1
|
Song X, Song X, Liu B, Yue Z. Surface-modified silicalite-1-filled PDMS membranes for pervaporation dehydration of trichloroethylene. RSC Adv 2023; 13:33376-33389. [PMID: 38025866 PMCID: PMC10644095 DOI: 10.1039/d3ra05523j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/04/2023] [Indexed: 12/01/2023] Open
Abstract
In this study, the impact of silane coupling agents, namely 3-aminopropyltrimethoxysilane (APTMS), trimethylchlorosilane (TMCS), and 1,1,3,3-tetramethyldisilazane (TMDS), on the hydrophobicity of silicalite-1 zeolite was investigated to enhance the pervaporation separation performance of mixed matrix membranes (MMMs) for trichloroethylene (TCE). The hydrophobicity of TMCS@silicalite-1 and TMDS@silicalite-1 particles exhibited significant improvement, as evidenced by the increase in water contact angle from 96.1° to 101.9° and 109.1°, respectively. Conversely, the water contact angle of APTMS@silicalite-1 particles decreased to 85.2°. Silane-modified silicalite-1 particles were incorporated into polydimethylsiloxane (PDMS) to prepare mixed matrix membranes (MMMs), resulting in a significant enhancement in the adsorption selectivity of trichloroethylene (TCE) on membranes containing TMCS@silicalite-1 and TMDS@silicalite-1 particles. The experimental findings demonstrated that the PDMS membrane with a TMDS@silicalite-1 particle loading of 40 wt% exhibited the most favorable pervaporation performance. Under the conditions of a temperature of 30 °C, a flow rate of 100 mL min-1, and a vacuum degree of 30 kPa, the separation factor and total flux of a 3 × 10-7 wt% TCE aqueous solution were found to be 139 and 242 g m-2 h-1, respectively. In comparison to the unmodified silicalite-1/PDMS, the separation factor exhibited a 44% increase, while the TCE flux increased by 16%. Similarly, when compared to the pure PDMS membrane, the separation factor showed an 83% increase, and the TCE flux increased by 20%. These findings provide evidence that the hydrophobic modification of inorganic fillers can significantly enhance the separation performance of PDMS membranes for TCE.
Collapse
Affiliation(s)
- Xiaosan Song
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University No. 88 Anning West Road Lanzhou 730070 China
| | - Xichen Song
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Bo Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Zilin Yue
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| |
Collapse
|
2
|
Song X, Song X, Zhang Y, Fan J. Improving the Pervaporation Performance of PDMS Membranes for Trichloroethylene by Incorporating Silane-Modified ZSM-5 Zeolite. Polymers (Basel) 2023; 15:3777. [PMID: 37765631 PMCID: PMC10537036 DOI: 10.3390/polym15183777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The hydrophobic nature of inorganic zeolite particles plays a crucial role in the efficacy of mixed matrix membranes (MMMs) for the separation of trichloroethylene (TCE) through pervaporation. This study presents a novel approach to further augment the hydrophobicity of ZSM-5. The ZSM-5 zeolite molecular sieve was subjected to modification using three different silane coupling agents, namely, n-octyltriethoxysilane (OTES), γ-methacryloxypropyltrimethoxysilane (KH-570), and γ-aminopropyltriethoxysilane (KH-550). The water contact angles of the resulting OTES@ZSM-5, KH-570@ZSM-5, and KH-550@ZSM-5 particles exhibited significant increases from 97.2° to 112.8°, 109.1°, and 102.7°, respectively, thereby indicating a notable enhancement in hydrophobicity. Subsequently, mixed matrix membranes (MMMs) were fabricated by incorporating the aforementioned silane-modified ZSM-5 particles into polydimethylsiloxane (PDMS), leading to a considerable improvement in the adsorption selectivity of these membranes towards trichloroethylene (TCE). The findings indicate that the PDMS membrane with a 20 wt.% OTES@ZSM-5 particle loading exhibits superior pervaporation performance. When subjected to a temperature of 30 °C, flow rate of 100 mL/min, and vacuum of 30 Kpa, the separation factor and total flux of a 3 × 10-7 wt.% TCE solution reach 328 and 155 gm-2·h-1, respectively. In comparison to the unmodified ZSM-5/PDMS membrane, the separation factor demonstrates a 41% increase, while the TCE flux experiences a 6% increase. Consequently, this approach effectively enhances the pervaporation separation capabilities of the PDMS membrane for TCE.
Collapse
Affiliation(s)
- Xiaosan Song
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (X.S.); (Y.Z.); (J.F.)
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xichen Song
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (X.S.); (Y.Z.); (J.F.)
| | - Yue Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (X.S.); (Y.Z.); (J.F.)
| | - Jishuo Fan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; (X.S.); (Y.Z.); (J.F.)
| |
Collapse
|
3
|
Wang X, Gao N, Wang L, Liao Y. Polyelectrolyte interlayer assisted interfacial polymerization fabrication of a dual-charged composite nanofiltration membrane on ceramic substrate with high performance. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
4
|
Cheng FY, Zhang X, Lin YF, Wu LK, Xu ZL, Taymazov D. Mutual-assisted structure of sodium alginate-polyamide membrane for high-efficient dehydration of ethanol. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
An Evolving MOF Thin-Film Nanocomposite Tubular Ceramic Membrane for Desalination Pretreatment. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02501-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Li Z, Hu K, Feng X. Co-depositing polyvinylamine and dopamine to enhance membrane performance for concentration of KAc solutions via sweeping air pervaporation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
|
8
|
Zhang X, Zhan ZM, Cheng FY, Xu ZL, Jin PR, Liu ZP, Ma XH, Xu XR, Van der Bruggen B. Thin-Film Composite Membrane Prepared by Interfacial Polymerization on the Integrated ZIF-L Nanosheets Interface for Pervaporation Dehydration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39819-39830. [PMID: 34375531 DOI: 10.1021/acsami.1c09221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thin-film composite (TFC) membranes are attracting wide attention because their ultrathin selective layer usually corresponds to the higher membrane flux for pervaporation. However, the direct preparation of the TFC membranes on ceramic substrates confronted with the great difficulties because the larger pores on ceramic substrate surfaces are detrimental to the formation of an intact polyamide (PA) selective layer produced by interfacial polymerization (IP) reaction. Here, the integrated ZIF-L nanosheets were proposed to be used as an assistance interlayer for the first time to eliminate the existence of the pores of the ceramic support, and provides a better basis for the formation of an intact PA selective layer by IP reaction between TMC and ethylenediamine (EDA). The experimental data obtained in pervaporation (PV) show that the increased flux from 1.1 to 2.9 kg/m2h corresponds to the decreased separation factor from 396 to 110 when the feed concentration of ethanol decreases from 95 wt % to 80 wt % at 50 °C. In addition, the membrane flux increases from 0.8 to 2.5 kg/m2h with a change of the separation factor from 683 to 111 when the operational temperature varies from 30 to 60 °C. These results demonstrate the great potential of the fabricated TFC membranes in practical application for PV dehydration of organic solutions.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, P. R. China
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Zi-Ming Zhan
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, P. R. China
| | - Feng-Yi Cheng
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zhen-Liang Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, P. R. China
| | - Peng-Rui Jin
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Ze-Peng Liu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xiao-Hua Ma
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xin-Ru Xu
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Center, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology (ECUST), 130 Meilong Road, Shanghai 200237, P. R. China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| |
Collapse
|
9
|
Kotobuki M, Gu Q, Zhang L, Wang J. Ceramic-Polymer Composite Membranes for Water and Wastewater Treatment: Bridging the Big Gap between Ceramics and Polymers. Molecules 2021; 26:3331. [PMID: 34206052 PMCID: PMC8198361 DOI: 10.3390/molecules26113331] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 11/25/2022] Open
Abstract
Clean water supply is an essential element for the entire sustainable human society, and the economic and technology development. Membrane filtration for water and wastewater treatments is the premier choice due to its high energy efficiency and effectiveness, where the separation is performed by passing water molecules through purposely tuned pores of membranes selectively without phase change and additional chemicals. Ceramics and polymers are two main candidate materials for membranes, where the majority has been made of polymeric materials, due to the low cost, easy processing, and tunability in pore configurations. In contrast, ceramic membranes have much better performance, extra-long service life, mechanical robustness, and high thermal and chemical stabilities, and they have also been applied in gas, petrochemical, food-beverage, and pharmaceutical industries, where most of polymeric membranes cannot perform properly. However, one of the main drawbacks of ceramic membranes is the high manufacturing cost, which is about three to five times higher than that of common polymeric types. To fill the large gap between the competing ceramic and polymeric membranes, one apparent solution is to develop a ceramic-polymer composite type. Indeed, the properly engineered ceramic-polymer composite membranes are able to integrate the advantages of both ceramic and polymeric materials together, providing improvement in membrane performance for efficient separation, raised life span and additional functionalities. In this overview, we first thoroughly examine three types of ceramic-polymer composite membranes, (i) ceramics in polymer membranes (nanocomposite membranes), (ii) thin film nanocomposite (TFN) membranes, and (iii) ceramic-supported polymer membranes. In the past decade, great progress has been made in improving the compatibility between ceramics and polymers, while the synergy between them has been among the main pursuits, especially in the development of the high performing nanocomposite membranes for water and wastewater treatment at lowered manufacturing cost. By looking into strategies to improve the compatibility among ceramic and polymeric components, we will conclude with briefing on the perspectives and challenges for the future development of the composite membranes.
Collapse
Affiliation(s)
| | | | | | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore; (M.K.); (Q.G.); (L.Z.)
| |
Collapse
|
10
|
Ang MBMY, Marquez JAD, Huang SH, Lee KR. A recent review of developmental trends in fabricating pervaporation membranes through interfacial polymerization and future prospects. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Layer-by-layer polyamide thin film nanocomposite membrane: synthesis, characterization and using as pervaporation membrane to separate methyl tertiary butyl ether/methanol mixture. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02479-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Zhang X, Liu ZP, Xu ZL, Cheng FY, Ma XH, Xu XR. Thin-film composite membranes fabricated directly on a large-porous ceramic support using poly (4-styrenesulfonic acid) as a scaffold for ethanol dehydration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118775] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
De Guzman MR, Ang MBMY, Yeh YL, Yang HL, Huang SH, Lee KR. Improved pervaporation efficiency of thin-film composite polyamide membranes fabricated through acetone-assisted interfacial polymerization. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2020.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Sun F, Lu J, Wang Y, Xiong J, Gao C, Xu J. Reductant-assisted polydopamine-modified membranes for efficient water purification. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1987-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Polyvinyl alcohol and graphene oxide blending surface coated alumina hollow fiber (AHF) membrane for pervaporation dehydration of epichlorohydrin(ECH)/ isopropanol(IPA)/water ternary feed mixture. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Korde A, Min B, Ganesan A, Yang S, Wang Z, Grosz A, Jones CW, Nair S. AEL Zeolite Nanosheet-Polyamide Nanocomposite Membranes on α-Alumina Hollow Fibers with Enhanced Pervaporation Properties. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Akshay Korde
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Byunghyun Min
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Arvind Ganesan
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Shaowei Yang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Zhongzhen Wang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Aristotle Grosz
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Christopher W. Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Sankar Nair
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
17
|
Dmitrenko M, Zolotarev A, Plisko T, Burts K, Liamin V, Bildyukevich A, Ermakov S, Penkova A. Effect of the Formation of Ultrathin Selective Layers on the Structure and Performance of Thin-Film Composite Chitosan/PAN Membranes for Pervaporation Dehydration. MEMBRANES 2020; 10:membranes10070153. [PMID: 32708548 PMCID: PMC7407627 DOI: 10.3390/membranes10070153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 01/17/2023]
Abstract
The aim of the study is to improve the performance of thin-film composite (TFC) membranes with a thin selective layer based on chitosan (CS) via different approaches by: (1) varying the concentration of the CS solution; (2) changing the porosity of substrates from polyacrylonitrile (PAN); (3) deposition of the additional ultrathin layers on the surface of the selective CS layer using interfacial polymerization and layer-by-layer assembly. The developed membranes were characterized by different methods of analyses (SEM and AFM, IR spectroscopy, measuring of water contact angles and porosity). The transport characteristics of the developed TFC membranes were studied in pervaporation separation of isopropanol/water mixtures. It was found that the application of the most porous PAN-4 substrate with combination of formation of an additional polyamide selective layer by interfacial polymerization on the surface of a dense selective CS layer with the subsequent layer-by-layer deposition of five bilayers of poly (sodium 4-styrenesulfonate)/CS polyelectrolyte pair led to the significant improvement of permeance and high selectivity for the entire concentration feed range. Thus, for TFC membrane on the PAN-4 substrate the optimal transport characteristics in pervaporation dehydration of isopropanol (12–90 wt.% water) were achieved: 0.22–1.30 kg/(m2h), 99.9 wt.% water in the permeate.
Collapse
Affiliation(s)
- Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (V.L.); (S.E.)
| | - Andrey Zolotarev
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (V.L.); (S.E.)
| | - Tatiana Plisko
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 13 Surganov Str., 220072 Minsk, Belarus; (T.P.); (K.B.); (A.B.)
| | - Katsiaryna Burts
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 13 Surganov Str., 220072 Minsk, Belarus; (T.P.); (K.B.); (A.B.)
| | - Vladislav Liamin
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (V.L.); (S.E.)
| | - Alexandr Bildyukevich
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 13 Surganov Str., 220072 Minsk, Belarus; (T.P.); (K.B.); (A.B.)
| | - Sergey Ermakov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (V.L.); (S.E.)
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.Z.); (V.L.); (S.E.)
- Correspondence: ; Tel.: +7-812-428-48-05
| |
Collapse
|
18
|
Zhang X, Li MP, Huang ZH, Zhang H, Liu WL, Xu XR, Ma XH, Xu ZL. Fast surface crosslinking ceramic hollow fiber pervaporation composite membrane with outstanding separation performance for isopropanol dehydration. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Yang H, Wu H, Pan F, Wang M, Jiang Z, Cheng Q, Huang C. Water-selective hybrid membranes with improved interfacial compatibility from mussel-inspired dopamine-modified alginate and covalent organic frameworks. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2019.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
From micro to nano: Polyamide thin film on microfiltration ceramic tubular membranes for nanofiltration. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Nanocomposite membranes based on sodium alginate/poly(ε-caprolactone)/graphene oxide for methanol, ethanol and isopropanol dehydration via pervaporation. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02921-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
High-performance polyamide/ceramic hollow fiber TFC membranes with TiO2 interlayer for pervaporation dehydration of isopropanol solution. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Zhang R, Liang B, Qu T, Cao B, Li P. High-performance sulfosuccinic acid cross-linked PVA composite pervaporation membrane for desalination. ENVIRONMENTAL TECHNOLOGY 2019; 40:312-320. [PMID: 28978280 DOI: 10.1080/09593330.2017.1388852] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Pervaperation (PV), as a novel technology, has shown great promise in fresh water production from salty water. However, the low water flux of the present membranes hinders their practical applications. Here, a new type of PV composite membrane, consisting of a selective skin layer fabricated from poly(vinyl alcohol) (PVA) cross-linked by sulfosuccinic acid and a porous support layer using a commercial polyacrylonitrile (PAN) ultrafiltration membrane, was developed for applications in desalination. The separation performance of S-PVA/PAN composite PV membranes with different S-PVA layer thicknesses was tested in detail. The best result showed a water flux of 27.9 kg m-2 h-1 with a salt rejection of 99.8%, which was obtained at a vacuum of 100 Pa and temperature of 70°C when separating a 35,000 ppm NaCl solution. The S-PVA/PAN composite membranes could also be used for the desalination of high-concentration (100,000 ppm) NaCl solutions with a water flux of 11.2 kg m-2 h-1 with a salt rejection of 99.8%. Moreover, a stable desalination performance was obtained for a 120 h operation time. This study shows the possibility of using PV in desalination applications for seawater, brackish water and reverse osmosis concentrate treatment.
Collapse
Affiliation(s)
- Rui Zhang
- a College of Materials Science and Engineering , Beijing University of Chemical Technology , Beijing , People's Republic of China
| | - Bin Liang
- a College of Materials Science and Engineering , Beijing University of Chemical Technology , Beijing , People's Republic of China
| | - Ting Qu
- a College of Materials Science and Engineering , Beijing University of Chemical Technology , Beijing , People's Republic of China
| | - Bing Cao
- a College of Materials Science and Engineering , Beijing University of Chemical Technology , Beijing , People's Republic of China
| | - Pei Li
- a College of Materials Science and Engineering , Beijing University of Chemical Technology , Beijing , People's Republic of China
| |
Collapse
|
24
|
Bio-inspired deposition of polydopamine on PVDF followed by interfacial cross-linking with trimesoyl chloride as means of preparing composite membranes for isopropanol dehydration. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.04.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
|
26
|
Preparation of polyamide/polyacrylonitrile composite hollow fiber membrane by synchronous procedure of spinning and interfacial polymerization. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.01.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Maaskant E, de Wit P, Benes NE. Direct interfacial polymerization onto thin ceramic hollow fibers. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Liu J, Bernstein R. High-flux thin-film composite polyelectrolyte hydrogel membranes for ethanol dehydration by pervaporation. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.04.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Metal–Organic Framework-Functionalized Alumina Membranes for Vacuum Membrane Distillation. WATER 2016. [DOI: 10.3390/w8120586] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Zhang L, Xu L, Sun Y, Yang N. Robust and Durable Superhydrophobic Polyurethane Sponge for Oil/Water Separation. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b02897] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luhong Zhang
- School of Chemical Engineering and Technology and ‡Collaborative Innovation Center
of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, People’s Republic of China
| | - Lidong Xu
- School of Chemical Engineering and Technology and ‡Collaborative Innovation Center
of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, People’s Republic of China
| | - Yongli Sun
- School of Chemical Engineering and Technology and ‡Collaborative Innovation Center
of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, People’s Republic of China
| | - Na Yang
- School of Chemical Engineering and Technology and ‡Collaborative Innovation Center
of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, People’s Republic of China
| |
Collapse
|
31
|
Poly(sodium vinylsulfonate)/chitosan membranes with sulfonate ionic cross-linking and free sulfate groups: preparation and application in alcohol dehydration. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.02.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Ong YK, Shi GM, Le NL, Tang YP, Zuo J, Nunes SP, Chung TS. Recent membrane development for pervaporation processes. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2016.02.003] [Citation(s) in RCA: 345] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Hua D, Chung TS. Universal surface modification by aldehydes on polymeric membranes for isopropanol dehydration via pervaporation. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.05.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
|
35
|
Fraga S, Trabucho L, Brazinha C, Crespo J. Characterisation and modelling of transient transport through dense membranes using on-line mass spectrometry. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2014.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
|
37
|
Layer-by-layer (LbL) polyelectrolyte membrane with Nexar™ polymer as a polyanion for pervaporation dehydration of ethanol. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2014.11.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Thin-film composite tri-bore hollow fiber (TFC TbHF) membranes for isopropanol dehydration by pervaporation. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.07.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Thin-film composite membranes with modified polyvinylidene fluoride substrate for ethanol dehydration via pervaporation. Chem Eng Sci 2014. [DOI: 10.1016/j.ces.2014.07.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Dharupaneedi SP, Anjanapura RV, Han JM, Aminabhavi TM. Functionalized Graphene Sheets Embedded in Chitosan Nanocomposite Membranes for Ethanol and Isopropanol Dehydration via Pervaporation. Ind Eng Chem Res 2014. [DOI: 10.1021/ie502751h] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Suhas P. Dharupaneedi
- Materials
Science Division, Poornaprajna Institute of Scientific Research, Bengaluru 562-110, India
| | - Raghu V. Anjanapura
- Materials
Science Division, Poornaprajna Institute of Scientific Research, Bengaluru 562-110, India
| | - Jeong M. Han
- Department
of Chemistry, Energy Harvest-Storage Research Centre, University of Ulsan, Ulsan 680-749, Korea
| | | |
Collapse
|
41
|
|