macroporous membrane by marrying RAFT polymerization with click chemistry. J Memb Sci 2012. [DOI: 10.1016/j.memsci.2012.06.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|