1
|
Ede SR, Yu H, Sung CH, Kisailus D. Bio-Inspired Functional Materials for Environmental Applications. SMALL METHODS 2024; 8:e2301227. [PMID: 38133492 DOI: 10.1002/smtd.202301227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Indexed: 12/23/2023]
Abstract
With the global population expected to reach 9.7 billion by 2050, there is an urgent need for advanced materials that can address existing and developing environmental issues. Many current synthesis processes are environmentally unfriendly and often lack control over size, shape, and phase of resulting materials. Based on knowledge from biological synthesis and assembly processes, as well as their resulting functions (e.g., photosynthesis, self-healing, anti-fouling, etc.), researchers are now beginning to leverage these biological blueprints to advance bio-inspired pathways for functional materials for water treatment, air purification and sensing. The result has been the development of novel materials that demonstrate enhanced performance and address sustainability. Here, an overview of the progress and potential of bio-inspired methods toward functional materials for environmental applications is provided. The challenges and opportunities for this rapidly expanding field and aim to provide a valuable resource for researchers and engineers interested in developing sustainable and efficient processes and technologies is discussed.
Collapse
Affiliation(s)
- Sivasankara Rao Ede
- Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| | - Haitao Yu
- Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| | - Chao Hsuan Sung
- Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| | - David Kisailus
- Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| |
Collapse
|
2
|
Zhang S, Hettige JJ, Li Y, Jian T, Yang W, Yao YC, Zheng R, Lin Z, Tao J, De Yoreo JJ, Baer M, Noy A, Chen CL. Co-Assembly of Carbon Nanotube Porins into Biomimetic Peptoid Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206810. [PMID: 36811318 DOI: 10.1002/smll.202206810] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/06/2023] [Indexed: 05/25/2023]
Abstract
Robust and cost-effective membrane-based separations are essential to solving many global crises, such as the lack of clean water. Even though the current polymer-based membranes are widely used for separations, their performance and precision can be enhanced by using a biomimetic membrane architecture that consists of highly permeable and selective channels embedded in a universal membrane matrix. Researchers have shown that artificial water and ion channels, such as carbon nanotube porins (CNTPs), embedded in lipid membranes can deliver strong separation performance. However, their applications are limited by the relative fragility and low stability of the lipid matrix. In this work, we demonstrate that CNTPs can co-assemble into two dimension (2D) peptoid membrane nanosheets, opening up a way to produce highly programmable synthetic membranes with superior crystallinity and robustness. A combination of molecular dynamics (MD) simulations, Raman spectroscopy, X-ray diffraction (XRD), and atomic force microscopy (AFM) measurements to verify the co-assembly of CNTP and peptoids are used and show that it does not disrupt peptoid monomer packing within the membrane. These results provide a new option for designing affordable artificial membranes and highly robust nanoporous solids.
Collapse
Affiliation(s)
- Shuai Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Materials Science and Engineering, University of Washington, Seattle, WA, 98105, USA
| | - Jeevapani J Hettige
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Yuhao Li
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Tengyue Jian
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Wenchao Yang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Yun-Chiao Yao
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Renyu Zheng
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98105, USA
| | - Zhixing Lin
- Materials Science and Engineering, University of Washington, Seattle, WA, 98105, USA
| | - Jinhui Tao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Materials Science and Engineering, University of Washington, Seattle, WA, 98105, USA
| | - Marcel Baer
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Aleksandr Noy
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98105, USA
| |
Collapse
|
3
|
Shahbabaei M, Tang T. Molecular modeling of thin-film nanocomposite membranes for reverse osmosis water desalination. Phys Chem Chem Phys 2022; 24:29298-29327. [PMID: 36453147 DOI: 10.1039/d2cp03839k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The scarcity of freshwater resources is a major global challenge causedby population and economic growth. Water desalination using a reverse osmosis (RO) membrane is a promising technology to supply potable water from seawater and brackish water. The advancement of RO desalination highly depends on new membrane materials. Currently, the RO technology mainly relies on polyamide thin-film composite (TFC) membranes, which suffer from several drawbacks (e.g., low water permeability, permeability-selectivity tradeoff, and low fouling resistance) that hamper their real-world applications. Nanoscale fillers with specific characteristics can be used to improve the properties of TFC membranes. Embedding nanofillers into TFC membranes using interfacial polymerization allows the creation of thin-film nanocomposite (TFNC) membranes, and has become an emerging strategy in the fabrication of high-performance membranes for advanced RO water desalination. To achieve optimal design, it is indispensable to search for reliable methods that can provide fast and accurate predictions of the structural and transport properties of the TFNC membranes. However, molecular understanding of permeability-selectivity characteristics of nanofillers remains limited, partially due to the challenges in experimentally exploring microscopic behaviors of water and salt ions in confinement. Molecular modeling and simulations can fill this gap by generating molecular-level insights into the effects of nanofillers' characteristics (e.g., shape, size, surface chemistry, and density) on water permeability and ion selectivity. In this review, we summarize molecular simulations of a diverse range of nanofillers including nanotubes (carbon nanotubes, boron nitride nanotubes, and aquaporin-mimicking nanochannels) and nanosheets (graphene, graphene oxide, boron nitride sheets, molybdenum disulfide, metal and covalent organic frameworks) for water desalination applications. These simulations reveal that water permeability and salt rejection, as the major factors determining the desalination performance of TFNC membranes, significantly depend on the size, topology, density, and chemical modifications of the nanofillers. Identifying their influences and the physicochemical processes behind, via molecular modeling, is expected to yield important insights for the fabrication and optimization of the next generation high-performance TFNC membranes for RO water desalination.
Collapse
Affiliation(s)
- Majid Shahbabaei
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada.
| | - Tian Tang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Constructing semi-oriented single-walled carbon nanotubes artificial water channels for realized efficient desalination of nanocomposite RO membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Al-Shaeli M, Al-Juboori RA, Al Aani S, Ladewig BP, Hilal N. Natural and recycled materials for sustainable membrane modification: Recent trends and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156014. [PMID: 35584751 DOI: 10.1016/j.scitotenv.2022.156014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Despite water being critical for human survival, its uneven distribution, and exposure to countless sources of pollution make water shortages increasingly urgent. Membrane technology offers an efficient solution for alleviating the water shortage impact. The selectivity and permeability of membranes can be improved by incorporating additives of different nature and size scales. However, with the vast debate about the environmental and economic feasibility of the common nanoscale materials in water treatment applications, we can infer that there is a long way before the first industrial nanocomposite membrane is commercialized. This stumbling block has motivated the scientific community to search for alternative modification routes and/or materials with sustainable features. Herein, we present a pragmatic review merging the concept of sustainability, nanotechnology, and membrane technology through the application of natural additives (e.g., Clays, Arabic Gum, zeolite, lignin, Aquaporin), recycled additives (e.g., Biochar, fly ash), and recycled waste (e.g., Polyethylene Terephthalate, recycled polystyrene) for polymeric membrane synthesis and modification. Imparted features on polymeric membranes, induced by the presence of sustainable natural and waste-based materials, are scrutinized. In addition, the strategies harnessed to eliminate the hurdles associated with the application of these nano and micro size additives for composite membranes modification are elaborated. The expanding research efforts devoted recently to membrane sustainability and the prospects for these materials are discussed. The findings of the investigations reported in this work indicate that the application of natural and waste-based additives for composite membrane fabrication/modification is a nascent research area that deserves the attention of both research and industry.
Collapse
Affiliation(s)
- Muayad Al-Shaeli
- Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Raed A Al-Juboori
- Water and Environmental Engineering Research Group, Department of Built Environment, Aalto University, P.O. Box 15200, Aalto, FI-00076 Espoo, Finland.
| | - Saif Al Aani
- The State Company of Energy Production - Middle Region, Ministry of Electricity, Iraq
| | - Bradley P Ladewig
- Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Faculty of Science, Technology and Medicine, University of Luxembourg, 2, avenue de l'Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Nidal Hilal
- NYUAD Water Research Center, New York University-Abu Dhabi Campus, Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Micropollutant removal capacity and stability of aquaporin incorporated biomimetic thin-film composite membranes. BIOTECHNOLOGY REPORTS 2022; 35:e00745. [PMID: 35719851 PMCID: PMC9204655 DOI: 10.1016/j.btre.2022.e00745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/22/2022]
Abstract
Aquaporins increase the micropollutant removal capacity of TFC nanofiltration membranes. Biomimetic membrane prepared with Halomonas elongata aquaporin is applicable for micropollutant rejection. Aquaporin incorporated membrane is stable for six months period. Type of aquaporin and pore size of the membrane affect micropollutant rejection rates.
Aquaporin incorporated nanofiltration membranes have high potential for future applications on separation processes. In this study, performance of biomimetic thin-film composite membranes containing Halomonas elongata and Escherichia coli aquaporins with different affinity tags for the removal of micropollutants was investigated.% rejection of the membranes for atrazine, terbutryn, triclosan, and diuron varied between 66.7% and 90.3% depending on the type of aquaporin and micropollutant. The highest removal rate was achieved with a membrane containing H. elongata aquaporin for atrazine and terbutryn which have methyl branching in their structure. Electrostatic interactions between micropollutants, thin-film layer of the membrane, and tags of aquaporins may also play important role in rejection of micropollutants. Stability experiments showed that biomimetic membranes can be used for six months period without a remarkable decrease in% rejection. Membrane used 24 times for atrazine removal for a year period lost most of its ability to repel atrazine.
Collapse
|
7
|
Delineation of the Diamine Monomers Effect on the Desalination Properties of Polyamide Thin Film Composite Membranes: Experimental and Molecular Dynamics Simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Pachaiappan R, Cornejo-Ponce L, Rajendran R, Manavalan K, Femilaa Rajan V, Awad F. A review on biofiltration techniques: Recent advancements in the removal of volatile organic compounds and heavy metals in the treatment of polluted water. Bioengineered 2022; 13:8432-8477. [PMID: 35260028 PMCID: PMC9161908 DOI: 10.1080/21655979.2022.2050538] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Good quality of water determines the healthy life of living beings on this earth. The cleanliness of water was interrupted by the pollutants emerging out of several human activities. Industrialization, urbanization, heavy population, and improper disposal of wastes are found to be the major reasons for the contamination of water. Globally, the inclusion of volatile organic compounds (VOCs) and heavy metals released by manufacturing industries, pharmaceuticals, and petrochemical processes have created environmental issues. The toxic nature of these pollutants has led researchers, scientists, and industries to exhibit concern towards the complete eradication of them. In this scenario, the development of wastewater treatment methodologies at low cost and in an eco-friendly way had gained importance at the international level. Recently, bio-based technologies were considered for environmental remedies. Biofiltration based works have shown a significant result for the removal of volatile organic compounds and heavy metals in the treatment of wastewater. This was done with several biological sources such as bacteria, fungi, algae, plants, yeasts, etc. The biofiltration technique is cost-effective, simple, biocompatible, sustainable, and eco-friendly compared to conventional techniques. This review article provides deep insight into biofiltration technologies engaged in the removal of volatile organic compounds and heavy metals in the wastewater treatment process.
Collapse
Affiliation(s)
- Rekha Pachaiappan
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda.General Velasquez, 1775, Arica, Chile
| | - Lorena Cornejo-Ponce
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda.General Velasquez, 1775, Arica, Chile
| | - Rathika Rajendran
- Department of Physics, A.D.M. College for Women (Autonomous), Nagapattinam, Tamil Nadu - 611001, India
| | - Kovendhan Manavalan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu - 603203, India
| | - Vincent Femilaa Rajan
- Department of Sustainable Energy Management, Stella Maris College (Autonomous), Chennai - 600086, Tamil Nadu, India
| | - Fathi Awad
- Department of Allied Health Professionals, Faculty of Medical and Health Sciences, Liwa College of Technology, Abu Dhabi, UAE
| |
Collapse
|
9
|
Hamann L, Blanke A. Suspension feeders: diversity, principles of particle separation and biomimetic potential. J R Soc Interface 2022; 19:20210741. [PMID: 35078340 PMCID: PMC8790370 DOI: 10.1098/rsif.2021.0741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022] Open
Abstract
Suspension feeders (SFs) evolved a high diversity of mechanisms, sometimes with remarkably convergent morphologies, to retain plankton, detritus and man-made particles with particle sizes ranging from less than 1 µm to several centimetres. Based on an extensive literature review, also including the physical and technical principles of solid-liquid separation, we developed a set of 18 ecological and technical parameters to review 35 taxa of suspension-feeding Metazoa covering the diversity of morphological and functional principles. This includes passive SFs, such as gorgonians or crinoids that use the ambient flow to encounter particles, and sponges, bivalves or baleen whales, which actively create a feeding current. Separation media can be flat or funnel-shaped, built externally such as the filter houses in larvaceans, or internally, like the pleated gills in bivalves. Most SFs feed in the intermediate flow region of Reynolds number 1-50 and have cleaning mechanisms that allow for continuous feeding. Comparison of structure-function patterns in SFs to current filtration technologies highlights potential solutions to common technical design challenges, such as mucus nets which increase particle adhesion in ascidians, vanes which reduce pressure losses in whale sharks and changing mesh sizes in the flamingo beak which allow quick adaptation to particle sizes.
Collapse
Affiliation(s)
- Leandra Hamann
- Institute of Evolutionary Biology and Animal Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| | - Alexander Blanke
- Institute of Evolutionary Biology and Animal Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| |
Collapse
|
10
|
Optimization of Aquaporin Loading for Performance Enhancement of Aquaporin-Based Biomimetic Thin-Film Composite Membranes. MEMBRANES 2021; 12:membranes12010032. [PMID: 35054558 PMCID: PMC8777877 DOI: 10.3390/membranes12010032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022]
Abstract
The aquaporin-based biomimetic thin-film composite membrane (ABM-TFC) has demonstrated superior separation performance and achieved successful commercialization. The larger-scale production of the ABM membrane requires an appropriate balance between the performance and manufacturing cost. This study has systematically investigated the effects of proteoliposome concentration, protein-to-lipid ratio, as well as the additive on the separation performance of ABM for the purpose of finding the optimal preparation conditions for the ABM from the perspective of industrial production. Although increasing the proteoliposome concentration or protein-to-lipid ratio within a certain range could significantly enhance the water permeability of ABMs by increasing the loading of aquaporins in the selective layer, the enhancement effect was marginal or even compromised beyond an optimal point. Alternatively, adding cholesterol in the proteoliposome could further enhance the water flux of the ABM membrane, with minor effects on the salt rejection. The optimized ABM not only achieved a nearly doubled water flux with unchanged salt rejection compared to the control, but also demonstrated satisfactory filtration stability within a wide range of operation temperatures. This study provides a practical strategy for the optimization of ABM-TFC membranes to fit within the scheme of industrial-scale production.
Collapse
|
11
|
Wachlmayr J, Hannesschlaeger C, Speletz A, Barta T, Eckerstorfer A, Siligan C, Horner A. Scattering versus fluorescence self-quenching: more than a question of faith for the quantification of water flux in large unilamellar vesicles? NANOSCALE ADVANCES 2021; 4:58-76. [PMID: 35028506 PMCID: PMC8691418 DOI: 10.1039/d1na00577d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/16/2021] [Indexed: 06/14/2023]
Abstract
The endeavors to understand the determinants of water permeation through membrane channels, the effect of the lipid or polymer membrane on channel function, the development of specific water flow inhibitors, the design of artificial water channels and aquaporins for the use in industrial water filtration applications all rely on accurate ways to quantify water permeabilities (P f). A commonly used method is to reconstitute membrane channels into large unilamellar vesicles (LUVs) and to subject these vesicles to an osmotic gradient in a stopped-flow device. Fast recordings of either scattered light intensity or fluorescence self-quenching signals are taken as a readout for vesicle volume change, which in turn can be recalculated to accurate P f values. By means of computational and experimental data, we discuss the pros and cons of using scattering versus self-quenching experiments or subjecting vesicles to hypo- or hyperosmotic conditions. In addition, we explicate for the first time the influence of the LUVs size distribution, channel distribution between vesicles and remaining detergent after protein reconstitution on P f values. We point out that results such as the single channel water permeability (p f) depend on the membrane matrix or on the direction of the applied osmotic gradient may be direct results of the measurement and analysis procedure.
Collapse
Affiliation(s)
- Johann Wachlmayr
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| | | | - Armin Speletz
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| | - Thomas Barta
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| | - Anna Eckerstorfer
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz Gruberstr. 40 4020 Linz Austria
| |
Collapse
|
12
|
Schwieters MS, Mathieu-Gaedke M, Westphal M, Dalpke R, Dirksen M, Qi D, Grull M, Bick T, Taßler S, Sauer DF, Bonn M, Wendler P, Hellweg T, Beyer A, Gölzhäuser A, Schwaneberg U, Glebe U, Böker A. Protein Nanopore Membranes Prepared by a Simple Langmuir-Schaefer Approach. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102975. [PMID: 34643032 DOI: 10.1002/smll.202102975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Filtration through membranes with nanopores is typically associated with high transmembrane pressures and high energy consumption. This problem can be addressed by reducing the respective membrane thickness. Here, a simple procedure is described to prepare ultrathin membranes based on protein nanopores, which exhibit excellent water permeance, two orders of magnitude superior to comparable, industrially applied membranes. Furthermore, incorporation of either closed or open protein nanopores allows tailoring the membrane's ion permeability. To form such membranes, the transmembrane protein ferric hydroxamate uptake protein component A (FhuA) or its open-pore variant are assembled at the air-water interface of a Langmuir trough, compressed to a dense film, crosslinked by glutaraldehyde, and transferred to various support materials. This approach allows to prepare monolayer or multilayer membranes with a very high density of protein nanopores. Freestanding membranes covering holes up to 5 μm in diameter are visualized by atomic force microscopy (AFM), helium ion microscopy, and transmission electron microscopy. AFM PeakForce quantitative nanomechanical property mapping (PeakForce QNM) demonstrates remarkable mechanical stability and elastic properties of freestanding monolayer membranes with a thickness of only 5 nm. The new protein membrane can pave the way to energy-efficient nanofiltration.
Collapse
Affiliation(s)
- Magnus S Schwieters
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
- Polymer Engineering/Polymer Physics, Berlin Institute of Technology (TU Berlin), Ernst-Reuter-Platz 1, 10587, Berlin, Germany
| | - Maria Mathieu-Gaedke
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
- Chair of Polymer Materials and Polymer Technologies, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Michael Westphal
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Raphael Dalpke
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Maxim Dirksen
- Department of Physical and Biophysical Chemistry, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Daizong Qi
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Marco Grull
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Thomas Bick
- Department of Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Stephanie Taßler
- Synchrotron SOLEIL, L'Orme des Merisiers, BP48, Gif-Sur-Yvette, Saint-Aubin, 91192, France
| | - Daniel F Sauer
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Petra Wendler
- Department of Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Thomas Hellweg
- Department of Physical and Biophysical Chemistry, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - André Beyer
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Armin Gölzhäuser
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
- Chair of Polymer Materials and Polymer Technologies, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| |
Collapse
|
13
|
TiO 2 Nanoparticle Filler-Based Mixed-Matrix PES/CA Nanofiltration Membranes for Enhanced Desalination. MEMBRANES 2021; 11:membranes11060433. [PMID: 34207512 PMCID: PMC8227052 DOI: 10.3390/membranes11060433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 11/24/2022]
Abstract
Mixed-matrix nanocomposite (PES/CA/PVP) membranes were fabricated for water desalination by incorporating varying amount of titanium dioxide nanoparticles (TiO2 NPs) ranging from 0 and 2 wt. %. Efficient dispersion of nanoparticles within polymeric membranes was achieved using the chemical precipitation method for uniform surface generation, and an asymmetric morphology was achieved via phase inversion method. Finally, membranes were characterized by Fourier Transform Infrared (FTIR) spectroscopy, Thermo Gravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), porosity and contact angle analysis. FTIR confirmed chemical composition of membranes in terms of polymers (PES/CA/PVP) and TiO2. TGA analysis confirmed an increase in thermal stability of membranes with the increase of TiO2 nanoparticles loading. The addition of TiO2 nanoparticles also resulted in an increase in porous structures due to an increase in mean pore size, as shown by SEM results. An increase in the hydrophilicity of the membranes was observed by increasing the concentration of TiO2 nanoparticles. The present study investigated pristine and mixed-matrix nanocomposite NF membrane performance while filtering a NaCl salt solution at varying concentration range (from 1 to 4 g/Lit 6 bar). The prepared membranes demonstrated significant improvement in water permeability and hydrophilicity. Further, to optimize the water flux and salt rejection, the concentration of Polyvinylpyrrolidone (PVP) was optimized along with TiO2 nanoparticles. Both the water flux and salt rejection of the fabricated membranes were observed to increase with an increase inTiO2 nanoparticles to 2 wt. % loading with optimized PVP concentration, which demonstrated the improved desalination performance of resultant membranes.
Collapse
|
14
|
Alshahrani AA, Alsuhybani M, Algamdi MS, Alquppani D, Mashhour I, Alshammari MS, Alsohaimi IH, Alraddadi TS. Evaluating the performance of chitosan and chitosan-palm membrane for water treatment: preparation, characterization and purification study. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2021. [DOI: 10.1080/16583655.2021.1885192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | | | | | - Dewihi Alquppani
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Ibrahim Mashhour
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | | | | | - Thamer S. Alraddadi
- Department of Chemistry, College of Sciences and Arts-Alkamil, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
|
16
|
Porter CJ, Werber JR, Zhong M, Wilson CJ, Elimelech M. Pathways and Challenges for Biomimetic Desalination Membranes with Sub-Nanometer Channels. ACS NANO 2020; 14:10894-10916. [PMID: 32886487 DOI: 10.1021/acsnano.0c05753] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Transmembrane protein channels, including ion channels and aquaporins that are responsible for fast and selective transport of water, have inspired membrane scientists to exploit and mimic their performance in membrane technologies. These biomimetic membranes comprise discrete nanochannels aligned within amphiphilic matrices on a robust support. While biological components have been used directly, extensive work has also been conducted to produce stable synthetic mimics of protein channels and lipid bilayers. However, the experimental performance of biomimetic membranes remains far below that of biological membranes. In this review, we critically assess the status and potential of biomimetic desalination membranes. We first review channel chemistries and their transport behavior, identifying key characteristics to optimize water permeability and salt rejection. We compare various channel types within an industrial context, considering transport performance, processability, and stability. Through a re-examination of previous vesicular stopped-flow studies, we demonstrate that incorrect permeability equations result in an overestimation of the water permeability of nanochannels. We find in particular that the most optimized aquaporin-bearing bilayer had a pure water permeability of 2.1 L m-2 h-1 bar-1, which is comparable to that of current state-of-the-art polymeric desalination membranes. Through a quantitative assessment of biomimetic membrane formats, we analytically show that formats incorporating intact vesicles offer minimal benefit, whereas planar biomimetic selective layers could allow for dramatically improved salt rejections. We then show that the persistence of nanoscale defects explains observed subpar performance. We conclude with a discussion on optimal strategies for minimizing these defects, which could enable breakthrough performance.
Collapse
Affiliation(s)
- Cassandra J Porter
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Jay R Werber
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Corey J Wilson
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
17
|
Siddique TA, Dutta NK, Roy Choudhury N. Nanofiltration for Arsenic Removal: Challenges, Recent Developments, and Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1323. [PMID: 32640523 PMCID: PMC7407220 DOI: 10.3390/nano10071323] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/29/2020] [Indexed: 01/25/2023]
Abstract
Arsenic (As) removal is of major significance because inorganic arsenic is highly toxic to all life forms, is a confirmed carcinogen, and is of significant environmental concern. As contamination in drinking water alone threatens more than 150 million people all over the world. Therefore, several conventional methods such as oxidation, coagulation, adsorption, etc., have been implemented for As removal, but due to their cost-maintenance limitations; there is a drive for advanced, low cost nanofiltration membrane-based technology. Thus, in order to address the increasing demand of fresh and drinking water, this review focuses on advanced nanofiltration (NF) strategy for As removal to safeguard water security. The review concentrates on different types of NF membranes, membrane fabrication processes, and their mechanism and efficiency of performance for removing As from contaminated water. The article provides an overview of the current status of polymer-, polymer composite-, and polymer nanocomposite-based NF membranes, to assess the status of nanomaterial-facilitated NF membranes and to incite progress in this area. Finally, future perspectives and future trends are highlighted.
Collapse
Affiliation(s)
| | - Naba K. Dutta
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia;
| | - Namita Roy Choudhury
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia;
| |
Collapse
|
18
|
Sengur-Tasdemir R, Pekgenc E, Urper-Bayram GM, Ergon-Can T, Tutuncu HE, Zeytuncu B, Gul-Karaguler N, Ates-Genceli E, Koyuncu I. Determination of the effect of proteoliposome concentration on Aquaporin Z incorporated nanofiltration membranes. ENVIRONMENTAL TECHNOLOGY 2020; 41:2229-2239. [PMID: 30574839 DOI: 10.1080/09593330.2018.1561756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
We report on the fabrication of AqpZ immobilized flat sheet membranes. The effects of interfacial polymerization conditions as well as proteoliposome concentration were evaluated. Commercial AqpZ were used as positive control for cloned AqpZ. Specific permeate flux of membranes at higher proteoliposome concentrations increased up to 25 times higher than thin film composite membranes; however; MgSO4 rejection is lowered almost to 1.5%. FTIR and SEM confirm immobilization of proteoliposomes. Thermal analysis showed that increasing proteoliposome concentration has no positive effect on the incorporation of proteoliposomes into polyamide structures. On the contrary, at lower proteoliposome concentrations, incorporation of proteoliposomes was found better. When combined membrane performances were compared in terms of specific permeate flux; MgSO4 and humic rejection and flux recovery after humic acid filtration, the performance of cloned AqpZ incorporated membranes (having 0.1 mg/mL proteoliposome concentration and polyamide formed with 2 min piperazine reaction time) improved 1.7 times regarding TFC membranes. According to the results, increasing proteoliposome concentration did not improve nanofiltration membrane performance. On the contrary, lower proteoliposome concentrations were found to be more effective in increasing membrane performance.
Collapse
Affiliation(s)
- Reyhan Sengur-Tasdemir
- Nanoscience and Nanoengineering Department, Istanbul Technical University, Istanbul, Turkey
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
| | - Enise Pekgenc
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
- Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Gulsum Melike Urper-Bayram
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
- Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Tulay Ergon-Can
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
| | - Havva Esra Tutuncu
- Molecular Biology and Genetics Department, Istanbul Technical University, Istanbul, Turkey
| | - Bihter Zeytuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
| | - Nevin Gul-Karaguler
- Molecular Biology and Genetics Department, Istanbul Technical University, Istanbul, Turkey
| | - Esra Ates-Genceli
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
- Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Ismail Koyuncu
- Nanoscience and Nanoengineering Department, Istanbul Technical University, Istanbul, Turkey
- National Research Center on Membrane Technologies, Istanbul Technical University, Istanbul, Turkey
- Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
19
|
|
20
|
Ding J, Pu L, Zou D, Cao M, Shan C, Zhang Q, Gao G, Pan B. Removal of model dyes on charged UF membranes: Experiment and simulation. CHEMOSPHERE 2020; 240:124940. [PMID: 31574446 DOI: 10.1016/j.chemosphere.2019.124940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 05/15/2023]
Abstract
Charged ultrafiltration (UF) membranes can repel electrically charged molecules that are smaller than the size of the membrane pores and display high rejection of solutes, high flux, and low operation pressures compared to uncharged UF, nanofiltration (NF) and reverse osmosis (RO). Here, a charged UF membrane composite (PANI/PVDF) was prepared and regulated via electrochemically reversible control in portions of amine/imine functional groups of PANI. As a result, the permeability and rejection ratios of CR2- on charged PANI/PVDF, with PVDF as a control, increased from 19.6 to a maximum of 183.3 L m-2 h-1 bar-1 and from 3.4% to 74%, which expands the trade-off confine benefited from surface potential change from -12.21 mV to -25.26 mV, furtherly, the rejection ratio of CR2- on PANI/PVDF reached up to 93% via the electrochemical regulation. Finally, a fixed-charge model was built that well describes the steric and electric repulsion effects on membrane performance and the important roles of the electrochemically controllable surface charge. Moreover, the contour map of rejection ratios containing the ratio of molecular size vs the average pore size of the membrane (r/R = 0.2-1.0) and the zeta potential (-10 to -60 mV) were taken into account, which can be used to visually understand the rejection performance of membranes. This model is also appropriate for varying molecular sizes and for molecules with different charges. Our work opens a new horizon for the design of electrochemically controllable charged membranes to remove charged compounds.
Collapse
Affiliation(s)
- Jie Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Liangtao Pu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Di Zou
- Tianjin Academy of Environmental Sciences, Tianjin, 300191, China
| | - Miao Cao
- School of Environment, Hohai University, Nanjing, 210098, China
| | - Chao Shan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Quanxing Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Guandao Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing, 210023, China.
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
21
|
Górecki R, Reurink DM, Khan MM, Sanahuja-Embuena V, Trzaskuś K, Hélix-Nielsen C. Improved reverse osmosis thin film composite biomimetic membranes by incorporation of polymersomes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117392] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Chimisso V, Maffeis V, Hürlimann D, Palivan CG, Meier W. Self-Assembled Polymeric Membranes and Nanoassemblies on Surfaces: Preparation, Characterization, and Current Applications. Macromol Biosci 2019; 20:e1900257. [PMID: 31549783 DOI: 10.1002/mabi.201900257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/30/2019] [Indexed: 01/11/2023]
Abstract
Biomembranes play a crucial role in a multitude of biological processes, where high selectivity and efficiency are key points in the reaction course. The outstanding performance of biological membranes is based on the coupling between the membrane and biomolecules, such as membrane proteins. Polymer-based membranes and assemblies represent a great alternative to lipid ones, as their presence not only dramatically increases the mechanical stability of such systems, but also opens the scope to a broad range of chemical functionalities, which can be fine-tuned to selectively combine with a specific biomolecule. Tethering the membranes or nanoassemblies on a solid support opens the way to a class of functional surfaces finding application as sensors, biocomputing systems, molecular recognition, and filtration membranes. Herein, the design, physical assembly, and biomolecule attachment/insertion on/within solid-supported polymeric membranes and nanoassemblies are presented in detail with relevant examples. Furthermore, the models and applications for these materials are highlighted with the recent advances in each field.
Collapse
Affiliation(s)
- Vittoria Chimisso
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Viviana Maffeis
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Dimitri Hürlimann
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| |
Collapse
|
23
|
Puiggalí-Jou A, Del Valle LJ, Alemán C. Biomimetic hybrid membranes: incorporation of transport proteins/peptides into polymer supports. SOFT MATTER 2019; 15:2722-2736. [PMID: 30869096 DOI: 10.1039/c8sm02513d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Molecular sensing, water purification and desalination, drug delivery, and DNA sequencing are some striking applications of biomimetic hybrid membranes. These devices take advantage of biomolecules, which have gained excellence in their specificity and efficiency during billions of years, and of artificial materials that load the purified biological molecules and provide technological properties, such as robustness, scalability, and suitable nanofeatures to confine the biomolecules. Recent methodological advances allow more precise control of polymer membranes that support the biomacromolecules, and are expected to improve the design of the next generation of membranes as well as their applicability. In the first section of this review we explain the biological relevance of membranes, membrane proteins, and the classification used for the latter. After this, we critically analyse the different approaches employed for the production of highly selective hybrid membranes, focusing on novel materials made of self-assembled block copolymers and nanostructured polymers. Finally, a summary of the advantages and disadvantages of the different methodologies is presented and the main characteristics of biomimetic hybrid membranes are highlighted.
Collapse
Affiliation(s)
- Anna Puiggalí-Jou
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019, Barcelona, Spain. and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019, Barcelona, Spain
| | - Luis J Del Valle
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019, Barcelona, Spain. and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019, Barcelona, Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019, Barcelona, Spain. and Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019, Barcelona, Spain
| |
Collapse
|
24
|
Zhao D, Liu J, Jiang J. Porous organic cages embedded in a lipid membrane for water desalination: A molecular simulation study. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
25
|
Increasing Salt Rejection of Polybenzimidazole Nanofiltration Membranes via the Addition of Immobilized and Aligned Aquaporins. Processes (Basel) 2019; 7. [PMID: 31179235 PMCID: PMC6550480 DOI: 10.3390/pr7020076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aquaporins are water channel proteins in cell membrane, highly specific for water molecules while restricting the passage of contaminants and small molecules, such as urea and boric acid. Cysteine functional groups were installed on aquaporin Z for covalent attachment to the polymer membrane matrix so that the proteins could be immobilized to the membranes and aligned in the direction of the flow. Depth profiling using x-ray photoelectron spectrometer (XPS) analysis showed the presence of functional groups corresponding to aquaporin Z modified with cysteine (Aqp-SH). Aqp-SH modified membranes showed a higher salt rejection as compared to unmodified membranes. For 2 M NaCl and CaCl2 solutions, the rejection obtained from Aqp-SH membranes was 49.3 ± 7.5% and 59.1 ± 5.1%. On the other hand, the rejections obtained for 2 M NaCl and CaCl2 solutions from unmodified membranes were 0.8 ± 0.4% and 1.3 ± 0.2% respectively. Furthermore, Aqp-SH membranes did not show a significant decrease in salt rejection with increasing feed concentrations, as was observed with other membranes. Through simulation studies, it was determined that there was approximately 24% capping of membrane pores by dispersed aquaporins.
Collapse
|
26
|
Song W, Tu YM, Oh H, Samineni L, Kumar M. Hierarchical Optimization of High-Performance Biomimetic and Bioinspired Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:589-607. [PMID: 30577695 DOI: 10.1021/acs.langmuir.8b03655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biomimetic and bioinspired membranes have emerged as an innovative platform for water purification and aqueous separations. They are inspired by the exceptional water permeability (∼109 water molecules per second per channel) and perfect selectivity of biological water channels, aquaporins. However, only few successes have been reported for channel-based membrane fabrication due to inherent challenges of realizing coherence between channel design at the angstrom level and development of scalable membranes that maintain these molecular properties at practice-relevant scales. In this article, we feature recent progress toward practical biomimetic membranes, with the review organized along a hierarchical structural perspective that biomimetic membranes commonly share. These structures range from unitary pore shapes and tubular hydrophobic channel geometries to self-assembled bilayer structures and finally to macroscale membranes covering a size range from the angstrom, to the micrometer scale, and finally to the centimeter and larger scales. To maximize the advantage of water channel implementation into membranes, each feature needs to be optimized in an appropriate manner that provides a path to successful scale-up to achieve high performance in practical biomimetic and bioinspired membranes.
Collapse
|
27
|
Dongre RS, Sadasivuni KK, Deshmukh K, Mehta A, Basu S, Meshram JS, Al-Maadeed MAA, Karim A. Natural polymer based composite membranes for water purification: a review. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2018.1563116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | | | - Kalim Deshmukh
- Department of Physics, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Akansha Mehta
- School of Chemistry & Biochemistry, Thapar University, Patiala, Punjab, India
| | - Soumen Basu
- School of Chemistry & Biochemistry, Thapar University, Patiala, Punjab, India
| | | | - Mariam Al Ali Al-Maadeed
- Materials Science & Technology Program (MATS), College of Arts & Sciences, Qatar University, Doha, Qatar
| | - Alamgir Karim
- Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
28
|
Nabeel F, Rasheed T, Bilal M, Li C, Yu C, Iqbal HMN. Bio-Inspired Supramolecular Membranes: A Pathway to Separation and Purification of Emerging Pollutants. SEPARATION AND PURIFICATION REVIEWS 2018. [DOI: 10.1080/15422119.2018.1500919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Faran Nabeel
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| | - Tahir Rasheed
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Chuanlong Li
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| | - Chunyang Yu
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| |
Collapse
|
29
|
Abdelrasoul A, Doan H, Lohi A, Cheng CH. Aquaporin-Based Biomimetic and Bioinspired Membranes for New Frontiers in Sustainable Water Treatment Technology: Approaches and Challenges. POLYMER SCIENCE SERIES A 2018. [DOI: 10.1134/s0965545x18040016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Biomimetic Membranes as a Technology Platform: Challenges and Opportunities. MEMBRANES 2018; 8:membranes8030044. [PMID: 30018213 PMCID: PMC6161077 DOI: 10.3390/membranes8030044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 01/08/2023]
Abstract
Biomimetic membranes are attracting increased attention due to the huge potential of using biological functional components and processes as an inspirational basis for technology development. Indeed, this has led to several new membrane designs and applications. However, there are still a number of issues which need attention. Here, I will discuss three examples of biomimetic membrane developments within the areas of water treatment, energy conversion, and biomedicine with a focus on challenges and applicability. While the water treatment area has witnessed some progress in developing biomimetic membranes of which some are now commercially available, other areas are still far from being translated into technology. For energy conversion, there has been much focus on using bacteriorhodopsin proteins, but energy densities have so far not reached sufficient levels to be competitive with state-of-the-art photovoltaic cells. For biomedical (e.g., drug delivery) applications the research focus has been on the mechanism of action, and much less on the delivery 'per se'. Thus, in order for these areas to move forward, we need to address some hard questions: is bacteriorhodopsin really the optimal light harvester to be used in energy conversion? And how do we ensure that biomedical nano-carriers covered with biomimetic membrane material ever reach their target cells/tissue in sufficient quantities? In addition to these area-specific questions the general issue of production cost and scalability must also be treated in order to ensure efficient translation of biomimetic membrane concepts into reality.
Collapse
|
31
|
He Y, Hoi H, Montemagno CD, Abraham S. Functionalized polymeric membrane with aquaporin using click chemistry for water purification application. J Appl Polym Sci 2018. [DOI: 10.1002/app.46678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yuan He
- Ingenuity Lab, Chemical and Materials Engineering Department; University of Alberta; Edmonton Alberta T6G1H9 Canada
| | - Hiofan Hoi
- Ingenuity Lab, Chemical and Materials Engineering Department; University of Alberta; Edmonton Alberta T6G1H9 Canada
| | | | - Sinoj Abraham
- Ingenuity Lab, Chemical and Materials Engineering Department; University of Alberta; Edmonton Alberta T6G1H9 Canada
- Mechanical Engineering Department; University of Alberta; Edmonton Alberta T6G1H9 Canada
| |
Collapse
|
32
|
Zhang L, Chen B, Ghaffar A, Zhu X. Nanocomposite Membrane with Polyethylenimine-Grafted Graphene Oxide as a Novel Additive to Enhance Pollutant Filtration Performance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5920-5930. [PMID: 29664651 DOI: 10.1021/acs.est.8b00524] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Synthetic membranes often suffer ubiquitous fouling as well as a trade-off between permeability and selectivity. However, emerging materials which are able to mitigate membrane fouling and break the permeability and selectivity trade-off are urgently needed. A novel additive, GO-PEI, bearing a positive charge and hydrophilic nature was prepared by the covalent grafting of polyethylenimine (PEI) molecules with graphene oxide (GO) nanosheets, which later was blended with bulk poly(ether sulfone) (PES) to fabricate the graphene containing nanocomposite membranes (NCMs). Strong π-π interactions contributed to the uniform dispersion of GO-PEI nanosheets in bulk PES to form the asymmetric structure of NCM without leaching. The ratio of the GO-PEI additive regulated the surface charge and hydrophilicity of NCMs. To filter charged proteins, the designed NCM exhibited a high permeability (flux) and high selectivity (retention) while showing resistance to fouling by the charged proteins, which could be attributed to the asymmetric structure and composition of the NCM that the porous internal and surface composited with the GO-PEI additive was responsible for the NCM's high flux; thereafter, the electrostatic attraction of the NCM surface to the charged pollutant enhanced the solute/water selectivity; finally, the synergistic effect of the hydrophilic and charged functional groups of the GO-PEI contributed to the formation of a dense hydration layer on the membrane surface thereby reducing membrane fouling. The NCM functionalized with the GO-PEI additive demonstrated potential for high-performance pollutant removal in water and wastewater treatments.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Environmental Science , Zhejiang University , Hangzhou , Zhejiang 310058 , China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control , Hangzhou 310058 , China
| | - Baoliang Chen
- Department of Environmental Science , Zhejiang University , Hangzhou , Zhejiang 310058 , China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control , Hangzhou 310058 , China
| | - Abdul Ghaffar
- Department of Environmental Science , Zhejiang University , Hangzhou , Zhejiang 310058 , China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control , Hangzhou 310058 , China
| | - Xiaoying Zhu
- Department of Environmental Science , Zhejiang University , Hangzhou , Zhejiang 310058 , China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control , Hangzhou 310058 , China
| |
Collapse
|
33
|
Xie M, Luo W, Guo H, Nghiem LD, Tang CY, Gray SR. Trace organic contaminant rejection by aquaporin forward osmosis membrane: Transport mechanisms and membrane stability. WATER RESEARCH 2018; 132:90-98. [PMID: 29306703 DOI: 10.1016/j.watres.2017.12.072] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/04/2017] [Accepted: 12/25/2017] [Indexed: 06/07/2023]
Abstract
We investigated transport mechanisms of trace organic contaminants (TrOCs) through aquaporin thin-film composite forward osmosis (FO) membrane, and membrane stability under extreme conditions with respect to TrOC rejections. Morphology and surface chemistry of the aquaporin membrane were characterised to identify the incorporation of aquaporin vesicles into membrane active layer. Pore hindrance model was used to estimate aquaporin membrane pore size as well as to describe TrOC transport. TrOC transport mechanisms were revealed by varying concentration and type of draw solutions. Experimental results showed that mechanism of TrOC transport through aquaporin-embedded FO membrane was dominated by solution-diffusion mechanism. Non-ionic TrOC rejections were molecular-weight dependent, suggesting steric hindrance mechanisms. On the other hand, ionic TrOC rejections were less sensitive to molecular size, indicating electrostatic interaction. TrOC transport through aquaporin membrane was also subjected to retarded forward diffusion where reverse draw solute flux could hinder the forward diffusion of feed TrOC solutes, reducing their permeation through the FO membrane. Aquaporin membrane stability was demonstrated by either heat treatment or ethanol solvent challenges. Thermal stability of the aquaporin membrane was manifested as a relatively unchanged TrOC rejection before and after the heat treatment challenge test. By contrast, ethanol solvent challenge resulted in a decrease in TrOC rejection, which was evident by the disappearance of the lipid tail of the aquaporin vesicles from infrared spectrum and a notable decrease in the membrane pore size.
Collapse
Affiliation(s)
- Ming Xie
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, Victoria, 8001, Australia.
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Hao Guo
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Long D Nghiem
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Stephen R Gray
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, Victoria, 8001, Australia
| |
Collapse
|
34
|
Wu HC, Yoshioka T, Nakagawa K, Shintani T, Tsuru T, Saeki D, Shaikh AR, Matsuyama H. Preparation of Amphotericin B-Ergosterol structures and molecular simulation of water adsorption and diffusion. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
35
|
Sengur-Tasdemir R, Sayinli B, Urper GM, Tutuncu HE, Gul-Karaguler N, Ates-Genceli E, Tarabara VV, Koyuncu I. Hollow fiber nanofiltration membranes with integrated aquaporin Z. NEW J CHEM 2018. [DOI: 10.1039/c8nj04367a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AqpZ reconstituted proteoliposomes integrated into polyamide matrix using different ultrafiltration support membranes successfully with a performance increase of 12 times.
Collapse
Affiliation(s)
- Reyhan Sengur-Tasdemir
- Nanoscience and Nanoengineering Department
- Istanbul Technical University
- Istanbul
- Turkey
- National Research Center on Membrane Technologies
| | - Burcu Sayinli
- Nanoscience and Nanoengineering Department
- Istanbul Technical University
- Istanbul
- Turkey
- National Research Center on Membrane Technologies
| | - Gulsum Melike Urper
- National Research Center on Membrane Technologies
- Istanbul Technical University
- Istanbul
- Turkey
- Environmental Engineering Department
| | - Havva Esra Tutuncu
- Molecular Biology and Genetics Department
- Istanbul Technical University
- Istanbul
- Turkey
| | - Nevin Gul-Karaguler
- Molecular Biology and Genetics Department
- Istanbul Technical University
- Istanbul
- Turkey
| | - Esra Ates-Genceli
- National Research Center on Membrane Technologies
- Istanbul Technical University
- Istanbul
- Turkey
- Environmental Engineering Department
| | - Volodymyr V. Tarabara
- Department of Civil and Environmental Engineering
- Michigan State University
- East Lansing
- USA
| | - Ismail Koyuncu
- Nanoscience and Nanoengineering Department
- Istanbul Technical University
- Istanbul
- Turkey
- National Research Center on Membrane Technologies
| |
Collapse
|
36
|
He Y, Hoi H, Abraham S, Montemagno CD. Highly permeable biomimetic reverse osmosis membrane with amphiphilic peptide stabilized aquaporin as water filtering agent. J Appl Polym Sci 2017. [DOI: 10.1002/app.46169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yuan He
- Ingenuity Lab; 11421 Saskatchewan Drive NW, Edmonton Alberta T6G 2M9 Canada
- Department of Chemical Materials Engineering; University of Alberta; Edmonton Alberta T6G 2V4 Canada
| | - Hiofan Hoi
- Ingenuity Lab; 11421 Saskatchewan Drive NW, Edmonton Alberta T6G 2M9 Canada
- Department of Chemical Materials Engineering; University of Alberta; Edmonton Alberta T6G 2V4 Canada
| | - Sinoj Abraham
- Ingenuity Lab; 11421 Saskatchewan Drive NW, Edmonton Alberta T6G 2M9 Canada
- Department of Chemical Materials Engineering; University of Alberta; Edmonton Alberta T6G 2V4 Canada
| | - Carlo D. Montemagno
- Ingenuity Lab; 11421 Saskatchewan Drive NW, Edmonton Alberta T6G 2M9 Canada
- Department of Chemical Materials Engineering; University of Alberta; Edmonton Alberta T6G 2V4 Canada
| |
Collapse
|
37
|
|
38
|
Loo SL, Siti W, Thiyagarajan M, Torres J, Wang R, Hu X. Reproducible Preparation of Proteopolymersomes via Sequential Polymer Film Hydration and Membrane Protein Reconstitution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12336-12343. [PMID: 28985471 DOI: 10.1021/acs.langmuir.7b02926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Film rehydration method is commonly used for membrane protein (MP) reconstitution into block copolymer (BCP), but the lack of control in the rehydration step formed a heterogeneous population of proteopolymersomes that interferes with the characterization and performance of devices incorporating them. To improve the self-assembly of polymersomes with simultaneous MP reconstitution, the study reported herein aimed to understand the effects of different variants of the rehydration procedure on the MP reconstitution into BCP membranes. The model MP used in this study was AquaporinZ (AqpZ), an α-helical MP that has been shown to have a high permeation rate exclusive to water molecules. Comparing four rehydration methods differing in the hydration time (i.e., brief wetting or full hydration) and medium (i.e., in buffer or AqpZ stock solution), prehydration with buffer prior to adding AqpZ was found to be most desirable and reproducible reconstitution method because it gave rise to the highest proportion of well-formed vesicles with intact AqpZ functionality as evidenced by the transmission electron microscopy images, dynamic light scattering, and stopped-flow analyses. The mechanisms by which effective AqpZ reconstitution takes place were also investigated and discussed. Small-angle X-ray scattering analysis shows that hydrating the initially dry multilamellar BCP films allows the separation of lamellae. This is anticipated to increase the membrane fluidity that facilitates a fast and spontaneous integration of AqpZ as the detergent concentration is considerably lowered below its critical micelle concentration. Dilution of detergent can result in precipitation of proteins in the absence of well-fluidized membranes for protein integration that underscores the importance of membrane fluidity in MP reconstitution.
Collapse
Affiliation(s)
- Siew-Leng Loo
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University , 637141 Singapore
| | - Winna Siti
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University , 637141 Singapore
| | - Monisha Thiyagarajan
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University , 637141 Singapore
| | - Jaume Torres
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University , 637141 Singapore
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University , 637141 Singapore
| | - Xiao Hu
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University , 637141 Singapore
| |
Collapse
|
39
|
Stevens DM, Shu JY, Reichert M, Roy A. Next-Generation Nanoporous Materials: Progress and Prospects for Reverse Osmosis and Nanofiltration. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02411] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Derek M. Stevens
- Dow Water and Process Solutions, 7600 Metro Boulevard, Edina, Minnesota 55439, United States
| | - Jessica Y. Shu
- Dow Water and Process Solutions, 7600 Metro Boulevard, Edina, Minnesota 55439, United States
| | - Matthew Reichert
- Dow Water and Process Solutions, 7600 Metro Boulevard, Edina, Minnesota 55439, United States
| | - Abhishek Roy
- Dow Water and Process Solutions, 7600 Metro Boulevard, Edina, Minnesota 55439, United States
| |
Collapse
|
40
|
Gan HX, Zhou H, Lin Q, Tong YW. Quantification of Aquaporin-Z reconstituted into vesicles for biomimetic membrane fabrication. Sci Rep 2017; 7:11565. [PMID: 28912594 PMCID: PMC5599656 DOI: 10.1038/s41598-017-11723-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/29/2017] [Indexed: 12/04/2022] Open
Abstract
Aquaporin incorporated biomimetic membranes are anticipated to offer unprecedented desalination capabilities. However, the lack of accurate methods to quantify the reconstituted aquaporin presents a huge hurdle in investigating aquaporin performance and optimizing membrane fabrication. Herein, we present three quantification methods to determine the Aquaporin-Z reconstituted into E. coli lipid vesicles: 1) nanogold labeling with transmission electron microscopy (TEM) visualization, 2) nickel labeling with inductively coupled plasma-mass spectrometry (ICP-MS) and 3) gel electrophoresis. The TEM method serves as a quick way to determine if aquaporin has been reconstituted, but is not quantitative. The numerical results from quantitative methods, ICP-MS and gel electrophoresis, correlate closely, showing that 60 ± 20% vs 66 ± 4% of Aquaporin-Z added is successfully reconstituted into vesicles respectively. These methods allow more accurate determination of Aquaporin-Z reconstituted and loss during reconstitution, with relatively commonly available equipment and without complex sample handling, or lengthy data analysis. These would allow them to be widely applicable to scientific studies of protein function in the biomimetic environment and engineering studies on biomimetic membrane fabrication.
Collapse
Affiliation(s)
- Hui Xian Gan
- National University of Singapore, NUS Environmental Research Institute (NERI), Singapore, 117411, Singapore.,National University of Singapore, Chemical and Biomolecular Engineering, Singapore, 117576, Singapore
| | - Hu Zhou
- National University of Singapore, NUS Environmental Research Institute (NERI), Singapore, 117411, Singapore.,National University of Singapore, Department of Biological Sciences, Singapore, 117543, Singapore
| | - Qingsong Lin
- National University of Singapore, NUS Environmental Research Institute (NERI), Singapore, 117411, Singapore. .,National University of Singapore, Department of Biological Sciences, Singapore, 117543, Singapore.
| | - Yen Wah Tong
- National University of Singapore, NUS Environmental Research Institute (NERI), Singapore, 117411, Singapore. .,National University of Singapore, Chemical and Biomolecular Engineering, Singapore, 117576, Singapore.
| |
Collapse
|
41
|
Wei P, Wang Q, Hang B, Shi F, Cai J, Huang L, Xu Z. High-level cell-free expression and functional characterization of a novel aquaporin from Photobactetrium profundum SS9. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Ren T, Erbakan M, Shen Y, Barbieri E, Saboe P, Feroz H, Yan H, McCuskey S, Hall JF, Schantz AB, Bazan GC, Butler PJ, Grzelakowski M, Kumar M. Membrane Protein Insertion into and Compatibility with Biomimetic Membranes. ACTA ACUST UNITED AC 2017; 1:e1700053. [DOI: 10.1002/adbi.201700053] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/07/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Tingwei Ren
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Mustafa Erbakan
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
- Department of Biosystem Engineering Bozok University Yozgat 66000 Turkey
| | - Yuexiao Shen
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Eduardo Barbieri
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
- Departamento de Engenharia Química Universidade Federal do Rio de Janeiro Centro de Tecnologia Bloco E Rio de Janeiro RJ CEP 21941‐909 Brazil
| | - Patrick Saboe
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Hasin Feroz
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Hengjing Yan
- Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Samantha McCuskey
- Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Joseph F. Hall
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - A. Benjamin Schantz
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Guillermo C. Bazan
- Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Peter J. Butler
- Department of Biomedical Engineering The Pennsylvania State University University Park PA USA 16802
| | | | - Manish Kumar
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
43
|
Kowalik M, Schantz AB, Naqi A, Shen Y, Sines I, Maranas JK, Kumar M. Chemically specific coarse-grained models to investigate the structure of biomimetic membranes. RSC Adv 2017. [DOI: 10.1039/c7ra10573h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biomimetic polymer/protein membranes are promising materials for DNA sequencing, sensors, drug delivery and water purification.
Collapse
Affiliation(s)
- Małgorzata Kowalik
- Department of Chemical Engineering
- The Pennsylvania State University
- University Park
- USA
| | - Allen B. Schantz
- Department of Chemical Engineering
- The Pennsylvania State University
- University Park
- USA
| | - Abdullah Naqi
- Department of Chemical Engineering
- The Pennsylvania State University
- University Park
- USA
| | - Yuexiao Shen
- Department of Chemical Engineering
- The Pennsylvania State University
- University Park
- USA
- Department of Chemistry
| | - Ian Sines
- Department of Chemical Engineering
- The Pennsylvania State University
- University Park
- USA
- Surface Conditioning Business Unit
| | - Janna K. Maranas
- Department of Chemical Engineering
- The Pennsylvania State University
- University Park
- USA
| | - Manish Kumar
- Department of Chemical Engineering
- The Pennsylvania State University
- University Park
- USA
- Department of Civil and Environmental Engineering
| |
Collapse
|
44
|
Das R, Vecitis CD, Schulze A, Cao B, Ismail AF, Lu X, Chen J, Ramakrishna S. Recent advances in nanomaterials for water protection and monitoring. Chem Soc Rev 2017; 46:6946-7020. [DOI: 10.1039/c6cs00921b] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanomaterials (NMs) for adsorption, catalysis, separation, and disinfection are scrutinized. NMs-based sensor technologies and environmental transformations of NMs are highlighted.
Collapse
Affiliation(s)
- Rasel Das
- Leibniz Institute of Surface Modification
- D-04318 Leipzig
- Germany
| | - Chad D. Vecitis
- School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
| | - Agnes Schulze
- Leibniz Institute of Surface Modification
- D-04318 Leipzig
- Germany
| | - Bin Cao
- School of Civil and Environmental Engineering
- Nanyang Technological University
- Singapore
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre
- Universiti Teknologi Malaysia
- 81310 Johor
- Malaysia
| | - Xianbo Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Dalian 116023
- China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Dalian 116023
- China
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology
- Department of Mechanical Engineering
- National University of Singapore
- Singapore
| |
Collapse
|
45
|
|
46
|
Li D, Yan Y, Wang H. Recent advances in polymer and polymer composite membranes for reverse and forward osmosis processes. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2016.03.003] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Martínez-Ballesta MDC, Carvajal M. Mutual Interactions between Aquaporins and Membrane Components. FRONTIERS IN PLANT SCIENCE 2016; 7:1322. [PMID: 27625676 PMCID: PMC5003842 DOI: 10.3389/fpls.2016.01322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/18/2016] [Indexed: 05/08/2023]
Abstract
In recent years, a number of studies have been focused on the structural evaluation of protein complexes in order to get mechanistic insights into how proteins communicate at the molecular level within the cell. Specific sites of protein-aquaporin interaction have been evaluated and new forms of regulation of aquaporins described, based on these associations. Heterotetramerizations of aquaporin isoforms are considered as novel regulatory mechanisms for plasma membrane (PIPs) and tonoplast (TIPs) proteins, influencing their intrinsic permeability and trafficking dynamics in the adaptive response to changing environmental conditions. However, protein-protein interaction is an extensive theme that is difficult to tackle and new methodologies are being used to study the physical interactions involved. Bimolecular fluorescence complementation and the identification of cross-linked peptides based on tandem mass spectra, that are complementary to other methodologies such as heterologous expression, co-precipitation assays or confocal fluorescence microscopy, are discussed in this review. The chemical composition and the physical characteristics of the lipid bilayer also influence many aspects of membrane aquaporins, including their functionality. The molecular driving forces stabilizing the positions of the lipids around aquaporins could define their activity, thereby altering the conformational properties. Therefore, an integrative approach to the relevance of the membrane-aquaporin interaction to different processes related to plant cell physiology is provided. Finally, it is described how the interactions between aquaporins and copolymer matrixes or biological compounds offer an opportunity for the functional incorporation of aquaporins into new biotechnological advances.
Collapse
Affiliation(s)
| | - Micaela Carvajal
- Plant Nutrition Department, Aquaporins Group, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC)Murcia, Spain
| |
Collapse
|
48
|
Bieligmeyer M, Artukovic F, Nussberger S, Hirth T, Schiestel T, Müller M. Reconstitution of the membrane protein OmpF into biomimetic block copolymer-phospholipid hybrid membranes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:881-92. [PMID: 27547605 PMCID: PMC4979867 DOI: 10.3762/bjnano.7.80] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/18/2016] [Indexed: 06/06/2023]
Abstract
Structure and function of many transmembrane proteins are affected by their environment. In this respect, reconstitution of a membrane protein into a biomimetic polymer membrane can alter its function. To overcome this problem we used membranes formed by poly(1,4-isoprene-block-ethylene oxide) block copolymers blended with 1,2-diphytanoyl-sn-glycero-3-phosphocholine. By reconstituting the outer membrane protein OmpF from Escherichia coli into these membranes, we demonstrate functionality of this protein in biomimetic lipopolymer membranes, independent of the molecular weight of the block copolymers. At low voltages, the channel conductance of OmpF in 1 M KCl was around 2.3 nS. In line with these experiments, integration of OmpF was also revealed by impedance spectroscopy. Our results indicate that blending synthetic polymer membranes with phospholipids allows for the reconstitution of transmembrane proteins under preservation of protein function, independent of the membrane thickness.
Collapse
Affiliation(s)
- Matthias Bieligmeyer
- Institute of Interfacial Process Engineering and Plasma Technology, Department of Chemical Interfacial Process Engineering, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Franjo Artukovic
- Institute of Biomaterials and Biomolecular Systems, Department of Biophysics, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany
| | - Stephan Nussberger
- Institute of Biomaterials and Biomolecular Systems, Department of Biophysics, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany
| | - Thomas Hirth
- Institute of Interfacial Process Engineering and Plasma Technology, Department of Chemical Interfacial Process Engineering, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Department of Interfacial Engineering and Materials Science, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Thomas Schiestel
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Department of Interfacial Engineering and Materials Science, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Michaela Müller
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Department of Interfacial Engineering and Materials Science, Nobelstraße 12, 70569 Stuttgart, Germany
| |
Collapse
|
49
|
Qadir D, Mukhtar H, Keong LK. Mixed Matrix Membranes for Water Purification Applications. SEPARATION AND PURIFICATION REVIEWS 2016. [DOI: 10.1080/15422119.2016.1196460] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Qi S, Wang R, Chaitra GKM, Torres J, Hu X, Fane AG. Aquaporin-based biomimetic reverse osmosis membranes: Stability and long term performance. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.02.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|